Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

перегруппировки температуры

    Выход высокий Получение гидроксиламина Температура (абсорбция СО2 и 502)< 10 С Выход 70—80% (В расчете иа аммиак) Бекмановская перегруппировка Температура 80-150 0 Выход близкий к теоретическому [c.36]

    Для переработки тяжелых нефтяных остатков и дистилля-ционного сырья используют установки термического крекинга. Б отличие от атмосферной и вакуумной перегонки, при которых нефтепродукты получают физическим разделением нефти на соответствующие фракции, отличающиеся по температурам кипения, термический крекинг является химическим процессом, происходящим под влиянием высокой температуры и давления. При термическом крекинге одновременно протекают реакции распада, уплотнения и перегруппировки. [c.82]


    Эти авторы отмечали Несмотря на то, что нет ничего особенно нового в методах, примененных для синтеза этих углеводородов, полученные результаты могут служить иллюстрацией ценности методов синтеза по пути карбинол—олефин—парафин. Теоретически возможно приготовить любой парафин при помощи этих методов исходные вещества в большинстве случаев доступны, не слишком дороги, и реакция протекает гладко, без осложнений. Ясно, однако, что следует соблюдать осторожность при интерпретации направления реакций, особенно если проводится дегидратация карбинолов, в которых гидроксильная группа находится рядом с третичным углеродным атомом. Широкий интервал температур кппения продуктов дегидратации обычно указывает на перегруппировку, но последняя может быть столь сложной, что остается нерасшифрованной . [c.401]

    Однако при частичной гидрогенизации бутена-1 или бутена-2 при комнатной температуре образуется смесь бутана и бутенов, в которой соотношение бутенов приближается к термодинамически равновесному. Интересно отметить, что такая перегруппировка не имеет места в отсутствии водорода (и частичной гидрогенизации). [c.244]

    Они протекают практически без изменения объема, поэтому термодинамическое равновесие зависит только от температуры низкие температуры благоприятствуют образованию изопарафиновых углеводородов. Тепловой эффект реакции изомеризации невелик — от 2 до 20 КДж/моль — и мало меняется с изменением температуры. Исследованию равновесий реакций изомеризации парафиновых углеводородов посвящено значительное число работ экспериментального и расчетного характера, например [13-16]. Материал по сравнению расчетных и экспериментальных данных представлен в [11,17]. Наблюдаемое для некоторых углеводородов несовпадение объясняется недостаточно точным вычислением термодинамических величин. При расчете равновесных составов по значениям констант равновесия необходимо также учитывать, что на практике при протекании реакции изомеризации не всегда образуются все теоретически возможные изомеры например, в продуктах изомеризации пентана были обнаружены только два изомера — н-пентан и изопентан (2-метилбутан) неопентан (2,2-диметилпропан) не был обнаружен. Последнее вызвано неустойчивостью первичного карбкатиона — необходимой стадии перегруппировки вторичного карбкатиона. Ввиду отсутствия неопентана равновесие должно рассматриваться только между н-пентаном и изопен-таном. То же самое относится к изомерам гептана при проведении изомеризации отсутствуют 2,2-диметилпентан, 3,3-диметилпентан, 3-этил-пентан, что связано с затруднениями кинетического характера. [c.13]


    В отечественной промышленности гидролиз ДДС, содержащего не более 0,1% метилтрихлорсилана, проводят при массовом отношении ДДС вода, равном 1 (1,6 0,2) с образованием 30%-ной соляной кислоты. Процесс ведут в эмалированном реакторе в отсутствие растворителя при интенсивном перемешивании и охлаждении рассолом, поддерживая температуру 20—25 С. Гидролизат отделяют от соляной кислоты во флорентийском сосуде, нейтрализуют сухой кальцинированной содой, промывают водой и направляют на каталитическую перегруппировку (деполимеризацию) [19, с. 187—189 27, с. 490—493]. [c.469]

    Хотя по новой схеме несколько снизилась температура нефти на входе в пародистиллятный теплообменник, но средняя разность температур холодной и горячей сред увеличилась, что обеспечит больший съем тепла в пародистиллятном теилообменнике. Попытаемся определить эту эффективность путем ориентировочных расчетов. Будем считать, что с перегруппировкой теплообменников согласно рис. 5. 3 удастся несколько увеличить нагрузку пародистиллятного теплообменника до s = 2 770 ООО ккал/ч. Определим температуру нефти на выходе из пародистиллятного теплообменника. Теплосодержание нефти при 50° С [c.80]

