Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный вес и катализаторы

    Мицеллы, циклические полиэфиры, криптаты и аналогичные молекулярные катализаторы уже применяются для ускорения многих органических реакций, особенно в тонких органических синтезах. Однако возможности таких гомогенных катализаторов в настоящее время только начинают осознаваться. То же относится к применению ферментов для осуществления ряда ключевых процессов органического синтеза. Однако критическое рассмотрение этого обширного материала выходит за рамки данной книги. [c.227]


    Углеводородный компонент такого комплекса имеет высокий молекулярный вес (300 и больше) и на каждую молекулу около двух свободных валентностей, причем на каждую из них приходится по меньшей мере 2 моля хлористого алюминия. Этот комплекс способен растворить еще некоторое количество хлористого алюминия, что в присутствии хлористого водорода еще больше повышает активность катализатора. Во время изомеризации комплекс становится все более ненасыщенным. От углеводородов, связанных в комплексе, водород переходит к олефинам, образующимся в реакции. Тем самым хлористый алюминий в комплексе связывается все прочнее и прочнее, теряя постепенно свою активность. В результате катализатор медленно переходит в неактивное соединив и его необходимо удалять. [c.527]

    В настоящее время все в большем объеме используются катализаторы на молекулярных ситах в пиролизных установках и установках крекинга в кипящем слое. В США уже сейчас половина крекинг-установок работает с молекулярными ситами [101—103]. [c.39]

    Большая часть химических синтезов на основе пропилена (получение изопропилового спирта, получение окиси пропилена методом хлоргидринирования, оксосинтез,алкилирование, олигомеризация и т. д.) может быть проведена со смесями пропан-пропилен. Для некоторых же синтезов (например, получение полипропилена,, сополимера этилена с пропиленом, акрилонитрила, акролеина, аллил-хлорида) необходим пропилен высокой степени чистоты. Применяемые при получении полипропилена катализаторы отравляются содержащимися в пропилене кислородом, окисью углерода и углекислым газом, а также соединениями серы и водой. Кристалличность и молекулярный вес полимеров сильно изменяются под влиянием посторонних олефинов. [c.47]

    В процессе селективного гидрокрекинга в качестве катализаторов применяют модифицированные цеолиты (морденит, эрионит и др.) со специфическим молекулярно —ситовым действием поры цеолитов доступны только для молекул нормальных парафинов. Де идро — гидрирующие функции в таких катализаторах выполняют те же металлы и соединения, что и в процессах гидроочистки. [c.229]

    Процесс Хай нес . Сероводород адсорбируется на слое молекулярного снта до насыщения, затем слой регенерируется горячим SO2 из газа сжигания части серы. Прп регенерации H2S реагирует с SO2 с образованием серы. Молекулярное сито при этом служит катализатором. Газы регенерации охлаждаются и сера конденсируется. Для повышения эффективности процесса давление в адсорбере должно быть средним или высоким, а очищаемый газ должен содержать минимальное количество тяжелых углеводородов. [c.197]


    Имеются два различных типа процессов, которые кинетически являются процессами третьего порядка. Один из них — это такое соединение атомов или простых молекулярных частиц, при котором требуется третья молекула, чтобы удалить избыточную энергию. В этом случае третье тело выступает как истинный катализатор, а на самом деле является переносчиком энергии. Во втором случае имеет место химическая реакция трех частиц. [c.271]

    Хотя уже говорилось о том, что поверхность катализатора служит местом протекания каталитической реакции, из этого не следует, что именно так обстоит дело во всех случаях. Большинство кристаллических тел имеет поликристаллическую структуру, и на поверхности между микрокристаллами есть множество активных центров для протекания каталитической реакции. Аморфные вещества, такие, как окиси и гидроокиси многих металлов, могут иметь поры, молекулярные трещины и неправильные поверхности, доступность которых для химической реакции сильно зависит от природы реагирующих веществ и от условий эксперимента. Газообразные вещества (Нз, Н2О, СО, СО2, N0 и многие другие) могут сильно сорбироваться на таких твердых телах , как стекло, кварц и металлы. Количество газа, которое монгет быть десорбировано откачиванием стеклянной или [c.532]

