Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Олово координационные соединения

    Олово. Причина отличия соединений олова от соединений кремния и германия заключается главным образом в том, что четырехвалентное олово стремится иметь координационное число [c.590]

    Образование координационных связей часто считается свойством переходных металлов, однако этот тип связи никоим образом не ограничен этими элементами. Такие элементы главных групп, как бор, алюминий, кремний и олово, образуют много координационных соединений. Действительно, в гл. 8 обсуждалось образо- вание связей в простом координационном соединении ВРз- МНз, в котором ВРз является акцептором электронов (или кислотой по Льюису). [c.218]


    С 1893 по 1919 год в лаборатории Вернера было синтезировано удивительное количество комплексных соединений образцы их хранятся до сих пор в тщательно запаянных ампулах в химическом институте Цюрихского университета (рис. 4). Это координационные соединения платины, кобальта, никеля, хрома, меди, олова, молибдена и других центральных атомов с самыми разнообразными неорганическими и органическими лигандами. [c.55]

    Таким образом, к двуокисям олова и свинца присоединяются максимально четыре иона 0 (которые по причинам, обсуждаемым ниже, могут присоединять еще и ионы водорода) сверх того количества ионов 0 , которое содержится в нейтральных молекулах. Это положение можно сформулировать следующим образом максимальное координационное число по отношению к кислороду в ряду от углерода к олову повышается с 3 до 6. Тот факт, что кислородные кислоты и их соли (так же как тиокислоты и тиосоли) принадлежат к классу координационных соединений, был отмечен уже Вернером. [c.405]

    Соединения германия (П), олова (П) и свинца (II). Координационные числа элементов подгруппы германия в степени окисления +2 более разнообразны, чем в степени окисления +4, и равны 3, 4, 5 и 6. [c.429]

    Полимерные вещества часто называют так, будто они мономерны, например (СНзЫ) метиллитий. Названия по координационному типу широко используются в СА, в частности для шестикоординационных соединений олова. Обычно такие названия не применяют для элементов, гидриды которых перечислены в табл. 9.1. [c.192]

    За исключением соединений мышьяка, висмута, бора, германия, фосфора, свинца, кремния, олова, сурьмы и серы(П), допустимы названия, составленные по координационному типу. [c.199]

    Олово существует в двух полиморфных модификациях, причем низкотемпературная (a-Sn — серое олово) обладает кристаллической решеткой типа алмаза и полупроводниковыми свойствами, а высокотемпературная ( -Sn — белое олово), хотя и представляет собой металл по физическим свойствам, тем не менее кристаллизуется в малохарактерной для металлов тетрагональной структуре. С химической точки зрения олово ближе примыкает к германию, чем к свинцу, но металлический характер этого элемента выражен более ярко, чем у германия. Единственным типичным металлом в этой подгруппе является свинец. В виде простого вещества он кристаллизуется в плотноупакованной ГЦК структуре с координационным числом 12. В своих соединениях он выступает в основном в качестве катионообразователя. [c.215]

    Атомные (неметаллические) кристаллы с ковалентной связью между атомами. Их особенности. Координационные числа. Нарушение принципа плотной упаковки из-за направленности ковалентных связей. Некоторые особенности соединений с решетками типа сфалерита. Частицами, строящими такие кристаллы, являются атомы. Весь кристалл вещества представляет собой как бы гигантскую молекулу. Типичные представители кристаллических веществ с неполярной ковалентной связью между атомами — алмаз, кристаллические кремний и германий, а-олово, решетки которых рассмотрены выше. Кристаллический бор тоже имеет атомную неметаллическую решетку. [c.131]


