Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт хроматы

    При использовании в качестве пигмента цинковой пыли или графита получаются покрытия с высокой тепло- и атмосферостойкостью и с хорошими противокоррозионными свойствами. Применение же цветных пигментов (сульфат кадмия, желтый и оранжевый селенид кадмия, зеленая окись хрома, красная окись железа, синяя окись кобальта, желтый хромат свинца и др.) позволяет получать отделочные цветные покрытия, стойкие до 300 °С. [c.372]


    Синтез высших спиртов из водя-нового газа температура 400° выход метанола 82%, высших спиртов 9%, воды 8% Основной хромат цинка с 10% хромата кобальта (хромат кобальта обладает специфической способностью связывать атомы углерода) 2434 [c.60]

    Фильтрат от осадка фосфатов (фильтрат 1), который может содержать цинк, никель, кобальт, хромат, перманганат и щелочные металлы, нагревают и прибавляют к нему сернистого аммония. Осаждается цинк, никель, кобальт и марганец в виде сульфидов, а хром — в виде гидроокиси . Осадок отфильтровывают, а раствор (фильтрат 2) сохраняют. [c.234]

    А. Т. Ваграмян с сотр. [42] показал, что образующаяся на катоде в процессе электролиза пленка, наоборот, способствует восстановлению хромат-ионов до металла. По данным авторов, в чистом растворе хромовой кислоты электроды из хрома, железа, никеля, кобальта или других металлов покрываются прочной окисной пленкой, которая препятствует восстановлению ионов хрома даже при поляризации катода до высокого электроотрицательного потенциала. В этих условиях выделяется только водород, причем при повышенном перенапряжении. Восстановление хромат-иона на этих электродах возможно только в присутствии небольшого количества указанных выше анионов, которые служат как бы катализаторами процесса. При этом в зависимости от потенциала изменяется как характер, так и скорость электрохимических реакций. Последнее иллюстрируется поляризационными кривыми, полученными потенциостатическим методом в растворе [c.415]

    Обнаружение ионов железа ( III) и марганца. Исследуемый раствор пропускают через колонку с высотой слоя сорбента около 2 см. Появление желто-бурой зоны Ре(ОН)з указывает на присутствие Fe + в растворе. В вытекающем из колонки растворе обнаруживают ионы марганца. В связи с тем что ионы Мп2+ обладают наименьшей сорбируемостью, они появляются в выходных каплях первыми и легко обнаруживаются в 1—4-й капле фильтрата. На полоску фильтровальной бумаги наносят последовательно капли раствора, вытекающие из колонки, и обрабатывают их парами аммиака, после чего бумагу смачивают раствором бензидина. Появление синего пятна на бумаге указывает на присутствие ионов марганца. В отсутствие кобальта ионы марганца определяют на колонке, содержащей окись алюминия и хромат калия (3 1), по образованию коричневой зоны, постепенно приобретающей черную окраску. [c.187]

    Высокозарядные ионы металлов способны восстанавливаться ступенчато и давать несколько полярографических волн. Это характерно, например, для анионов хромата, молибдата, вольфрамата, ванадата, катионов железа (П1), кобальта и др. На рис. 25.8 показано восстановление хромат-ионов в растворе гидроксида аммония. Первая волна соответствует восстановлению хромат-ионов до хрома (П1), вторая — переходу хрома(И1) в хром (И). Высшая степень окисления образует волну при более положительном потенциале, чем средняя (или низшая) степень окисления. Это явление иногда используют для устранения влияния посторонних ионов. Так, никель (И восстанавливается легче кобальта (И) и мешает определению последнего. В этом случае можно сначала окислить кобальт до трехвалентного, например пероксидом водорода в аммиачном растворе. Полярогра- [c.502]


    Интересно отметить, что хром в металлическом состоянии имеет металлическую валентность 6, соответствующую степени окисления + 6, характерной для хроматов и бихроматов, а не более низкой степени окисления -ЬЗ, характерной для солей хрома металлы марганец,, железо, кобальт и никель тоже имеют металлическую валентность 6, хотя почти все эти элементы образуют соединения со степенями окисления + 2 и -ЬЗ. Ценные физические свойства переходных металлов обусловлены высокой металлической валентностью этих элементов. [c.494]

    Калия иодид. . . Калия нитрит. . . Калия оксалат. . . Калия перманганат Калия роданид. . Калия феррицианид Калия ферроцианид Калия хромат. . . Калия цианид. . . Кальция сульфат Кальция хлорид. . Кобальта нитрат, .  [c.105]

    Каталитической активностью в отношении таких реакций обладают переходные металлы (с незаполненными с1- или - оболочками) первой подгруппы (Си, А ) и восьмой группы (Ре, N1, Со, Р1, Р<1) периодической системы Д.И. Менделеева, их окислы и сульфиды, их смеси (молибдаты никеля, кобальта, ванадаты, вольфраматы, хроматы), а также карбонилы металлов и др. [c.416]