    По мере увеличения молекулярной массы используемого для осер-нения агента активность катализатора уменьшается. Отрицательное влияние оказывает присутствие во время сульфидирования углеводородов, даже относительно низкомолекулярных. Например, в работе [c.99]

    Чистые нафтеновые кислоты являются, как правило, насыщенными соединениями, поэтому их йодные числа невелики, одпако с повышением молекулярного веса наблюдается тенденция к повышению йодных чисел. В присутствии катализаторов нафтеновые кислоты реагируют со спиртами с образованием эфиров. [c.54]

    Руководствуясь такими соображениями, Лен и Сирлин [148] получили хиральный макроциклический молекулярный катализатор, несущий цистеиновые остатки. Катализатор связывает ал-киламмониевые соли, вызывает увеличение скоростей внутримолекулярного тиолиза связанных с ним субстратов, обнаруживая структурную селективность к эфирам дипептидов, и обладает ярко выраженной тенденцией к хиральному узнаванию ь-энан- [c.277]

    Можно отчетливо заметить, и эту мысль мы проводили в большом числе наших работ, что в то время как атомные металлические катализаторы стремятся к структуре типа л-атомного ансамбля или мультинлета, биологические, органические и вообще сложные молекулярные катализаторы имеют тенденцию действовать в качестве единичных адсорбированных молекул При этом наблюдается существенное отличие и в том, что в то время как металлические ансамбли относительно безразличны к природе носителя, органические и биологические катализаторы весьма сильно определяются характером подложки. Это подводит непосредственно к вопросу о [c.40]

    Процесс протекает следующим образом. к-Бутаи и к-бутеи из газов циркуляции проходят над катализатором, дегидрирующим к-бутап в / -бутен, а к-бутен в бутадиен (рис. 42). После быстрого охлаждения газ компримируется и, как обычно, путем абсорбции освобождается от водорода и низко-молекулярных продуктов крекинга. Выделенная из абсорбента фракция С4 для извлечения 8—12% бутадиена обрабатывается на экстракциошюй установке аммиачно-ацетатным раствором меди. Отделяющаяся смесь к-бутана и к-бутена (газ циркуляции) вместе со свежим к-бутаном возвращается в реактор для дегидрирования. [c.87]

    Так как при окислении парафина кислород распределяется по всем метиленовым группам примерно равномерно, нри окислении получаются кислоты разного молекулярного веса, из которых нерегопкой отделяют кислоты, пригодные для мыловарения. Окисление проводят при возможно низких температурах порядка 105—120° [69]. Образующиеся жирные кислоты, особенно высокомолекулярные, окисляются далее, при этом образуются оксикислоты, кетокислоты и двухосновные жирные кислоты, не растворимые в бензине. Чтобы свести к минимуму образование этих нежелательных побочных продуктов, окисление ограничивают 30—50%-ным превращением всей окисляемой углеводородной смеси. В качестве катализатора применяют в большинстве случаев перманганат калия в количестве 0,3% вес. от всего парафина. Перманганат калия вводят нри перемешивании в нагретый до 150° парафин в виде концентрированного водного раствора, вода испаряется, а перманганат восстанавливается органическим веществом до двуокиси марганца, которая распределяется в реакционной смеси в исключительно тонко распыленном состоянии. Окисление ведут без применения давления. Важно, чтобы применяемый для окисления воздух поступал в парафин в возможно тонко распыленном состоянии. [c.162]

    В Германии Хопф с сотрудниками разработали способ получения низших полимеров этилена [60]. В принципе способ заключается в том, что этилен под давлением 200—300 ат в присутствии метилового спирта как растворителя и перекиси бензоила как катализатора полимеризуется при 100—120°. В то время как луполеп Н имеет молекулярный вес порядка 10 ООО, молекулярный вес получаемого таким образом луполена N равен 2000-3000. [c.223]


