Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Равновесие между фазами при ректификации

    Массообменные процессы обратимы, т. е. направление переноса компонентов смеси может изменяться в зависимости от рабочих условий (давления, температуры) и свойств разделяемой смеси. Перенос вещества прекращается при достижении состояния равновесия между фазами. К массообменным процессам относятся перегонка, ректификация, абсорбция, экстракция, адсорбция, сушка. [c.191]


    Перегонка с ректификацией - наиболее распространенный в химической и нефтегазовой технологии массообменный процесс, осуществляемый в аппаратах - ректификационных колоннах - путем многократного противоточного контактирования паров и жидкости. Контактирование потоков пара и жидкости может производиться либо непрерывно (в насадочных колоннах) или ступенчато (в тарельчатых ректификационных колоннах). При взаимодействии встречных потоков пара и жидкости на каждой ступени контактирования (тарелке или слое насадки) между ними происходит тепло- и массообмен, обусловленные стремлением системы к состоянию равновесия. В результате каждого контакта компоненты перераспределяются между фазами пар несколько обогащается низкокипящими, а жидкость - высококипящими компонентами. При достаточно длительном контакте и высокой эффективности контактного устройства пар и жидкость, уходящие из тарелки или слоя насадки, могут достичь состояния равновесия, то есть температуры потоков станут одинаковыми, и при этом их составы будут связаны уравнениями равновесия. Такой контакт жидкости и пара, завершающийся достижением фазового равновесия, принято называть равновесной ступенью, или теоретической тарелкой. Подбирая число контактных ступеней и параметры процесса (температурный режим, давление, соотношение потоков, флегмовое число и др.), можно обеспечить любую требуемую четкость фракционирования нефтяных смесей. [c.195]

    В связи с указанными причинами сформулируем и решим задачу разработки алгоритма расчета азеотропно-экстрактивной ректификации в общем виде. При этом в задаче учитывается возможность расслаивания жидкой фазы по высоте колонны, допускается организация рециклов по любой из фаз как внутри отдельной колонны, так и в комплексе взаимосвязанных колонн с промежуточными и конечными декантаторами (рис. 7.19), расчет может вестись как при допущении равновесия между фазами, на тарелках, так и с учетом кинетики массопередачи, алгоритмы расчета обычной ректификации и экстракции являются частными случаями предлагаемого алгоритма [811. [c.355]

    Если удается достигнуть многократного повторения простой дистилляции и частичной конденсации, то жидкая смесь может быть полностью разделена на составляющие ее компоненты. Такой процесс носит название ректификации, а аппараты для его осуществления называются обычно ректификационными колоннами. При дистилляции молекулы, отрывающиеся с поверхности испарения, сохраняют одно и то же направление движения до достижения поверхности конденсации, ректификация же основана на том, что поток жидкости направляется навстречу поднимающемуся потоку пара. В колонне поток жидкости (конденсата) стекает сверху вниз навстречу потоку пара, а пар проходит в направлении снизу вверх. При соприкосновении жидкости и пара часть пара конденсируется за счет соприкосновения с более холодной жидкостью, а теплота, выделившаяся при конденсации, расходуется на частичное испарение жидкости. Так как испаряется в первую очередь низкокипящий компонент, а конденсируется в первую очередь высококипящий, то в результате многократных встреч жидкости и пара по высоте колонны пар все время обогащается низкокипящими, а жидкость — высококипящими компонентами. Таким образом, основным условием проведения процесса ректификации является отсутствие равновесия между фазами на всем пути движения. По мере продвижения по колонне имеет место процесс массообмена между жидкой и паровой фазой. В верхней часть-колонны непрерывно получается пар, который после конденсации дает готовый продукт — дистиллят из нижней части колонны вытекает менее летучий компонент — кубовый остаток. Конечным продуктом перегонки может служить не только дистиллят, но и кубовый остаток. Чтобы получить на выходе из колонны пар, содержащий в чистом виде низкокипящий компонент, необходимо, чтобы жидкость, с которой соприкасается пар на выходе из аппарата, мало отличалась по составу от пара. Схемы осуществления процесса показаны на фиг. 85. В схеме (фиг. 85, б) конденсатор 1 является одновременно дефлегматором. В нем происходит частичная конденсация пара с образованием флегмы, которая полностью возвращается в колонну. Несконденсировавшийся остаток пара проходит в конденсатор 2, где образуется дистиллят, который выводится из колонны. [c.229]