    По внутренней структуре комплексного соединения. а) По числу ядер, составляющих комплекс, различают моно- и поли-ядерные комплексные соединения. Пример двухъядерного комплекса — это [(NH,-5)5 r OH r(NH3)5] ls, в котором два иона хрома (комплексообразователя) связаны посредством мостиковой группы ОН. В качестве мостиковых могут функционировать частицы, обладающие неподеленными электронными парами ионы F, С1, 02", S2, S02", NH2, NH" и др. Полиядерные комплексы, в которых мостики образованы гидроксильными группами, называются оловыми соединениями. Структурно мостиковая группа ОН отличается от гидроксильной группы в одноядерных комплексах. Координационное число кислорода в оловом мостике равно трем, а в ОН-группе одноядерных комплексов — двум. [c.107]

    Причиной снижения активности указанных солей металлов является их способность легко образовывать комплексы с координационно связанной водой. В результате этого становится невозможным образование алкоголята металла — активного соединения в процессе переэтерификации. В случае же соединений титана и олова их комплексы с водой имеют низкую стабильность и, распадаясь, образуют полимерные соединения по следующей схеме  [c.48]

    Катионы олова (II) при взаимодействии с 15-краун-5 образуют два типа комплексов 1 2, имеющий структуру сэндвича , и 3 2, в котором один катион Sn2+ заключен между двумя молекулами макроциклического лиганда, а два других присутствуют в виде однозарядных комплексных противоионов [SnXg] [565] Первая структура реализуется в присутствии слабо координирующегося перхлорат-аниона, не способного войти в состав иона [SnXg] Комплекс второго типа образуется при наличии в реакционной смеси хлорид- и роданид-анионов Для хлорида олова (IV) известно координационное соединение с DB24 8 состава 2 1 [566] [c.185]

    Таким образом, введение в злектролиты железнения комбинации до-к бавок нафталинаминодисульфокислот (5 г/л) и пропаргилового спирта (10 г/л) позволяет значительно повысить равномерность и качество поверхности осадков железа. Найдены координационные соединения,повво-ляющие повысить выравнивающую способность электролитов железнения почти в два раза. К ним относятся соединения, содержащие дихлор уш кобальта и олова [б0]. [c.33]

    Для хлорида олова (IV) известно координационное соединение с DB24 8 состава 2 1 [566]. [c.185]

    Полимеризация ВФ может осуществляться в присутствии каталитических систем типа Циглера — Натта [121], алкильных соединений бора [122], кадмия и цинка [123] и координационных соединений боралкилов с аммиаком,гидразином, гидроксил-амином и аминами [124]. В качестве инициаторов полимеризации используются также органические соединения свпица и олова (тетраэтилсвинец или тетраэтилолово) и неорганический активатор, повышающий каталитическую активность соединений свинца и олова (соли щелочных металлов или аммония, или соли трехвалентного железа) [125]. Эффективной каталитической системой при 30 °С является, как и при полимеризации винилхлорида, растворимая система ванадийокситри-хлорид — триизобутилалюминий — тетрагидрофуран. Все три компонента необходимы для -образования активного катализатора [121]. [c.71]

    В приведенных работах образование полимерных соединений связывается с гидролизом и не рассматривается механизм процесса полимеризации циркония в растворе. В свете современных представлений о химии координационных соединений, рассматриваемых в фундаментальной монографии Бейлара [39], процесс полимеризации можно связать с образованием оловых соединений (оляцией). Оловые соединения — это комплексные соединения, в которых атомы металла связаны между собой посредством мостиковых ОН-групп. Процесс образования оловых соединений из гидроксосоеди-нений называется оляцией, а превращение оловых групп в мости-ковые оксогруппы с отщеплением от каждой оловой группы протона — оксоляцкей. Оляция часто сопровождается оксоляцией либо замещением анионами, либо тем и другим процессом одновременно. [c.30]

    Рядом авторов предложены качественные схемы характера связей атома олова в соединениях с координационными числами больше 4 без привлечения -орбиталей [143—145]. Если использовать схему Шлемпера [145], то следует принять, что в последней структуре атом 8п находится в состоянии 5р -ги-бридизации и образует нормальные ковалентные связи с метильными группами и атомом С1 и трехцентровую связь с дитиокарбаматным лигандом. Однако неравноценность связей 8п—8 и величины валентных углов при 8п приводят авторов [142] к заключению, что комплекс все же лучше описывается как тригонально-бипирамидальный, а не тетраэдрический. [c.127]