    Мюльхеймский способ полимеризации при нормальном давлении (62 . Ранее упоминавшийся разработанный Циглером с сотрудниками способ полимеризации при нормальном давлении позволяет получать полимеры молекулярного веса от 10000 до 3000000. Катализатор полимеризации (около 1 % от количества получаемого полиэтилена) состоит из триэтилалюминия и четыреххлористого титана. Наилучшая температура реакции около 70°. [c.224]

    Активирующее действие окиси магния было объяснено Реленом тем, что благодаря близости молекулярных объемов окиси магния и окиси кобальта, по-видимому, образуется непрерывный ряд смешанных кристаллов, всле,11ствие чего повышается способность катализатора к восстановлению. В табл. 21 показано влияние содержания окиси тория и окиси магния на активность кобальт-киэельгурового катализатора [26], [c.83]

    Отработанный катализатор содержит около 40% парафина. Его экстрагируют из катализатора тяжелым бензином непосредственно в реакторе до остаточного содержания 1—5%. Получаемый при этом парафин имеет особенно, большой молекулярный вес. Далее катализатор растворяют в концентрированной азотной кислоте. При этом кобальт, магний и торий переходят в раствор и отделяется еще некоторое количество парафина. Последний и остающийся нерастворенным кизельгур отделяют, промывают, а полученный раствор нитрата кобальта осторожным осаждением содой освобождают от железа и тория. Осаждение ведется при 50°, карбонаты железа и тория выпадают из раствора при значении рН = 5,5. Торий затем извлекают из осадка. В растворе нитрата кобальта, полученном после осаждения и фильтрования, содержатся кальций и магний, которые прибавлением раствора фтористого натрия переводят в осадок СаРг — MgF2 и удаляют фильтрованием. [c.85]

    Большое значение для последующей химической переработки имеет то обстоятельство, что продукты синтеза Фишера—Тронша имеют преимущественно нормальное строение. На колонках четкой ректификации из них можно выделить индивидуальные компоненты. Содержание олефинов уменьщается по мере увеличения молекулярного веса. Содержание олефинов в продуктах синтеза над кобальтовым катализатором под нормальным давлением приведено в табл, 31. [c.104]

    Брунер исследовал бензин Хайдрокол-процесса масс-спектрометрн-ческим методом. Он показал, что степень разветвленности углеводоро-ДО В растет с увеличением молекулярного веса и что содержание изосое-линений много выше, чем при синтезе над кобальтовым катализатором. 3)то обстоятельство представляет существенный интерес с точки зрения последующего использования продуктов синтеза. [c.122]

    В табл. 61 приведены результаты экстракции продуктов синтеза (кроме газоля и бензина, адсорбированных углем), полученных при 1000 ат над рутениевым катализатором. Молекулярные веса отдельных парафиновых фракций определялись по Рихе (Rie he) с использованием толуола как растворителя [84]. Плотности определялись при 20° методом взвеси . [c.132]

    Способность к реакции падает с повышением молекулярного веса нитросоединения и альдегида. К реакции конденсации с нитропара-финамп способны также и кетоны в присутствии основных катализаторов [29]. С нитрометаном такая реакция протекает следующим образом  [c.273]

    Образовапие гидроперекисей подавляется фенолами и аминами и инициируется ультрафиолетовыми лучами и перекисями. Соли марганца сильно ускоряют реакцию. Следовательно, перекиси являются инициаторами, а соли марганца — катализаторами окисления парафинов. Если обработать смесь высших жирных спиртов (средний молекулярный вес 220, что отвечает Сн-спиртам) воздухом при 120° с добавкой стеарата марганца в условиях, при которых проводят окисление пара-ф,инов, то реакция становится заметной только через 3—5 час. инкубационного периода. Если предварительно добавить 0,0025% мол. перекиси бензоила, то кислород начинает поглощаться сразу, даже без добавки стеарата марганца. Это означает, что, по-видимому, присутствуют вещества, противодействующие образованию радикалов, которые должны разрушаться окислением прежде, чем сможет начаться неини-циируемая реакция. Такие вепсества известны, они были проверены в обширных исследованиях Крегера и Каллера [87]. Однако скорость всего процесса продолжает оставаться меньшей, чем в присутствии марганца. Если одновременно прибавить и перекиси и стеарат марганца, то реакция начинается сразу же и протекает быстро. [c.468]

