Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа адиабатического принцип

    Пиролиз проводят в присутствии перегретого водяного пара, который служит передатчиком тепла. Установка работает в принципе следующим образом (рнс. 22). Лигроин, бензин нли газойль нагревают предварительно в трубчатке в присутствии водяного пара примерно до 590— 680°. У ке при этом происходит частичное крекирование. Выходящий из трубчатки газообразный доведенным в отдельном нере-в адиабатическом [c.94]


    Пароструйные эжекторы работают на принципе передачи количества движения. Двигающийся пар расширяется адиабатически, проходя через расширяющееся сопло, причем энергия его давления превращается в кинетическую энергию. Масса пара, имеющего большую скорость, направляется через камеру смешения в диффузор, сначала сходящийся, а затем расходящийся. Проходя через камеру смешения, пар захватывает определенное количество газа или пара, который подлежит откачке. Передав скорость газу, пар замедляет свое течение и вся масса поступает в диффузор, где кинетическая энергия превращается в давление, которое значительно выше, чем давление в эвакуируемой камере. Во время цикла сжатия не происходит конденсации рабочего пара. Большая степень расширения пара в четырех-или пятиступенчатых эжекторах может ускорить движение пара до числа Маха, равного 9—11. Эффект охлаждения при этом расширении пара во многих случаях вызывает образование льда в отверстии сопла, а также в горловине диффузора. Образование льда меняет расчетные размеры и мешает работе эжектора. Этого явления можно избежать, устроив вокруг сопел и диффузоров паровые рубашки. Благодаря большой скорости практически не наблюдается выделения пара или захваченного газа или обратной диффузии через всасывающее отверстие. Поэтому при помощи струй пара, проходящих через газовую вакуумную камеру, можно получить давление, в тысячи раз меньшее, чем давление водяного пара. [c.478]

    Прототипом современных двигателей Дизеля служит двигатель, выпущенный в 1892 г. Рудольфом Дизелем. Они работают на принципе практически адиабатического сжатия воздуха в цилиндрах до 35 ат и его нагрева при этом до температуры, достаточной для воспламенения горючего, впрыскиваемого в цилиндр в надлежащий момент в конце хода сжатия. Для зажигания смеси в этом случае свечи не нужны. [c.432]

    Воздух нельзя превратить в жидкость при атмосферном давлении, так как критические температуры N2 и О2 соответственно равны —147 и —119°С, по-, этому для сжижения требуется сильное охлаждение. Его достигают, заставляя сжатый воздух совершать работу в адиабатических условиях (без теплообмена с окружающей средой) и, в заключительном этапе, дросселированием — расширением при выходе иэ узкого отверстия. Прн дросселировании происходит охлаждение в результате работы против действия межмолекулярных пан-дер-вааль-совых сил. Для сжижения воздуха применяют различные установки, действие которых основано на указанных принципах. Используют и турбодетандер П. Л. Капицы — машину, которая работает при сравнительно небольших давлениях и отличается высоким к. п. д. [c.393]


    В 1909 г. Каратеодори сформулировал принцип адиабатической недостижимости, позволивший доказать существование энтропии без рассмотрения работы тепловых машин. Мы рас- [c.61]

    В 1909 г. Каратеодори сформулировал принцип адиабатической недостижимости, позволивший на основе второго начала термодинамики доказать существование энтропии без рассмотрения работы тепловых машин. Мы рассмотрим только основную идею Каратеодори. Поскольку бQ не является полным дифференциалом, а [c.53]

    Почему в формулировках Клаузиуса и Кельвина речь идет о круговом процессе — действуя посредством кругового процесса Потому что, например, при однократном расширении идеального газа по изотерме 1—2 (рис. П1.3) в принципе возможно поЛное превращение теплоты в работу [вспомните соотношение (П.33), где Qt= Ат. Но нельзя бесконечно расширять газ, и для повторения операции получения второй и т. д. порций работ необходимо будет его сжать. Если сжимать газ при той же температуре Ti, т. е. по изотерме 2—1 (рис. П1.3), не получится выигрыша работы. Поэтому в цикле Карно газ из состояния 2 расширяют адиабатически до состояния 3, снижая его температуру до T a. Сжатие при T a требует затраты меньшей работы [формула (П.33)1, а поэтому в целом и получается выигрыш работы, равный площади цикла 1 2 3 4. [c.69]