    Определение кобальта методом изотопного разбавления [1250]. Методика разработана для определения небольших количеств кобальта в сталях и никелевых сплавах. Сталь или никелевый сплав растворяют, как обычно, в азотной и соляной кислотах, прибавляют к полученному раствору соль Со ° с известной удельной активностью и при высоком содержании железа экстрагируют его диэтиловым эфиром в виде хлорида. Из раствора осаждают щелочью гидроокись кобальта, чем достигают отделение от хромата. Осадок растворяют в уксусной кислоте. При этом марганец остается в осадке в форме МпОг. [c.197]

    Определение кобальта в титане и титановых сплавах. Сводка методик определения примеси кобальта и примесей других элементов (всего 28 элементов) приведена в работе [1420]. Для полярографического определения кобальта (также меди, никеля, марганца и хрома) в титановых сплавах [1071] навеску материала разлагают смесью растворов фтористоводородной и хлорной кислот и удаляют основную массу титана гидролитически, выпаривая раствор почти досуха. Оставшийся в растворе титан удаляют осаждением пиридином, а хромат — осаждением раствором хлорида бария. Далее полярографируют ко- [c.206]

    В отличие от соединений элементов главных подгрупп соединения переходных элементов, как правило, более ярко окрашены. В этом легко убедиться на примере наиболее типичных солей элементов Зй -серии. Ярко окрашены, например, многие соли хрома (III), железа, кобальта, никеля, меди, а также хромат- и дихромат-ионы, соединения марганца в разных степенях окисления. Не случайно среди наиболее употребительных минеральных пигментов много соединений железа, кобальта, меди, хрома. Одной из причин окраски, т. е. поглощения квантов света в видимой области спектра, является наличие вакантных мест на d-орбиталях, энергия которых может быть различной в зависимости от окружения данного атома. Переход электронов с одной орбитали на другую сопровождается поглощением порций энергии, как раз соответствующих квантам видимого света. [c.206]

    Термическое разложение аммиачной селитры значительно ускоряется в присутствии азотной, серной и соляной кислот. Скорость термического разложения аммиачной селитры, содержащей 5% свободной азотной кислоты, при 200°С в 100 раз выше скорости разложения чистой аммиачной селитры. В присутствии кислоты снижается температура начала разложения селитры. При повышении содержания свободной кислоты до 1% температура начала активного разложения селитры снижается с 210 до 185—190 °С. Каталитическое действие на термическое разложение селитры оказывают примеси хлоридов, хроматов, соединения кобальта. При содержании хлоридов в селитре до 0,15% (в пересчете иа ноны хлора) температура разложения снижается до 193 °С, а в присутствии 1% азотной кислоты она снижается до 180 °С при этом скорость разложения увеличивается в два раза. Например, при на-греваиии смеси хлорида с селитрой до 220—230 °С последняя бурно разлагается с выделением большого количества тепла при более высоком содержании хлорида происходит полное разложение селитры. [c.48]

    Ни один из этих элементов в своих соединениях не достигает степени окисления, соответствующей номеру группы. Наиболее устойчивы степени окисления +2 и Ч-З, причем для никеля, за некоторыми исключениями (например, в K [NiFe], см. также опыт 1), наиболее типична степень окисления +2 (конфигурация d ) (опыт 1). Во многих соединениях кобальта он также имеет степень окисления 4-2 (d ) степень окисления 4-3 (d ) характерна главным образом для комплексных соединений кобальта, которые имеют сходство с комплексами хрома (1П). Соединения железа в степени окисления -j-2 (d ) сходны с соединениями цинка реакции иона железа(III) (d ) во многом похожи с реакциями ионов алюминия и хрома(III). Обладающие сильным окислительным действием ферраты (VI) (d ) РеОч напоминают хроматы (VI) и мaнгaнaты(VI) ферраты имеют тот же состав, что и сульфаты, и часто им изоморфны. Реакции соединений железа, кобальта и никеля в своем больщинстве определяются склонностью этих металлов к изменению степени окисления и их способностью к комплексообразованию. [c.635]


    Промышленный процесс производства стирола заключается в каталитическом дегидрировании этилбензола при температуре 600—700 °С и атмосферном давлении в присутствии катализатора, например SIO2—AI2O3, твердой фосфорной кислоты, оксида цинка, промотированного алюминием и хроматами, оксида кобальта. При степени конверсии 30—40% в расчете на прореагировавшее сырье выход обычно составляет 90%. [c.264]