    Реакции, протекающие с участием комплексных соединений упомянутого выше характера, были несколько лет назад предметом подробных исследований Коха и Гильферта [26]. Последние нашли, что катализатор изомеризации (хлористый алюминий — хлористый водород) способен присоединять к ненасыщенным продуктам крекинга молекулярный водород, насыщая их таким образом. Это весьма благоприятно сказывается на стойкости самого катализатора, который в присутствии больших количеств олефинов становится неактивным. Комплекс хлористого алюминия и хлористого водорода может служить переносчиком водорода от молекулы парафина к олефину. При этом сам парафиновый углеводород становится все более ненасыщенным и, наконец, так крепко связывает хлористый алюминий, что последний становится неактивным. В присутствии водорода под давлением эта реакция тормозится или вовсе подавляется [27.  [c.522]

    А. Н. Башкиров и Я. Б. Чертков [П9] показали, что окисление контактного парафина, иолученного в процесса Фишера—Тропша (температура плавления 95—100°, средний молекулярный вес 1007, что соответствует формуле С70Н140), происходит с относительно большими выходами низших кислот, чем окисление чистого эйкозана (Витцель) или тетракозана (Янтцен). Окисление проводили при 115—120° в присутствии 0,2% перманганата калия как катализатора до содержания кислот в оксидате около 56%. [c.586]

    Адамс с сотрудниками [183] изучали кинетику окисления пропилена на катализаторах молибдата висмута. Они наш.ли, что по отношению к пропилену реакция будет первого порядка и не зависит от кислорода и других продуктов. Энергия активации составляет при 350—500 °С около 20 ккал/моль. Молекулярный водород не влияет на образование акролеина и не окисляется. Наилучшая селективность в отношении образования акролеина достигается при пс-пользовании катализаторов молибдата висмута нри 490—520 °С. Побочными пpoдyктaмиJ будут угольная кислота, формальдегид и ацетальдегид. [c.94]

    По Олдхему [111] иФречу[106] можно при80—260 С селективно превратить 2-метилпентен-1 в 2-метилпентен-2, используя молекулярные сита 5 A. В табл. 22 показано, что для изомеризации можно применять как жидкие катализаторы, так и катализаторы на носителе. [c.228]

    Несмотря на высокую концентрацию мономера, скорость полимеризации в присутствии одного и того же катализатора уменьшается с увеличением отношения пропилен этилен (рис. 70). Молекулярный вес полимера при этом тоже уменьшается. Добавка пропилена влияет на содержанпе растворимой части в меньшей степени, чем добавка этилена (рис. 71). Нерастворимые полимеры, богатые этиленом и пропиленом, кристаллпчны, а растворимые — аморфны или мало кристаллпчны. [c.310]

    Последняя стадия определяет скорость всего процесса. Для реализации этой стадии необходимо, чтобы, во-первых, разряд водородных ионов протекал беспрепятственно (или во всяком случае егче, чем разряд восстанавливаемых частиц) и, во-вторых, присоединение атома водорода к частиц(з Ох совершалось с меньшими затруднениями, чем рекомбинация двух водородных атомов. Эти условия лучше всего должны выполняться на металлах групп платины и железа, а также на других металлах, у которых рекомбинация водородных атомов или является замедленной стадией, или протекает с малой скоростью. Накопление водородных атомов на поверхности этих металлов в ходе их катодной поляризации способствует быстрому протеканию реакции гидрирования. Электрохимическое восстановление при подобном механизме становится сходным с процессом каталитического гидрирования с той разницей, что атомы водорода в первом случае поставляются током, а во втором — диссоциацией молекулярного водорода иа поверхности катализатора. В согласии с уравнением реакции (21.15) для илотности тока, идущего на реакцию восстановления, можно наиисать следующее выражение  [c.438]