    Диазониевые соли образуют координационные соединения (двойные соли) с хлоридами ртути, олова, железа и особенно цинка. Можно применять и другие галоидные соли так, например, <р-диазонафталин образует с бромистой медью координационное соединение СюНтНгВг СигВгз , строение которого обсуждалось Г анчем °. [c.91]


    Постадийное обратимое окисление с отрывом двух электронов, как и в предыдущем случае, описано также для комплексов ре-ния(П) с 1,2-бис-(дифенилфосфино)этаном и 1-(дифенилфосфино)-2-(днфенилфосфино)этаном в тех же условиях на платиновом электроде [178] и для координационных соединений кобальта, цинка и меди с 4-та/)еиг-бутилфталоцианинами [179]. В последней работе окисление проводили на металлических (золото, платина) и оптически прозрачных электродах, изготовленных на основе окиси индия и двуокиси олова, в нитробензоле и о-дихлорбензоле. Отрыв первого электрона от фталоцианиновых комплексов кобальта и цинка близок к обратимому. В случае кобальтового комплекса вторая ступень окисления на металлических электродах обусловлена переходом Со(11)->Со(1П). Спектры поглощения продуктов одноэлектронного окисления на металлических и оптически прозрачных электродах в о-дихлорбензоле имеют три области поглощения, из которых только две приписаны возможному поглощению монокатион-радикалов фталоцианиновых комплексов. Механизм их окисления при переходе к координирующим растворителям, таким, как пиридин или диметилсульфоксид, меняется. [c.168]

    Известно бoльuJoe число комплексных соединений гидразина. Установлено, что гидразин координируется не только d-элементами групп VIO, П и I периодической системы элементов, но и цирконием (IV) [100], титаном (П1), хромом [101, 102], оловом, висмутом, сурьмой, алюминием [103] кальцием [15, с. 127] и другими элементами. Ниже рассмотрены способы получения, строение и свойства некоторых координационных соединений гидразина. [c.98]

    IV группы, начиная с кремния, появляются незаполненные орбиты (например, у кремния 1-, а у гелия или олова /-орбиты). Это создает принципиальное различие в их поведении по сравнению с углеродом. Незаполненные орбиты могут использоваться для образования новых дополнительных связей. Сближение орбит облегчает этот процесс (см. табл. 9.17), ковалентный радиус при переходе от углерода к кремнию меняется резко, а далее остается почти без изменений. Известно много случаев образования дополнительных 0-связей за счет ( -орбит и образование пяти- и шестивалентных соединений кремния, германия и олова. Координационное число этих элементов не превышает 6. Хотя у них имеется пять -орбит, к связыванию оказываются способными только два, вероятно, по стерическим причинам. Наиболее известным примером шестивалентного кремния является фторсиликатный ион31Гв . Германий и олово в своих галогенидах являются сильными акцепторами и образуют многочисленные аддукты со спиртами, эфирами, аминами [63]. [c.318]

    Теперь рассмотрим процесс взаимодействия гидроокиси алюминия с кислотами в свете представлений химии координационных соединений [197]. Добавление кислоты к гидроокиси алюминия приводит к растворению ее и образованию соответствующих солей алюминия. Однако поведение полиалюмидиолана имеет интересную особенность — оловая группа способна замещаться анионом кислоты (Ас ) без разрыва мостика  [c.51]

    Уильям Джексон Поуп (1870—1939) продемонстрировал, что трехмерную модель можно распространить также на атомы серы, селена и олова, а несколько позднее швейцарский химик Альфред Вернер (1866—1919) добавил к этому списку кобальт, хром, родий и ряд других металлов. (Начиная с 1891 г. Вернер занимался разработкой координационной теории, которая позволила бы объяснить свойства некоторых необычных неорганических соединений . Согласно этой теории, кроме главных валентных сил имеются еще и силы побочной валентности. Первоначально считалось, что они резко отличаются от основных валентных сил, но впоследствии выяснилось, что существенного различия между ними не существует. [c.89]