    Иными словами, суммарный итог действия цикла состоит в извлечении из теплового резервуара с температурой теплоты Оса и превращение ее в эквивалентное количество работы, а это невозможно согласно формулировке Кельвина — Карно. Поэтому невозможен и предположенный адиабатический переход ВС, т. е. состояние С недостижимо из В с помощью какого-либо адиабатического процесса. Аналогичным образом можно доказать и эквивалентность принципа Каратеодори формулировке Клаузиуса. [c.71]

    Как указывалось в п. 3 8 главы II и п. 5 2 главы III, при этом возможна работа и со стационарными и с движущимися теплоагентами. В первом случае реакции ведутся в циклично действующих аппаратах регенеративного принципа. Примерами их являются газогенераторы пиролиза нефтепродуктов и адиабатические реакторы Удри для дегидрирования бутана. Коэфициенты полезного действия этих реакционных устройств сравнительно низки, так как время прямого использования их составляет всего 50% и нередко даже 33,3% от общего при невысоких термодинамических к. п. д. в основном рабочем цикле. На эффективность реакторов существенное влияние оказывают а) длительность циклов и б) весовые соотношения катализаторов и теплоаккумулирующих материалов. [c.382]

    Крайне простой адиабатический калориметр был построен Робертсом [ ]. Принцип работы этого прибора заключается в том, что определяется количество газа, адсорбированного на вольфрамовой проволоке, и одновременно сама проволока используется в качестве калориметра. По мере того как происходит адсорбция газа, выделяется теплота, и температура проволоки возрастает. Измеряя изменение сопротивления проволоки, Робертс нашел соответствующее изменение температуры и, зная массу и теплоемкость проволоки, мог вычислить количество выделившегося тепла. [c.75]

    Долгое время наиболее характерной особенностью п -> л -переходов считалась их склонность к сдвигу в коротковолновую область в кислых и полярных растворах, Как показано нами в работе [25], га я -перехо-ды действительно сдвигаются в указанную область, если не нарушается принцип Франка — Кондона, т. е. электронный переход происходит адиабатически. [c.6]

    В более поздних работах Борн [11а] (см. также книгу [116]) дал новое обоснование адиабатического приближения. Необходимость нового обоснования адиабатического приближения вызывалась тем, что молекулярные колебательные спектры оказалось возможным правильно интерпретировать на основе принципа адиабатичности даже тогда, когда амплитуды колебаний вокруг равновесной конфигурации молекулы достаточно велики. [c.215]

    Получение низких температур с помощью холодильной машины основано на принципе осуществления обратимого кругового процесса, или так называемого холодильного цикла, который в идеальном случае можно изобразить обращенным циклом Карно. Последний представляет собой замкнутый круговой цикл, состоящий последовательно из изотермических и адиабатических процессов, причем вследствие обратимости последних этот цикл может быть проведен в обратном направлении путем превращения механической работы в теплоту или вводом некоторого количества сравнительно высокого температурного потенциала, что и имеет место в холодильных машинах. [c.608]

    Определение теплоемкости основано на использовании принципа эквивалентности. На основании многочисленных экспериментов известно, что получение механической энергии возможно только тогда, когда одновременно происходят другие эквивалентные энергетические изменения, например при фазовых превращениях или химических реакциях. Важнейшими формами энергии, с которыми мы будем встречаться в последующих разделах, являются механическая и тепловая. Пусть, например, над кристаллом в процессе трения совершена определенная работа А адиабатически, т. е. без теплообмена с окружающей средой. При этом его температура повысится настолько же, как при подводе к телу определенного количества теплоты Q. Теплота и работа, таким образом, эквивалентны друг другу  [c.47]