    Белки — природные высокомолекулярные соединения, являющиеся структурной основой всех живых организмов. К ним относятся ферменты — катализаторы многочисленных реакций в живых организмах, дыхательные пигменты, многие гормоны. Число встречающихся в природе белков крайне велико, их частью являются а-аминокислоты — СН(Р) — СООН, где Р — углеводородный радикал алифатического или ароматического ряда, либо гетероциклический радикал, содержащий серу и азот. Различие в химическом строении белков обусловлено количеством и порядком чередования аминокислот в молекуле. Белковые молекулярные цепочки располагаются в пространстве в виде спирали или волокон. ] лавная особенность белков — способность самопроизвольно формировать пространственную структуру, свойственную только данному виду растения, т.е. они обладают "памятью" макромолекулы Г>елков могут "записать", "запомнить" и передать "наследству" ин — (формацию. В этом состоит химический механизм самовоспроизве — />,ения. [c.48]

    Если константа скорости изменяется от температуры по экспоненциальной зависимости, то коэффициент молекулярной диффузии и, следовательно, изменяется пропорционально в степени 1,5. Поэтому при прочих равных условиях с повышением темаературы режим реагирования быстро передвигается от кине — тич1 ского кдиффузионному. В промышленных процессах и особенно в научных кинетических исследованиях необходимо стремиться каталитические реакции проводить в кинетической или близкой к ней области реагирования. При данной температуре режим реагирования может быть приближен к кинетическому уменьшением размера зерен катализатора и увеличением скорости потока газа (или жидкости). [c.97]

    Обратимыми ядами для алюмосиликатных катализаторов являются азотистые основания они прочно адсорбируются на кислотны х активных центрах и блокируют их. При одинаковых основных свойствах большее дезактивирующее воздействие на катали — затор оказывают азотистые соединения большей молекулярной массы. После выжига кокса активность отравленного азотистыми основаниями катализатора полностью восстанавливается. Цеолит — содер ясащие катализаторы, благодаря молекулярно — ситовым свой— ствам, отравляются азотом в значительно меньшей степени, чем аморфные алюмосиликатные. [c.105]

    Сульфиды и оксиды молибдена и вольфрама с промоторами являются бифункциональными катализаторами (с п — и р — прово — дикостями) они активны как в реакциях гидрирования-дегидри— рования (гомолитических), так и в гетеролитических реакциях гидрогенолиза гетероатомных углеводородов нефтяного сырья. Однако каталитическая активность Мо и W, обусловливаемая их дырочной проводимостью, недостаточна для разрыва углерод — угл зродных связей. Поэтому для осуществления реакций крекинга углэводородов необходимо наличие кислотного компонента. Следовательно, катализаторы процессов гидрокрекинга являются по существу минимум трифункциональными, а селективного гидрокрекинга — тетрафункциональными, если учесть их молекулярно — ситовые свойства. Кроме того, когда кислотный компонент в катализаторах гидрокрекинга представлен цеолитсодержащим алюмосиликатом, следует учесть также специфические крекирующие свойства составляющих кислотного компонента. Так, на алюмоси — ЛИР ате — крупнопористом носителе — в основном проходят реакции первичного неглубокого крекинга высокомолекулярных углеводо — ро ов сырья, в то время как на цеолите — реакции последующего бо/ ее глубокого крекинга — с изомеризацией среднемолекулярных углеводородов. Таким образом, катализаторы гидрокрекинга можно отвести к полифункциональным. [c.227]

    Селективность каталитического действия в процессах селективного гидрокрекинга (СГК) достигается применением специаль — них катализаторов на основе модифицированных высококремне— земных цеолитов, обладающих молекулярно— ситовым свойством. Катализаторы СГК имеют трубчатую пористую структуру с разме — рсМи входных окон 0,5 — 0,55 нм, доступными для проникновения и рс агирования там только молекулам парафинов нормального с тро — ег ИЯ. Для гидрирования образующихся продуктов крекинга в цеолит ВЕодят обычные гидрирующие компоненты (металлы У1П и VI групп). [c.234]