    Азид тетрабутиламмония можно приготовить в виде чистых кристаллов путем -прямой экстракции из водной смеси бисульфата тетрабутиламмония, азида натрия и избытка гидроксида натрия [86]. Его, в свою очередь, можно превратить в ацилазид при взаимодействии с ацилхлоридом в толуоле при 25 °С. При более высоких температурах (50—90 °С) происходит перегруппировка Курциуса и образуются с выходом 52—89% различные изоцианаты [86]. Используя метод МФК, можно провести эту реакцию путем прямого взаимодействия водного раствора азида натрия с ацилхлоридом в присутствии четвертичного аммоний-хлорида и последующим пиролизом. Эта методика была запатентована, так как она эффективна даже при реакции с малорастворимыми хлорангидридами кислот [87]. [c.141]

    Разрыв связей углерод — углерод и последующая перегруппировка углеродных и углеводородных комплексов в коксе, выражающиеся в усадочных явлениях, увеличении истинной плотности, возрастании электропроводности и механической прочности кокса, происходят при более низких температурах, чем десульфуризация и дегидрогенизация (до 1000 °С). [c.156]

    Теоретические основы. В условиях каталитического крекинга (температура 450—550 "С, давление 0,1—0,3 МПа, катализатор) протекает большое число реакций, среди которых определяющее влияние на результаты процесса оказывают реакции разрыва углерод-углеродной связи, перераспределения водорода, ароматизации, изомеризации, разрыва и перегруппировки углеводородных колец, конденсации, полимеризации и коксообразования. [c.106]

    Следует отметить, что внутримолекулярная миграция заряда в карбокатионах за счет гидридных переносов протекает в более мягких условиях, чем скелетные перегруппировки. Например, состав продуктов реакции при алкилировании бензола вторичными алкильными агентами при различных температурах претерпевает значительные изменения  [c.108]

    При более высокой температуре (60—80 °С) преобладает перегруппировка протонированных частиц с возникновением первичных пропильных ионов, которые затем подвергаются быстрому 1,2-гидридному сдвигу. Образующиеся при этом 2-пропил-катионы ответственны за появление в алкилатах больших количеств изопропилбензола. Подтверждением такого пути является наличие дейтерия в р- и а-положениях изопропилбензола. [c.133]

    Скорости межмолекулярных переносов алкильных групп Г и изотопной перегруппировки Г2 повышаются с ростом температуры, но при этом соотношение Г1>Г2 сохраняется (мольное отношение С-алкилбензол [1—6- С] бензол равно 12,5 12,5 -.1,0)  [c.194]

    Реакцию оксимирования проводят при температуре 85—90 °С и pH = 7, регулируя ее подачей аммиака. Образующиеся продукты после реактора поступают в сепаратор, где разделяются на две фазы. Органическая фаза, содержащая оксим, декантируется от более тяжелого водного слоя сульфата аммония и направляется на следующую стадию — перегруппировку (изомеризацию) оксима в капролактам. Неорганическая фаза направляется для выделения сульфата аммония. [c.306]

    Повышенная температура и низкое давление способствуют реакциям распада непредельных углеводородов на более мелкие молекулы. Так, при коксовании тяжелых нефтяных остатков преобладают реакции распада непредельных, а также перегруппировка последних Б циклические соединения. [c.227]

    К раствору 20 г оксима в 60 мл хлороформа прибавляют 40 г хорошо измельченного пятихлористого фосфора. После окончания бурной реакции реакционную массу сливают в колбу для вакуум-перегонки и отгоняют в вакууме на водяной бане хлороформ и образовавшуюся хлорокись фосфора (для отгонки удобно соединить реакционную массу от нескольких опытов перегруппировки). Температура реакционной массы при отгонке не должна подниматься выше 40", так как при более высокой температуре происходят побочные реакции и остаток становится темным и вязким. Слегка окрашенный кристаллический остаток постепенно вносят в ледяную воду к полученнному раствору осторожно прибавляют раствор едкого натра до слабощелочной реакции (фенолфталеин). Из реакционной массы при этом выделяется окрашенное в темный цвет масло, которое быстро отделяют (можно также проэкстрагировать масло хлороформом). Для очистки продукт перегоняют в вакууме. В головной фракции содержатся нитрилы. Основная фракция при перегонке кристаллизуется в приемнике и представляет собой смесь изоксимов 3-метилциклогексаиона, [c.174]


    В результате такой перегруппировки температура начала деструкции повышается на 40°, а энергия активации — на 12 ккал/моль. Лолиарилаты, содержащие серу (№ 162) или фосфор (№ 67, 69, 167, 169, 171, 176), получают сополикоиденсацией с использованием соответствующих мономеров. Термостойкость повышается за счет введения в цепь полиэфира карборановых циклов (№ 32, 33, 66, 98, 99, 107, 108, 117, 118). Изучены полидисперсность и гидродинамические свойства полимеров в зависимости от условий синтеза [115, 139, 170—172]. У полиарилатов на основе бпс-2,2-(З-хлор-4-гидр- [c.342]