    Известны комплексы четырехвалентных элементов этой группы. Кроме того, описаны производные Sn(II) и РЬ(П). Соединения четырехвалентных элементов с координационным числом 6 имеют октаэдрическое строение. Комплексы двухвалентного свинца и олова, характеризующиеся аналитическим координационным числом 4 в действительности в твердом состоянии представляют собой сложные полимерные структуры с октаэдрической координацией около иона металла. Сведения о плоской структуре комплексов Sn(II) и РЬ(П) неполны и нуждаются в дальнейшем подтверждении. К соединениям с аномальными координационными числами относятся Na( 5H5NH)2[Sn(N S) ], [c.203]

    В частности, по ряду С—РЬ уменьшаются энергии связей Э—Э 83 (С—С), 53 (Si—Si), 45 (Ge—Ge ), 37 ккал/моль (Sn-Sn). С другой стороны, по тому же ряду увеличиваются координационные числа элементов. Например, у фтористых соединений максимальное координационное число углерода составляет четыре (в F4)i кремния и германия — шесть (в солях НаЭР ), олова и свинца — восемь (в соля Н4Эр8). По отношению к более объемистым галоидам максимальное координационное число кремния (и углерода) не превышает четырех, у Ge оно возрастает до шести только для хлора, а у Sn и РЬ — даже для иода. Как уменьшение устойчивости связей [c.642]

    При образовании гомоатомных соединений (простых веществ) все эффекты, связанные с разностью электроотрицательностей взаимодействующих атомов, исключаются. Поэтому в простых веществах не реализуются полярные, а тем более преимущественно ионные связи. Следовательно, в простых веществах осуществляется лишь металлическая и ковалентная связь. Следует при этом учесть и возможность возникновения дополнительного ван-дер-ваальсов-ского взаимодействия. Преобладание вклада металлической связи приводит к металлическим свойствам простого вещества, а неметаллические свойства обусловлены преимущественно ковалентным взаимодействием. Для образования ковалентной связи взаимодействующие атомы должны обладать достаточным количеством валентных электронов. При дефиците валентных электронов осуществляется коллективное электронно-атомное взаимодействие, приводящее к возникновению металлической связи. На этой основе в периодической системе можно провести вертикальную границу между элементами П1А- и 1УА-групп, слева от которой располагаются элементы с дефицитом валентных электронов, а справа — с избытком. Эта вертикаль называется границей Цинтля Ее положение в периодической системе обусловлено тем, что в соответствии с современными представлениями о механизме образования ковалентной связи особой устойчивостью обладает полностью завершенная октетная электронная 5 /гр -конфигурация, свойственная благородным газам. Поэтому для реализации ковалентного взаимодействия при образовании простых веществ необходимо, чтобы каждый атом пмел не менее четырех электронов. В этом случае возможно возникгювение четырех ковалентных связей (5/) -гибридизация ), что и реализуется у элементов 1УА-группы (решетка типа алмаза у углерода, кремния, германия и а-олова с координационным числом 4). Если атом имеет 5 валентных электронов (УА-группа), то до завершения октета ему необходимо 3 электрона. Поэтому он может иметь лишь три ковалентные связи с партнерами (к. ч. 3). В этом случае кристалл образован гофрированными сетками, которые связаны между собой более слабыми силами. Получается слоистая структура, в которой расстояние между атомами, принадлежащими одному слою, намного меньше, чем между атомами различных слоев (черный фосфор, мышьяк, сурьма)  [c.29]