    Обычно в состав простетических групп в растительных и животных системах входят порфириновые ядра, представляющие собой хелатные структуры с включением ионов металлов (Ре , Со ", и т. д.). Так, гемоглобин животных содержит такую группу с Ре " , присоединенную к белковой половине (глобин). Эта группа аналогична по структуре простетической группе, содержащей в хлорофилле растений и одноклеточных животных. Молекулярный вес белков обычно лежит в пределах от 30 ООО до 80 ООО. Однако молекулярный вес может быть и меньше и значительно больше этих величин. Ферменты являются очень специфичными катализаторами. Зачастую их активность может проявляться только в какой-либо одной реакции. Так, например, фумараза катализирует только обратимую реакцию превращения малеиновой кислоты в фумаровую [98]  [c.561]

    Исходя из коллоидно-химических представлений о структуре нефтяных остатков (см.гл.1), механизм превращения СОЕ сырья в гипотетической форме может быть следующим (рис. 2.14). На стадии предварительного нагрева сырья с водородом до адсорбции на поверхности катализатора происходят первичные изменения структуры сырья, заключающиеся в том, что ядро ССЕ, состоящее из ассоциатов асфальтенов, диспергируется. Первичная сольватная оболочка ССЕ распределяется между диссоциированными частицами первичного ядра. Часть компонентов первичной сольватной оболочки растворяется в дисперсионной среде, находящейся в состоянии истинного молекулярного раствора. В предельном случае ядро ССЕ может быть представлено единичной частицей асфальтена. Каждая из этих частиц окружена сольватной оболочкой, толщина которой зависит от содержания смол, полиаренов, высоко- [c.68]

    Внутри поры ядро ССЕ, имеющее наибольшую молекулярную массу, осаждается на активной поверхности, на которой протекают реакции каталитического разложения надмолекулярных структур отдельных частиц асфальтенов. Каталитическое разложение асфальтенов ведет к зарождению отдельных составляющих частиц или осколков, имеющих меньшую молекулярную массу. Осколки, десорбируясь с поверхности, диффундируют в дисперсионной среде и адсорбируются на других активных центрах катализатора, на которых претерпевают химические превращения. В частности, на центрах де металлизации из металлсодержащих комплексов удаляются металлы вслед за гидрированием слабых химических связей. Деметаллизованные осколки в дальнейшем не участвуют в формировании новых надмолекулярных структур, хотя вероятность этого не исключена. Некоторые осколки асфальтенов адсорбируются на центрах гидрообессеривания, где происходят реакции гидрогенолиза серы до сероводорода и гидрирование слабых химических связей. Обессеренные осколки асфальтенов могут ассоциировать друг с другом, зарождая новые ассоциаты с низкой молекулярной массой (обессеренные асфальтены). Параллельно могут протекать реакции деазотирования с вьщелением аммиака, реакции термодеструкции и гидрокрекинга алканов и деалкилирования аренов, реакции гидрирования ненасьпценных осколков молекул и аренов. [c.69]

Рис. 3.2. Зависимость относительной активности АКМ-катализатора (по гидро-генолизу тиоФеиа) от молекулярного отношения кобальта и молибдена (84). Рис. 3.2. <a href="/info/40214">Зависимость относительной</a> активности АКМ-катализатора (по гидро-генолизу тиоФеиа) от <a href="/info/312061">молекулярного отношения</a> кобальта и молибдена (84).
    Основными продуктами термических превращений тиофанов в присутствии алюмосиликатного катализатора являются сероводород и углеводороды. Этим тиофаны отличаются от алкилсуль-фидов, при термических превращениях которых образуются, кроме сероводорода, также меркаптаны. Скорость термических превращений тиофанов в значительной степени определяется их строением. Химическая стабильность тиофанов с увеличением молекулярного веса, как правило, уменьшается. Диалкилтиофаны, по сравнению с алкилтиофанами, легче разлагаются при повышении температуры. [c.31]


Смотреть страницы где упоминается термин Молекулярный вес и катализаторы: [c.15]    [c.282]    [c.230]    [c.232]    [c.96]    [c.117]    [c.182]    [c.226]    [c.15]    [c.47]    [c.59]    [c.34]   
Поликонден (1966) -- [ c.99 , c.125 ]




ПОИСК







© 2025 chem21.info Реклама на сайте