    Фотохимическое хлорирование может с успехом применяться для газообразных и жидких парафиновых углеводородов. При хлорировании жидких углеводородов газообразный хлор подают нри перемешивании и облучении ультрафиолетовым светом непосредственно в углеводород. Для хлорирования газообразных углеводородов целесообразно применять инертный к хлору растворитель, например четыреххлористый углерод, в который нри облучении ультрафиолетовым светом одновременно вводят хлор и парафиновый углеводород. Фотохимическое хлорирование легко идет уже при низких температурах — важное нреимуш ество перед рассматриваемым ниже термическим хлорированием, нозволяюш ее полностью избежать разложения, вызываемого пиролизом, а также реакций перегруппировки. [c.112]

    Интересен факт, что те же хлориды аллильного типа, т. е. бутенил-(кротил)хлориды и изопренгидрохлорид конденсируются под действием карбонила никеля при комнатной температуре с образованием диенов с хорошим выходом. В этих реакциях в качестве растворителей могут быть использованы спирты. Это послужило основанием для заключения, что механизм реакций не включает промежуточных ионных соединений, например, ионов карбония или карбависнов [133]. В эту реакцию, по-видимому, могут вступать только те хлористые аллилы, которые легко претерпевают аллильную перегруппировку. Несмотря на высокие выходы диенов по этому способу, его нельзя рекомендовать как хороший препаративный метод в связи с трудностями и опасностью, возникающими нри работе с карбонилом никеля  [c.411]

    Стэйвли [42] измерил среднюю длину цепи радикальной реакции с помощью окиси азота. Найденные им величины меняются от 20,6 при давлении 50 мм рт. ст. до 6,4 при давлении 500 мм рт. ст. при температуре 620° С. Это не может быть истинной длиной цепи, так как эти данные совершенно несовместимы с приведенными выше величинами констант скорости. Действительная длина цепи, измеренная по относительным скоростям реакций развития и обрыва цепи, должна составлять песколько тысяч единиц. Если ингибированная реакция является молекулярной, то эти результаты могут быть объяснены допущением, что непосредственная молекулярная перегруппировка в этилен и водорода должна происходить значительно чаще, чем расщепление молекулы этана на два метил-радикала. [c.26]

    Термическая изомеризация. Как уже говорилось выше, в противоположность ионам карбония свободные радикалы редко подвергаются перегруппировке. Этим объясняется отсутствие скелетной избмеризации олефинов в термических условиях. С другой стороны, в таких жестких условиях, по-видимому, происходит изомеризация с миграцией водородных атомов. Например, пентен-1 при температуре 550—600° С изомеризуется до пентена-2 [21, 22]. В этом случае наиболее вероятен цепной механизм с участием аллильпых радикалов. [c.235]

    При конденсации т/ ет-бутилхлорида с пропиленом образуются первичный продукт 2-хлор-4,4-диметилпентан и большее или меньшее количество (в зависимости от катализатора и условий) продукта его перегруппировки 2- и 3-хлор-2,3-диметилпентана. Как правило, в качестве побочных продуктов получаются децилхлориды пока еще не установленного строения, вероятно, в результате конденсации трет-гентилхлори-дов с пропиленом. Если вести реакцию в присутствии хлористого алюминия при —30°, то с выходом до 70% образуются гептилхлориды, среди которых около 45% приходится на долю 2-хлор-4,4-диметилпентана, остальную часть составляет З-хлор-2,3-диметилпентан с ничтожными примесями 2-хлор-2,3-диметилпентана. Подобные же смеси с выходами от 20 до 60% получались и при проведении реакции в присутствии хлорного железа (при —15°- —-10°), фтористого бора (при 10°), хлористого висмута, хлористого цинка, хлористого циркония (при комнатной температуре) и хлористого титана (при 50°) [18 . Наиболее высокое содержание 2-хлор-4,4-диметилпентана в продуктах реакции было получено при использовании в качестве катализатора хлористого висмута. [c.229]