    Цикл Клода. В своих установках Ж. Клод применил принцип охлаждения газов, основанный на адиабатическом расширении нх с производством внешней работы. [c.576]

    Механическая работа, превращаясь Б теплоту, поднимает во всем объеме перерабатываемой массы температуру на более высокий уровень. Этот подъем температур может быть очень значительным, вполне компенсирующим все внешние теплопотери и унос теп--ла с экструдатом. На этом принципе проектируются автогенные (адиабатические) экструзионные машины. Между подъемом температуры массы и произведенной над нею удельной работой существует однозначная зависимость, одинаковая для самых различных шнеков, соединенных с различными головками (рис. 22). Кроме того, наблюдается и прямая зависимость повышения температуры (А/) от развиваемого давления на конце шнека (рис. 23 и 24). Количество теплоты, развиваемое шнеком, а следовательно, и температура массы [c.27]

    В калориметрических методах для достижения равновесия вещество находится в адиабатических условиях. Нагревание или охлаждение вещества проводится медленно, с малой и постоянной подачей или отнятием тепла от образца. Эти методы определения чистоты основаны на тех же принципах, что и термометрические. Термодинамическое соотношение для равновесия кристаллической и жидкой фазы остается таким же, каким оно дано в работах Россини [29, 31, 33] и приведено в 2, уравнение (3) и в 4, уравнение (28). [c.50]

    Принцип этого метода заключается в раздельном определении характеристики топлива и двигателя. Характеристика для каждого вида топлива будет представлена посредством кривой зависимости задержки воспламенения от температуры (для заданного состава смеси), полученной совершенно независимо от двигателя. Температура конца сжатия определяется при этом расчетом как температура адиабатического сжатия с поправкой, если это потребуется, на тепловые потери. Характеристика двигателя будет представлена рядом температурных кривых для последней порции заряда в течение цикла, в зависимости от режима работы двигателя, например в зависимости от числа оборотов, температуры всасывания и т. д. Для каждого типа двигателя должен быть получен рад. подобных кривых. Кривые зависи юсти температуры от времени могут быть получены различными методами, например [c.202]

    У идеального газа при адиабатическом расширении без совершения внешней работы температура изменяться не должна, но у реального газа при его расширении преодолевается взаимное притяжение соседних молекул, возникающее вследствие действия межмолекулярных сил. На это затрачивается внутренняя энергия газа, и в результате происходит охлаждение это эффект Джоуля — Томсона. Так как отклонение газов от идеального состояния тем значительнее, чем больше давление и ниже температура, то и охлаждение тем сильнее, чем больше разность давлений (до и после расширения) и ниже температура. Однако снижение температуры относительно невелико (0,1—0,3°С на каждую атмосферу снижаемого давления). Значительно бЬль-шее охлаждение достигается при расширении с совершением внешней работы в специальных машинах-детандерах. Охлаждение происходит почти исключительно за счет совершения работы и лишь в небольшой степени за счет дросселирования. В массивных поршневых детандерах, работающих подобно паровым машинам, вследствие их низкого коэффициента полезного действия приходится сжимать воздух до давления 2-10 н/м . В 1938 г. академик П. Л. Капица разработал конструкцию компактного турбодетандера, который работает по принципу реактивной паровой турбины с высокой производительностью и с к. п. д. до 0,83, что позволило снизить начальное давление ежа- [c.217]