    Таким образом, основным условием проведения ректификации является отсутствие равновесия между фазами на всем пути движения. По мере продвижения по колонне происходит массообмен между жидкой и паровой фазой. В верхней части колонны непрерывно получается пар, который после конденсации дает готовый продукт — дистиллят из нижней части колонны вытекает менее летучий компонент — кубовой остаток. Конечным продуктом перегонки может быть не только дистиллят, но и, кубовой остаток. Чтобы получить на выходе из колонны пар, содержащий в чистом виде низкокипящий компонент, необходимо, чтобы жидкость, соприкасающаяся с паром на выходе из аппарата, мало отличалась по составу от пара. [c.146]

    Наличие равновесия между разбавленной и плотной фазами псевдоожиженного слоя позволило применить процессы дистилляции и ректификации для разделения смесей сыпучих материалов по размерам и плотностям твердых частиц. На рис. XI-8 представлены кривые дистилляции бензинов и разделе- [c.486]

    При разработке практических применений методов азеотропной и экстрактивной ректификации часто возникает необходимость в исследовании равновесия между жидкостью и паром в системах, компоненты которых обладают ограниченной взаимной растворимостью. Расслаивание жидкости или конденсата пара затрудняет применение циркуляционного и динамического методов в их обычном оформлении. Источниками погрешности являются при этом вызванное расслаиванием нарушение соотношения между жидкими фазами в приемниках проб (циркуляционный метод) и отсутствие перемешивания жидких фаз (динамический метод). [c.152]

    TOB (фракции) в результате взаимодействия паровой и жидкой фаз. Процесс ректификации основан на различии состава пара над жидкостью и самой жидкости в условиях равновесия между паровой и жидкой фазами. Это равновесие в системе жидкость—пар описывается уравнением  [c.115]

    Разделение обычно происходит в колонках, наполненных твердым пористым сорбентом, на который нанесена жидкая стационарная фаза. Проба паров анализируемых компонентов вводится в поток газа-носителя, который нерастворим в стационарной фазе. Во время прохождения анализируемых веществ вдоль неподвижной жидкой фазы между газовой и жидкой фазами многократно устанавливается равновесие, связанное с повторением процесса растворения и испарения. Вещества, лучше растворимые в стационарной фазе, удерживаются ею дольше. Таким образом, процесс разделения обусловлен различием в силах межмолекулярного взаимодействия анализируемых веществ с жидкой фазой. Из различных типов межмолекулярных сил наибольшее значение имеют дисперсионные ориентационные и донорно-акцепторные. Теория газо-хроматографического разделения тесно связана с теорией растворов и в настоящее время еще окончательно не разработана. Динамика поведения вещества, проходящего через колонку, обычно описывается на основе теории тарелок (по аналогии с процессом ректификации) и теории эффективной диффузии. Суть теории тарелок заключается в том, что хроматографическая колонка рассматривается как совокупность ряда последовательных небольших идеальных ступенек-тарелок, содержащих газовую и жидкую фазы. Предполагается, что в начальный момент вещество находится на первой тарелке, причем некоторая его доля q будет в газовой фазе, а доля р — в жидкой. Соотношение между q я р зависит от количества взятого вещества и константы равновесия. Входящий в колонку газ будет вытеснять находящуюся в газовой фазе долю вещества оставляя на предыдущей тарелке долю вещества р. Каждая доля вновь будет распределяться между фазами, но уже в двух [c.288]

    В четвёртом разделе приведены основные уравнения расчета равновесия фаз многокомпонентной смеси, учета эффективности массообмена между фазами. Изложены основные уравнения и алгоритмы расчета процессов ректификации, абсорбции, экстракции. [c.3]

    С. Я. Герш и А. М. Архаров [41] на основании проведенных ими экспериментов установили, что поверхность контакта между фазами не равна поверхности пластин, составляющих дно ходов ректификатора. Это происходит вследствие волнообразования на поверхности дна и связано с шероховатостью материала. Поэтому они вводят фактор /, учитывающий влияние шероховатости материала. Они выяснили также, что на величину коэффициента массопередачи оказывают влияние величины флегмового числа, эквивалентный диаметр канала, средний радиус кривизны канала, число единиц переноса массы. Последний фактор учитывает характер кривой равновесия системы, подвергаемой ректификации. [c.290]