    Для приготовления катализаторов гидрокрекинга используют а) нейтральные носители — различные пористые инертные материалы б) аморфные носители, обладающие кислотной природой активированные кислотами глины фторированную окись алюминия синтетические алюмосиликаты магнийсиликаты, цирконийсили-каты и др. [131 —158] в)- синтетические кристаллические алюмосиликаты — цеолиты, преимущественно высококремнеземистые цеолиты типа Y [159—168]. В качестве гидрирующих компонентов применяют окислы молибдена, вольфрама, молибдаты кобальта и никеля, вольфраматы никеля, хроматы никеля и др., их сульфидные производные, а также элементы платиновой группы (платина, палладий, осмий и др.) в виде металлов. [c.79]

    В качестве катализаторов для гидрогенизационных процессов переработки сернистых нефтепродуктов наиболее отвечающими указанным требованиям являются оксиды и сульфиды элементов VI группы Периодической системы — хрома, молибдена, вольфрама. Их применяют на носителях и без них (например, сернистый вольфрам). Кроме того, широко используют более сложные композиции, включающие элементы VI и VIII групп Периодической системы, — хроматы и хромиты никеля, кобальта, железа молибдаты кобальта, никеля и железа вольфраматы никеля, кобальта, железа или же их соответствующие сульфопроизвод-ные[136, 137, 144 . [c.249]

    I — хромата калия 3 — сульфата меди 3 — роалнил кобальта (а ацетоне) [c.181]

    Порошок карбида вольфрама W , по твердости близкого к алмазу, служит для получения металлокерамических пластинок с кобальтом в качестве связующего. Такие пластинки (марка WK-6) употребляют для изготовления режущего инструмента (резцов, сверл, фрез), способных обрабатывать самые твердые материалы. Карбид хрома СгдСг в сплаве с никелем тоже обладает высокими режущими свойствами. Поверхность стали, содержащей хром, сильно упрочняется за счет образования на ней карбидов или нитридов. Оксид хрома (И1) служит для полирования и шлифования различных изделий, употребляется в производстве искусственных рубинов (гл. XI, 3). Хроматы и бихроматы используются в качестве окислителей. Смесь бихромата калия с серной кислотой (хромовая смесь) применяется для очистки химической посуды от загрязнений. [c.340]

    Раствор, полученный после отделения сульфидов кобальта и никеля, обрабатывают 20%-м раствором NaOH и пероксидом водорода. При кипячении смеси выпадает осадок, содержащий Ре(ОН)з и МпОг, з в ))a -творе остаются [Zn(0H)4] , [А1(ОБ),] и хромат-ионы rOf, образовавшиеся при окислении хрома(1П) пероксидом водорода раствор имеет желтую окраску, характерную для хромат-ионов. [c.296]

    Осаждение железа, марганца, кобальта, никеля из анализируемого раствора при кипячении 6 ]]. NaOH и 3%-ная H2O2 Осадок I гидроокиси Mn(IV), Ре (III) Со (III), N (11). Центрифугат 1 алюминат-, хромат-, цинкат-ионы [c.222]

    Катионы серебра, свинца, ртути, висмута, кадмия, олова, кобальта, никеля и др., дающие с хромат-иоиами осадки, должны отсутсткоиать. [c.175]

    Окрашенными соединениями являются все соли катионов III аналитической группы, образуемые кислотами с окрашенными анионами все соли трехвалентного хрома — зеленые или фиолетовые, соединения шестивалентного хрома (хроматы) — желтые, бихроматы — оранжевого цвета соли никеля — зеленые кобальта — красные соединения марганца двухвалентного — розовые, четырехвалентного — черно-бурые, шестивалентного (манганаты) — зеленые, семивалентного (перманганаты) — красно-фиолетовые. Ацетат железа (III) — коричневочайного цвета, арсенат железа (III) —зеленый, бромид железа (И) — красный, хлорид железа (111) — коричнево-желтый, гексацианоферрат (II) железа — берлинская лазурь и гексацианоферрат (111) железа — турнбулена синь и роданид кобальта — синие роданид железа (111) — красный. [c.242]

    Исследования, проведенные в ряде стран, показали, что металлы, широко применяемые в промышленности и распространенные в окружающей среде, могут оказывать на организм человека не только токсикологическое, но и канцерогенное воздействие [935, 987]. К химическим канцерогенам относят такие металлы, как бериллий, хром, никель потенциальными канцерогенами являются кобальт, кадмий, свинец и некоторые другие металлы [931]. Понятие канцерогенность металла относится не к элементу как таковому, а к его определенному физико-химическому состоянию. Например, канцерогенность хрома может быть объяснена следующим образом. Этот элемент в виде хромат-аниона с помощью сульфатной транспортной системы проникает через клеточную мембрану, тогда как катион хром(П1) сквозь нее не проходит. Клеточная метаболическая система восстанавливает хромат до хрома(П1), который в отличие от оксоаниона хрома(VI) образует прочные комплексы внутри клетки с нуклеиновыми кислотами, протеинами и нуклеозидами, вызывая повреждения ДНК, которые в свою очередь ведут к мутации, а следовательно, и к развитию рака [931]. Согласно концепции Мартелла канцерогенность металла связана со степенью его электроположительности. Ионы электроположительных металлов образуют лабильные комплексы и большей частью не канцерогенны. Ионы же металлов с низкой электроположительностью образуют высококовалентные связи с донорными группами биолигандов и способны подвергаться только очень медленным обменным реакциям с другими лигандами, находящимися в биологических системах, что в конечном счете обусловливает канцерогенное действие этих катионов [931]. [c.500]