    Перегруппировка эфира в диаллилдиан происходит при нагревании эфира до определенной температуры . Так, согласно методике , диаллиловый эфир растворяют в диметиланилине и нагревают в токе азота до 210—215 °С в течение 4 ч. После охлаждения реакционной массы до комнатной температуры в токе азота ее растворяют в диэтиловом эфире, эфирный раствор промывают разбавленной серной кислотой для удаления диметиланилина, азатем слабым раствором щелочи и дистиллированной водой до нейтральной реакции. После высушивания над прокаленным поташем и отгонки растворителя продукт перегоняют в вакууме (т. кип. 217 °С цри 0,5 мм рт. ст.). Выход диаллилдиана составляет 63%. [c.24]

    Иной подход к стеклованию основан на широко распространенной концепции свободного объема, важной для понимания молекулярной по движности в веществе. Эта концепция исходит из представления о наличии в жидкостях, в том числе полимерных, некоторой доли незанятого объема, который можно представить как дырки порядка размеров мономерного звена или пустоты меньшей величины, обусловленные нерегулярной упаковкой цепей. Этот объем является значительным только при Т > Т , именно поэтому возможны молекулярные перегруппировки и связанная с ними сегментальная подвижность. При понижении температуры доля свободного объема резко сокращается, пока не достигнет при Г = Гс некоторой минимальной величины, практически одинаковой для всех полимеров и неизменяющейся при дальнейшем понижении температуры. Этой величины свободного объема, однако, недостаточно для перескока сегментов из одного равновесного положения в другое. [c.43]

    При но шении температуры разложения ацетона (до 500—530°) жидкие продукты пиролиза состояли преимущественно из углеводородов состава Hi2. Кроме последних в небольшом количестве был констатирован симметричный 1, 3, 5-ксиленол. Он образовался, как этр подтвердил и отдельный опыт, за счет изофорона, 0чевид Ь та омерная перегруппировка кетоформы в энольную фиксируется в силу отщепления метана и возникновения в кольце второй двойной связи. [c.261]

    Возвратимся теперь вновь к N-алкилированию в условиях МФК. Являясь слабыми основаниями и нуклеофилами азириди-ны с трудом алкилируются в обычных условиях, но легко претерпевают перегруппировку, превращаясь в продукты с открытой цепью типа Н. Если эти продукты перемешивать с бензилхлоридом или w-бутилхлоридом и ТЭБА в 30%-ном водном NaOH в течение 6 ч при комнатной температуре или соответственно 8 сут при 45 °С, то с количественным выходом образуется I [259]. [c.167]

    По аналогии со вторичными аминами можно ожидать, что в реакции с высшими спиртами основными продуктами будут формиаты. Однако они образуются лишь в небольшой степени. Табуши и сотр. [763] обнаружили, что вместо этого с высоким выходом образуются алкилхлориды. За исключением тех случаев, когда реакция является экзотермичной, перемешивание продолжают в течение 5 ч при комнатной температуре. Этот метод применяли [3, 644] для реакций ряда стероидов и терпенов, и как доказательство SNi-мexaнизмa наблюдалось сохранение конфигурации. Однако в некоторых случаях наблюдались перегруппировки и инверсии конфигурации [763], и детали механизма требуют дальнейшего исследования. Тем не менее этот метод представляет препаративный интерес, поскольку он позволяет проводить превращение спирт — алкилхлорид в основных условиях при комнатной температуре. Соединения с двойными связями обычно подвергаются циклопропанированию с сохранением гидроксильной группы. Фенолы, включая стероиды, превращаются в соответствующие хлориды [3]. Эта реакция может быть распространена и на получение алкилбромидов [764]. [c.328]

    При разукрупнении молекулярной структуры [223] происходит внутримолекулярная перегруппировка, выражающаяся прежде всего в изомеризации молекул. Это в наибольшей степени относится к высокореакционным молекулам, способным переходить в новое и более выгодное энергетическое состояние с наименьшим запасом свободной энергии, т. е. в твердые карбоиды. Чем больше приток энергии высокого потенциала извне, т. е. чем выше температура нагрева паров в пирозмеевике, тем более благоприятные создаются условия для протекания цепных реакций в реакторе, для самопроизвольного выделения избыточной свободной энергии (повышение температуры) и для образования карбоидов (нерастворимых в бензоле). При переходе от мягкого режима пиролиза к жесткому количество карбоидов увеличилось примерно в 12 раз, асфальтенов — почти в два раза и резко уменьшился выход масляной фракции (см. табл. 8). В маслах возросло количество фенантренов, пиренов и хризенов и уменьшилось количество антраценов. [c.30]