    Процесс непрерывного противоточного извлечения в колонке весьма близок по своему характеру к процессу ректификации (см. гл. VH). В обоих процессах происходит непрерывное обогащение одной из фаз, движущихся по принципу противотока навстречу друг другу. На каждом сечении колонки происходит массообмен между фазами, определяемый законами фазового равновесия, в данном случае законом распределения вещества между двумя жидкостями. [c.110]

    Другой тип дробной перегонки, ректификация, преследует цель—объединить в одном приборе, ректификационной колонке, в одну операцию столько отдельных процессов перегонки, сколько необходимо для полного разделения смеси. Другими словами, в ректификационной колонке должен быть создан последовательный ряд фазовых равновесий между стекающей обратно флегмой и поднимающимся вверх паром в условиях известного температурного градиента по всей длине колонки. При этом высококипящий компонент будет все время частично конденсироваться из паровой фазы, а низкокипящий будет частично испаряться из флегмы. [c.117]

    Многие традиционные методы расчетного и экспериментального изучения фазовых равновесий, успешно применявшиеся при исследовании других смесей, в приложении к системе формальдегид— вода оказались малопригодными, давали плохо воспроизводимые и трудно интерпретируемые результаты. Долгое время к оценке достоверности и взаимной согласованности данных с фазовых равновесиях этой системы не привлекались методы термодинамической проверки и т. п. Изложенные обстоятельства привели к тому, что до самого последнего времени исследования фазовых равновесий в большинстве работ носили фрагментарный характер, т. е. охватывали небольшие диапазоны изменения параметров Р. Т, X, причем во многих случаях результаты разных авторов плохо согласовались между собой. Совершенно недостаточно была изучена область фазовых переходов для смесей, содержащих выше 60—70% формальдегида, отсутствовали представления о характере равновесия твердая фаза — жидкость и т. д. Все это приводило к тому, что исключительное важные для практики процессы концентрирования водных растворов формальдегида методами перегонки, ректификации, парциальной конденсации и т. д. не имели необходимого теоретического или расчетного обоснования, а фазовое поведение систем во многих интервалах изменения параметров Р, Т, X было непонятным и непредсказуемым. К счастью, работы 70—80-х годов пролили достаточно света на эти вопросы. [c.136]

    В промышленности и исследовательской практике часто встречается задача разделения сложных смесей, компоненты которых образуют азеотропы. Наиболее распространенными и успешно применяемыми в настояш,ее время методами разделения азеотропных смесей являются экстрактивная и азеотропная ректификация и жидкостная экстракция. Эти методы предусматривают ведение процесса разделения заданной смеси в присутствии специально подобранных веш еств, называемых для случая экстрактивной и азеотропной ректификации разделяющими агентами, а для случая экстракции — экстрагентами. Действие этих веществ заключается в изменении распределения компонентов первоначально заданной смеси между фазами в желаемом направлении (экстрактивная и азеотропная ректификация) или в создании, наряду с имеющимися, новой фазы, в которую переходит экстрагируемое вещество (жидкостная экстракция). Главной проблемой, связанной с применением этих методов, является выбор эффективных разделяющих агентов или экстрагентов, обладающих определенными специфическими свойствами. Здесь появляется возможность изменять равновесные концентрации и, следовательно, подобрать наиболее благоприятные условия разделения заданной смеси. Разумеется, это не освобождает нас от необходимости совершенствования аппаратурного оформления таких процессов, что позволяет наиболее эффективно использовать различие в составах равновесных фаз. Однако определяющим фактором рассматриваемых процессов разделения все же являются условия фазового равновесия, возникающие после прибавления новых веществ к заданной смеси. Все это и определяет одно из важнейших требований к разделяющим агентам и экстрагентам, а именно, эффективность действия в преобразовании фазовых соотношений. Кроме этого, вводимое в разделяемую смесь новое вещество должно также удовлетворять следующим требованиям  [c.186]