    Важная особенность реакций этого типа (которые также можно использовать для получения азаиндолизинов) состоит в следующем исходя из логики предполагаемого механизма процесса, должен был бы образовываться дигвдро-индолизин, однако в действительности получают полностью ароматическое соединение. Механизм ароматизации не ясен она может происходить при окислении кислородом воздуха в ходе реакции или в результате гидридного переноса к другому компоненту реакционной смеси. Выделенные дигидросоединения могут быть легко ароматизованы под действием обычных реагентов, таких, как палладий на угле или хиноны. Кроме того, ароматические индолизины образуются и при взаимодействии илида с алкеном (когда следовало бы ожидать полу-чения тетрагидропроизводных) в присутствии подходящего окислителя, такого, как хромат кобальта [19], как показано ниже [20]  [c.611]

    Определение кобальта в виде комплекса с пиридин-2,6-дикарбоновой кислотой С5Нз (СООН)2 [813]. Ионы двухвалентного кобальта легко окисляются броматом калия в азотнокислой или сернокислой среде в присутствии пиридиндикарбоновой кислоты, образуя окрашенный в красный цвет анионный комплекс трехвалентного кобальта, в котором на один ион кобальта приходится две молекулы реагента. Комплекс имеет максимум поглощения при 514 ммк и молярный коэффициент погашения при этой длине волны, равный 672. Можно определять 2—100 мг мл Со. Комплекс устойчив по отношению к ионам двухвалентного олова и тиогликолевой кислоте это позволяет определять кобальт в присутствии трехвалентного марганца, который также образует окрашенный комплекс, но легко восстанавливается при действии указанных восстановителей. Не мешают катионы меди, железа и никеля, а также щелочноземельных металлов, алюминия, кадмия, ртути, галлия, индия, свинца, сурьмы, мышьяка, висмута, титана, циркония, цинка, ванадия, церия, тория, хрома, серебра, анионы перманганата, молибдата, вольфрамата, хромата. [c.145]

    Фотометрическое определение кобальта нитрозо- -солью после экстракции дитизонатов и разделения хроматографией на бумаге [493]. Почву обрабатывают раствором соляной кислоты и экстрагируют кобальт и другие элементы из цитратного буферного раствора при pH 8,3 хлороформным раствором дитизона. Удаляют хлороформ выпариванием и разрушают дитизонаты азотной или хлорной кислотой при нагревании. Остаток выпаривают два-три раза с соляной кислотой, хлориды металлов растворяют в 6 N растворе соляной кислоты и разделяют медь и кобальт методом радиальной хроматографии на бумаге. Растворителем служит смесь ацетон — этилацетат — вода — соляная кислота (пл. 1,19) в соотношении 45 45 5 5. Кобальт идентифицируют на высушенной и обработанной ам(миак0м хроматО(Грам-ме опрыскиванием 0,1%-ным этанольным раствором рубеановодородной кислоты. Соответствующий сектор хроматограммы озоляют и определяют кобальт в растворе золы фотометрически нитрозо-К-солью. Предложено также концентрировать кобальт из солянокислых почвенных вытяжек посредством анионообменной окиси алюминия, пропитанной нитрозо-К-солью. Избыток нитрозо-К-соли после поглощения кобальта вымывают из колонки горячей азотной кислотой, а затем десорбируют кобальтовый комплекс нитрозо-К-соли пропусканием через колонку раствора серной кислоты. Далее в лолученном растворе определяют кобальт фотометрически [1378]. [c.211]

    Хромовокислый калий дает буровато-красный осадок основного хромата двухвалентного кобальта СоСг04 СоО Н2О. Осадок раствори.м в кислотах и а.ммиаке. [c.272]


Смотреть страницы где упоминается термин Кобальт хроматы: [c.69]    [c.400]    [c.65]    [c.330]    [c.332]    [c.42]    [c.227]    [c.271]    [c.444]    [c.270]    [c.270]    [c.112]    [c.64]    [c.138]    [c.110]    [c.111]    [c.282]    [c.631]   
Химический энциклопедический словарь (1983) -- [ c.263 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.263 ]




ПОИСК





Смотрите так же термины и статьи:

Хромато

Хроматы



© 2025 chem21.info Реклама на сайте