    Увеличение глубины изотопной перегруппировки при понижении температуры указывает на более избирательное действие этого фактора на соотношение скоростей реакции изомеризации и алкилирования. Подобное же увеличение глубины изотопной перегруппировки следовало ожидать при использовании нейтрального растворителя, который одновременно должен снизить скорость реакции алкилирования. Изотопная перегруппировка при алкилировании бензола СНз—СНг в растворителе три-хлорбензоле достигает 20,5% и находится в прямой зависимости от температуры и продолжительности процесса. При алкилировании бензола [2- С] этилфторидом при контакте с ВРз в присутствии растворителей н-гексана, циклогекеана и нитрометана изомеризация достигала 50, 34,1 и 3,5% соответственно [151, 152]. По-видимому, полярность растворителя определяет не только скорость реакции алкилирования, но и структуру промежуточного реакционного комплекса. В сильно основных растворителях побочные реакции подавляются. Кроме того, резко повышается избирательность при атаке отдельных положений ароматического кольца. При реакции без растворителя или в слабо основном растворителе катализатор связывается с алкил- [c.111]

    Следовало ожидать, что если олефины являются промежуточными соединениями в изучаемой реакции, то при алкилировании [1- С] бутанолом-1 и [1- С] бутеном-1 распределение радиоактивного углерода С в алкильной группе 2-фенилбутана должно быть одинаковым, поскольку в том и другом случаях образуется наиболее стабильный втор-бутил-катион. Между тем, данные радиометрического анализа показывают, что с олефином величина скелетной перегруппировки в два раза выше. Этот факт подтверждает, что величина скелетной изомеризации алкильной группы может заметно возрасти при использовании в качестве алкилирующих агентов олефинов. На основании литературных данных и приведенных выше результатов дейтерообмена при алкилировании СеОб спиртами или при алкилировании спиртами в присутствии катализатора ВРз-020 можно считать, что роль олефинов как промежуточных продуктов алкилирования возрастает при повышении температуры. [c.117]

    То что при изотопной перегруппировке не достигается равновесие, можно объяснить тем, что катализатор частично дезактивируется продуктами диспропорционирования. Если же обработку [2- С]-н-пропилбензола проводить, добавляя свежие порции AI I3, глубина перегруппировки за 6,5 ч при температуре [c.190]

    В литературе имеется много подтверждений, когда реакции межмолекулярных переносов алкильных групп, особенно в присутствии больших количеств катализаторов и при повышенной температуре, сопровождаются изменениями углеродной структуры. При контакте А1С1з с изопропилбензолом и егор-бутил-бензолом при 100°С наблюдается образование н-пропил- и изо-бутилбензолов соответственно. Перегруппировки могут протекать по механизму, подобному изомеризации 2-метил-З-фенилбу-тана в 2,2-диметил-1-фенилпропан  [c.200]

    Ограиичеиноеть месторождений природных алмазов уже давно поставила вопрос о необходимости разработки способа их искусственного получения. Идея получения искусственного алмаза сводилась к необходимости создать термодинамические условия для целенаправленной перегруппировки атомов графита. В разных странах изучали поведение графита под действием высоких температур и давлений, и в США был на основе этого осушествлен способ искусственного получения алмазов в иромышленном масштабе. В настояпгее время в Советском Союзе разработан способ получения алмазов в аппаратуре, где графит подвергается действию те.мпературы в 2000°С и давлению 10 000 МПа в присутствии катализаторов. На основе этого способа налажено промыи1лен1юе [c.353]

    Фирма Union arbide разработала способ получения капролактама из циклогексанона, минуя стадии оксимирования и последующей перегруппировки. Процесс базируется на окислении циклогексанона в капролактон и последующем амидировании его аммиаком при повышенных температуре и давлении. [c.313]

    Изомеризация циклогексаноноксима в капролактам (Бек-мановская перегруппировка) протекает в присутствии концентрированной (98% -ной) серной кислоты или 20% -ного олеума при температуре 125°С  [c.348]

    В то же время Бхардвей и Ли [307], изучая изомеризацию 1- С-этилиодида в 2- С-этилиодид под влиянием 7-облучения, обнаружили, что при комнатной температуре в 2% водном растворе 1- С-этил-иодида энергетический выход 2 С-эт ил иодида О = — 0,28 молекул/100 эЗ независимо от дозы излучения. Но добавление 1 вес. % иода перед облучением снижает степень перегруппировки до нуля. Наиболее вероятным механизмом процесса авторы считают 1,2-миграцию водорода [c.191]


Смотреть страницы где упоминается термин перегруппировки температуры: [c.203]    [c.193]    [c.413]    [c.460]    [c.231]    [c.526]    [c.274]    [c.186]    [c.112]    [c.115]    [c.123]    [c.191]    [c.128]    [c.31]    [c.28]   
Основы химии карбанионов (1967) -- [ c.152 ]




ПОИСК







© 2025 chem21.info Реклама на сайте