    При работе со стационарным слоем катализатора только в редких случаях малоэкзотермических реакций можно исиользовать адиабатические аппараты с одним сплошным слоем катализатора. Чаще катализатор укладывают в специальные корзины с перфорированным дном в пространстве между корзинами находятся охлаждающие змеевики (рис. 148,в) или вводится холодный водород (рис. 148,г), аккумулирующий реакционное тепло. В этих случаях каждый слой катализатора работает в адиабатическом режиме, и реагенты, проходя через слой, разогреваются, после чего перед следующим слоем катализатора происходит охлаждение смеси. Направление потоков жидкости и водорода может в принципе быть трех вариантов противоток жидкости с верха колонны и газа с ннза прямоток жидкости и газа снизу вверх прямоток, наоборот, сверху вниз. Во втором случае, изображенном на рис. 148,в, реактор работает с затоплением слоя катализатора, что ведет к значительному увеличению его гидравлического сопротивления. Если сба реагента подают с верха колонны, насадка катализатора толь-ю орошается жидкостью (рис 148, г) и гидравлическое сопротивление становится небольшим. [c.518]

    Реакторы вытеснения. Аппараты с неподвижным слоен катали затора конструируются в виде колонн со сплошной (адиабатические) или секционированной (полочные) загрузкой, -аналогичных по устройству и принципам работы реакторам для системы газ — твердый катализатор. Они могут экспду ро-ваться с затопленным слоем (жидкость и газ подаются снизу вверх) или с орошаемым слоем (жидкость подается сверху вниз, газ — в любом направлении, но преимущественно также сверху вниз). [c.141]

    Очевидно, что взрывобезопасность индивидуального ацетилена можно обеспечивать только на основе второго и третьего принципов. Взрывоопасность ацетилена значительно возрастает по мере повышения давления. Наиболее опасны процессы компримирования ацетилена и заполнения им баллонов. В некоторых случаях оборудование, предназначенное для работы с ацетиленом высокого давления, изготовляется особо прочным, рассчитанным на давление недетонационного сгорания. Ввиду возможности возникновения детонации, а также роста давления сверх адиабатического и яри недетонационном горении такая система не гарантирует сохранности оборудования. Его безопасность следует обеспечивать тщательным контролем за невозможностью возникновения поджигающих импульсов. [c.87]

    Справедливость принципа Каратеодори для любой системы можно доказать исходя из постулата Томсона. Достаточно доказать,. что если нарушается принцип Каратеодори, то не выполняется постулат Томсона. Рассмотрим два состояния а и Ь) системы в координатах (р, V) (рис. 2.16). Пусть переход системы из состояния а в состояние Ь происходит по изотерме асЬ за счет поглощенной из термостата теплоты Q, причем согласно первому закону термодинамики Q = AU+A, где А — работа, совершенная системой. Если принцип Каратеодори не является справедливым, можно вернуться в состояние а по адиабате Ьс1а. В этом процессе Рад = 0, а так как Сад = —Аи+А где Л —работа в адиабатическом процессе, то Q=A + A. Нарушив принцип Каратеодори, мы превратим теплоту термостата в эквивалентное количество работы в циклическом процессе, что является нарушением второго закона термодинамики (противоречит постулату Томсона). [c.55]

    Реакторы адиабатического типа, применяемые для дегидрирования этилбензола (рис. 38)по принципу действия сходны с адиабатическими реакторами дегидрирования н-бутиленов в бутадиен и изоамиленов в изопрен. ГРеактор представляет собой аппарат цилиндрической формы с коническим днищем, изготовляемым из углеродистой стали и футерованный изнутри огнеупорным кирпичом. Недостатком адиабатических реакторов является резкий перепад температур по высоте слоя катализатора (до 50 °С), что не позволяет достигать высокой конверсии и заставляет использовать большой избыток перегретого водяного пара. Предложено проводить двухступенчатое дегид]зирование этилбензола в стирол с секционированным введением водя. юго пара перед каждым реактором или с промежуточным подогревом реакционной смеси, это приближает условия работы реакторов к изотермическому режиму (рис. 39) [18]. [c.151]

    Адиабатический крекинг, как ранее отмечалось, условное имеиование регенеративной схемы. На самом деле это сменно-цикличная политропи-ческая система с регенеративным принципом работы. [c.243]