    Характеристика элементов IVA-группы. К IVA-rpynne элементов, помимо типических, относятся элементы подгруппы германия Ge, Sn и Pb. Их валентная электронная конфигурация (ns np в невозбужденном состоянии) обусловливает возможность проявления свойств и катионо- и анионообразователей. Кроме того, эти элементы непосредственно примыкают к границе Цинтля справа и число валентных электронов достаточно для образования структур с ковалентной связью у соответствующих простых веществ с координационными числами согласно правилу Юм-Розери 8—N. Действительно, для гомоатомных соединений (кроме свинца и -олова) характерна кристаллическая решетка типа алмаза с координационным числом 4. Однако преимущественно ковалентная связь и кристаллах соединений в действительности реализуется далеко не всегда. Причиной этого является вторая особенность IVA-группы, заключающаяся в том, что здесь наиболее рельефно прослеживается изменение свойств от типично неметаллических (С) до металлических (РЬ). Поэтому тяжелые представители этой группы (РЬ, Sn), т. е. элементы с большой атомной массой, характеризуются плотно-упакованными структурами в свободном состоянии. [c.214]

    Соединения с другими неметаллами. Халькогениды элементов подгруппы германия, как и оксиды, образуют 2 ряда монохалькогениды ЭХ и дихалькогениды ЭХ . Низшие халькогениды известны для всех элементов и халькогенов. Все монохалькогениды элементов можно получить как непосредственным взаимодействием компонентов при нагревании, так и пропусканием сероводорода через водные растворы, содержаш,ие ионы +. Дисульфиды германия и олова получают непосредственным взаимодействием компонентов при повышенном давлении пара серы. Все монохалькогениды являются типичными полупроводниками, что свидетельствует о преобладающем вкладе ковалентной составляющей в химическую связь. Кроме того, надо учитывать определенный ионный вклад, обусловленный различием в электроотрицательности, а также нарастание металличности с увеличением порядкового номера компонентов. Сульфиды и селениды германия и олова кристаллизуются в орто-ромбической структуре, а при переходе к соответствующим теллури-дам происходит уплотнение структуры с повышением координационного числа до 6 (структура типа Na l). [c.225]

    Соединения германия (П), олова (П) и свинца (П). Координационные числа элементов подгруппы германия в степени окисления +2 более разнообразны, чем в степени окисления +4, и равны 3, 4, 5 и 6. У атомов Э(П) имеется несвязывающая электронная пара, поэтому координационным числам 3, 4, 5, 6 отвечают тригональная пирамида (тип АВзЕ, см. рис. 51, б), искаженный тетраэдр (тип АВ4Е, см. рис 51, < ), тетрагональная пирамида (тип АВ5Е, см. рис. 51, ) и искаженный октаэдр (тип АВеЕ). [c.464]

    Ш групп, реже - IV группы периодической системы (олова, кремния). Наиболее часто применяют алюминийорганические соединения (АОС). Присутствие органического соединения непереходного металла не всегда обязательно для осуществления ионно-координационной полимеризации диенов, однако оно может оказывать существенное влияние на особенности процесса. Влияние сокатализатора определяется теми функциями, которые он выполняет при сочетании с соединением переходного металла в каждой конкретной системе алкили-рующего агента, восстановителя, комплексообразователя, стабилизатора активных центров (АЦ), передатчика цепи, реагента, взаимодействующего с нежелательными для полимеризации примесями и т. д.  [c.141]

    Соединения олова (IV) и свинца(1У). Известии соединения с тетраэдрическими, тригонально-бипнрамидальио- и октаэдрически направленными связями, в образовании которых участвуют 8, 10 и 12 электронов (валентные группы (8), (10) и (12)). Более высокие координационные числа эти элементы проявляют в некоторых комплексах, образуемых хелатирую-ш ими лигандами для 5п(1У) КЧ 7 и 8, для РЬ(1У) КЧ 8 при этом большинство связей или все связи образуются с атомами кислорода. [c.320]


Смотреть страницы где упоминается термин Олово координационные соединения: [c.453]    [c.315]    [c.250]    [c.272]    [c.147]    [c.490]    [c.197]    [c.72]    [c.147]    [c.287]    [c.318]    [c.275]    [c.379]    [c.358]    [c.358]    [c.136]    [c.324]    [c.327]   
Химия гидразина (1954) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Координационные соединени

Соединения координационные



© 2025 chem21.info Реклама на сайте