    Для обессоливания смеси биохимически очищенной сточной воды и продувочной воды из градирен на ряде заводов используются установки, работа которых основана на принципе обратного осмоса. Они включают блоки известкования, умягчения во взвешенном слое, фильтрования и обратного осмоса. Согласно зарубежным данным [88], этот метод имеет преимущества по сравнению с ранее используемыми методами замораживания, многокорпусного выпаривания, адиабатического многоступенчатого испарения, парокомпрессорной дистилляцией. Кроме того, в этом процессе не требуется применения оборудования из специальных сталей, и он относительно прост в оформлении. В ближайшем будущем этот метод, несомненно, заменит более дорогостоящий способ термического обезвреживания сточных вод. Работы по его разработке уже ведутся рядом научно-исследова-тельских организаций. Проведены опытные испытания метода обессоливания сточных вод с применением обратного осмоса, ультрафильтрации (для удаления органических соединений), фильтрования через динамические мембраны (для удаления органических соединений и обессоливания). Получаемый в процессе концентрат после прохождения каскада аппаратов направляется на сушку. [c.168]

    Таким образом, для односещионных колонн, продукты которых содержат все компоненты разделяемой смеси, фигуративные точки продуктов лежат на прямой, проходяш,ей через равновесную ноду жидкой фазы питания. Линейная зависимость концентраций компонентов в продуктах разделения от флегмового числа Н (или от парового числа 5) вытекает непосредственно из уравнений ( .1) — (У.2) при х 1в=Х1р (или х т = = Х1р). Таким образом, возможность осуществления процесса адиабатической ректификации идеальной смеси при наличии всех компонентов в продукте с сохранением одной зоны постоянных концентраций в секции б районе иитаппя при составе Х 1=Х1Р вытекает из сопоставления с процессом обратимой ректификации. Такой процесс адиабатической ректификации возможен, поскольку во всех сечениях колонны, кроме сечения питания, потоки пара и жидкости больше, чем в обратимом процессе с тем же составом продукта, т. е. движущая сила процесса ректификации (разность между равновесными и рабочими концентрациями) больше нуля. С другой стороны, инвариантность состава в зоне постоянных концентраций по отношению к флегмовому числу при рассматриваемых режимах (Х = Х1р) вытекает из принципа максимальной работы (энтропии) разделения при заданных энергозатратах. Если допустить, что Х1 фХ1Р, то возникнет термодинамическая необратимость при смешении потока питания с внутренними потоками колонны и работа разделения уменьшится. [c.153]

    Рассмотрим процесс дальнейшего увеличения флегмового или парового числа в секции. Часть секции от точки исчерпывания до продуктовой точки в адиабатической колонне можно заменить обратимым процессом. Поток, поступающий в эту часть секции из зоны исчерпывания (зона постоянных концентраций), можно рассматривать как поток питания. Тогда для этой части секции сохраняют свою силу все приведенные выше рассуждения о соответствии между адиабатическими и обратимыми режимами ректификации для всей секции при наличии всех компонентов в продукте. Подобный анализ можно продолжить, рассматривая дальнейшее увеличение флегмового или парового числа и дальнейшее исчерпывание компонентов. Что касается части секции от точки питания до точки исчерпывания компонента, то здесь процесс является необратимым в принципе, поскольку, как отмечалось выше, не могут выполняться условия равновесия в питании. Инвариантность состава в новой зоне постоянных концентраций по отношению к флегмовому (паровому) числу сохраняет свою силу и при рассматриваемых режимах, если условия материального баланса или термодинамические о1раничения не препятствуют этому (это относится, в частности, к ректификации идеальной смеси в односекционной колонне). Как и для случая, когда в продукте имеются все компоненты, эта инвариантность вытекает из принципа максимальной работы разделения при заданных энергозатратах. [c.155]

    Следует отметить, что даже в области средних температур (300— 700° К) применение адиабатного метода калориметрии дает ряд преимуществ по сравнению с методом смешения [452] при определении термических свойств органических веществ, обладающих метастабильными фазами и необратимыми превращениями в процессе нагревания или не образующих термодинамически равновесных фаз при закалке. Адиабатический калориметр с автоматическим контролем температуры адиабатической оболочки позволяет также изучать такие фазовые превращения, в которых тепловое равновесие, или гистерезис, достигается в течение многих часов. В качестве примера на рис. II.2 изображен адиабатический калориметр, использованный Вестрамом и Троубриджем [1599] для прецизионного определения теплоемкостей конденсированных фаз и энтальпий фазовых переходов и плавления в интервале температур от 300 до 600° К. Принцип работы этой калориметрической установки, предусматривающей изоляцию калориметрического сосуда от внешней среды с помощью хромированных тепловых экранов, аналогичен принципу работы описанного выше калориметра для измерения теплоемкостей при низких температурах. Калориметр, изготовленный из серебра, имеет осевое отверстие для нагревателя сопротивлением 250 ом и помещенный в чехол платиновый термометр сопротивления, плотно вставляющийся с помощью медно-бериллиевой втулки в высверленное отверстие муфты нагревателя. С помощью нарезки на верхней поверхности муфты нагревателя и винтового шлифа муфта плотно ввинчивается в коническое отверстие С. Для выравнивания температуры служат шесть вертикальных радиальных перегородок, смонтированных вместе с погружаемым калориметром. Загрузка вещества в калориметр производится через специальную герметичную [c.37]

    Наиболее точными калориметрами для измерения теплоты испарения являются калориметры-контейнеры, похожие по устройству на адиабатические калориметры для определения теплоемкости вещества. Такие калориметры могут быть использованы не только для определения теплоты испарения, но и для измерения истинной теплоемкости жидкости. Типичным представителем калориметров-контейнеров является калориметр для определения теплоты испарения Осборна и Джиннингса [4]. Конструкция и принцип работы на этом калориметре подробно описаны в монографии Скуратова, Колесова и Воробьева [5, ч. 2]. Величина теплоты испарения воды, полученная на этом калориметре, практически совпала с прецизионными определениями других авторов. Значения теплоты испарения 59 углеводородов при 298 К определены с точностью не менее О, Г/с. Однако точность измерения теплоты сублимации была значительно ниже, в частности для гексаметилэтана точность составила 2%. Прибор сложен в изготовлении и требует высокой квалификации при обслуживании. [c.11]

    Целью настоящей работы являлась разработка принципов выбора оптимальной схемы реакторов с адиабатическиии слоями катализатора для синтеза высшх опнрззв из СО и Н2 на плавленом железном катализаторе по методу ИНХС АН СССР. [c.92]

    В промышленных реакторах в реакции участвуют две фазы и более. В реакторах, работающих на твердых катализаторах, кроме скорости протекания собственно реакции превращения должна быть обеспечена также скорость переноса реагирующих веществ между фазами. Все известные конструкции реакционных аппаратов по общности принципов работы подразделяются на реакторы полного смешения (периодического или непрерывного действия) и реакторы полного вытеснения. По способу теплообмена в реакционной зоне различают реакторы с тепло- бй-еном через стенку (перегородку) и непосредственно с катализатором (адиабатические реакторы). [c.253]

    При любом принципе калориметрирования основные затруднения вызывает отсутствие совершенных теплоизоляторов. В связи с этим в данные тепловых измерений всегда необходимо вводить поправки на тепловые потери. В адиабатической калориметрии эти потери сводятся до минимума путем экранирования собственно калориметра экраном с такой же температурой, как и у калориметра. Тепловые потери при этом тем меньше, чем меньше разность температур между калориметром и экраном. Подробное описание деталей адиабатического калориметра можно найти в работах Стюр-теванта (1959), Светославского (1946) и Уайта (1928). Адиабатическую калориметрию можно подразделить на изотермическую и неизотермическую. [c.124]

    Цикл высокого давления с детандером и постановкой его на теплом потоке воздуха был осуществлен немещ<им инженером доктором Гей-ландтом. С принципиальной стороны между циклом Гейландта и циклом Клода нет разницы. Как в одном, так и другом цикле используется принцип адиабатического расширения воздуха с отдачей внешней работы. Но вследствие значительного отличия в конструктивном выполнении детандера, теплообменника и разделительной колонны установки конструкции Гейландта получили широкое раопростра,некие в промышленности и известны в технике как установки Гейландта. [c.133]

    Работы акад. П. Капица были использованы для постройки в ряде лабораторий гелиевых ожижителей, основанных на принципе адиабатического расширения гелия в детандере. Были построены лабораторные гелиевые ожижители в Мюнхенской высшей технической школе, в Иэль-ском университете. В этих гелиевых ожижителях конструкция детандера была заимствована у акад. П. Капица. [c.195]

    Аппараты с вращающимися устройствами могут работать с многократным испарением продукта на внутренней поверхности аппарата и многократной конденсацией его на охлаждаемой изнутри поверхности вращающегося ротора, подобно тому, как это сделано в аппаратах фирмы Лува или в режиме адиабатической ректификации. Для проведения неадиабатической ректификации в ГИАПе разрабатывается аппарат с волнистым ротором, изготовление которого проще, чем аппарата Лува . Уже разработана конструкция испарителя с вращающимся волнистым ротором. Этот же принцип будет использован и при создании конструкции ректификатора. [c.24]

    Переход теплоты от источника с более высокой температуро к источнику с более низкой температурой может происходить как с производством работы (тепловые машины), так и без производства работы. Последний случай осуществляется, например, тогда, когда один конец теплопроводящего прута привести в теплово контакт с источником теплоты с более высокой температурой, у другой конец прута—с источником теплоты с более низкой температурой. Если заключить ту часть прута, что проходит между двумя источниками теплоты, в адиабатическую и недеформируе-мую оболочку, то при стационарном режиме, согласно принципу эквивалентности, количество теплоты которое получает нап1 1 система (прут) от одного источника теплоты, равно количеству теплоты 1/.,, которое наша система отдает другому источнику теплоты (количество работы равно ну.чю в рассматриваемо процессе)  [c.142]

    Попытки построения количественной теории окислительно-вос-становительных электродных реакций типа I были даны в работах Рендлса [1] и позднее Хаша 2]. В основу работы Хаша был положен расчет по теории абсолютных скоростей реакций. Поскольку реакции разряда Хаш считал всегда протекающими адиабатическим образом (в квантовомеханическом смысле), то, естественно, он не пользовался принципом Франка — Кондона и трансмиссионный коэффициент полагал равным единице. Как показал Хаш, для электрохимической кинетики очень важную роль играет конкретное распределение плотности электронного заряда в активированном состоянии. Этот результат является малообнадеживающим, поскольку в настоящее время не существует методов расчета электронной плотности в таких сложных системах, как активированные ионы, окруженные дипольной гидратной оболочкой. Именно по этой причине в интересных с принципиальной стороны работах Геришера [3], в которых рассматривались гетерогенные реакции типа II, не удалось получить конкретных количественных результатов, допускающих сравнение с опытом. Изучая окислительно-восстановительные реакции, протекающие на металлическом и полупроводниковом электродах, Геришер считал, что энергия активации, связанная с франк-кондоновским барьером, главным образом обусловлена смещением атомов, находящихся в первой координационной сфере иона. Хотя это представление правильно передает физическую картину, оно не привело к количественным результатам. По этой причине следует более подробно остано- [c.22]


Смотреть страницы где упоминается термин Работа адиабатического принцип: [c.126]    [c.253]    [c.272]    [c.199]    [c.393]   
Физическая химия Том 2 (1936) -- [ c.60 ]




ПОИСК





Смотрите так же термины и статьи:

Принцип адиабатический

Работа адиабатического



© 2025 chem21.info Реклама на сайте