    Наличие равновесия между разбавленной и плотной фазами псевдоожиженного слоя указывает на возможность применения процессов дистилляции и ректификации для разделения смесей сыпучего материала по размерам частиц [103, 118] или их удельным весам [118, 422]. Простейшим видом дистилляции является разделение смесей зернистых материалов путем выдува мелких фракций, часто используемое на практике. [c.381]

    Особенностью процессов экстрактивной ректификации является значительно больший массовый расход жидкой фазы, чем паровой, поскольку эти процессы проводятся обычно при высокой концентрации разделяющих агентов в жидкой фазе (70—90%), В связи с этим тепловой поток, переносимый жидкостью, значительно больше, чем в процессах обычной и азеотропной ректификации, а даже сравнительно небольшое изменение температуры по высоте колонны, характерное для процессов экстрактивной ректификации, может приводить к значительному изменению расходов материальных потоков по высоте колонны. Это обусловливает изменение флегмового числа и относительного содержания разделяющего агента в жидкой фазе по высоте колонны, что отражается на условиях фазового равновесия и становится причиной нелинейности рабочих линий процесса ректификации. Для расчета процессов экстрактивной ректификации также используется метод от тарелки к тарелке , реализуемый с помощью ЭВМ. Имеется ряд приближенных методов расчета, основанных на упрощающих допущениях об условиях равновесия между жидкостью и паром, изменении расходов материальных потоков по высоте колонны и т. д. Роль приближенных методов уменьшается по мере прогресса вычислительной техники и прикладной математики. [c.565]

    Процесс гетерогенной азеотропной перегонки может быть, несомненно, осуществлен и по периодическому методу. Однако и в этом случае, как и в ректификации, значительные преимущества имеет непрерывный процесс. Для сравнения здесь можно взять такой важный показатель процесса, как, например, выход чистого компонента, т. е. нижнего продукта после отгонки гетерогенного азеотропа. Сравнение производится в одинаковых условиях достижения полного равновесия между жидкой и паровой фазой, что соответствует минимальному количеству отгона. [c.59]

    Равновесие в системе Ж—Г характеризуется правилом фаз, указывающим необходимые условия существования данного количества фаз, т. е. число параметров, характеризующих равновесие, законом распределения компонента между фазами и константой равновесия химических реакций. Для перечисленных процессов характерны главным образом двухфазные системы, содержащие один, два и более компонентов. Фазовое равновесие для этих систем изображается в виде диаграмм состав — свойство, чаще всего состав — температура кипения. Так, например, диаграмма состав — температура кипения трехкомпонентной системы Н2О—НМОз—Н2504 (рис. 75) позволяет определить равновесные составы жидкости и паров кипящих смесей или температуры кипения смесей заданного состава при равновесии. На анализе этой диаграммы и расчетах при помощи ее основано производство концентрированной азотной кислоты ректификацией смесей разбавленной азотной и концентрированной серной кислот. Графическое изображение распределения компонентов между фазами при равновесии дается, например, в координатах С —где — равновесное содержание компонента в газовой фазе С ж—содержание компонента в жидкой фазе. Для процессов абсорбции и [c.156]

    Почти все методы, предложенные в литературе для расчета многокомпонентной ректификации, исходят из понятия о теоретической тарелке( ступени разделения), т. е. такой массообменной ячейке, на которой устанавливается термодинамическое равновесие между контактирующими фазами. Отметим, что эта концепция не накладывает никаких ограничений на характер движущих сил она не противоречит представлению о полном [c.11]

    Метод газо-жидкостной хроматографии (ГЖХ) в последнее время находит применение при изучении термодинамических величин, характеризующих равновесие между жидкостью и паром, и, в частности, для определения коэффициентов относительной летучести и коэффициентов активности различных веществ, растворенных в неподвижной фазе (разделяющем агенте). Значение этого метода заключается в возможности определять указанные величины для практически бесконечно разбавленных растворов, которые образуются при внесении пробы в хроматографическую колонку. Знание таких величин имеет особую ценность для решения вопроса о возможности и границах эффективного разделения смесей методом экстрактивной ректификации. [c.56]

    При ректификации жидкость и пар, не находящиеся между собой в равновесии, приходят в соприкосновение и претерпевают изменения до тех пор, пока не будет достигнуто равновесие. Если при данном составе пара жидкость взята более богатой нижекипящим компонентом, то в результате изменения, когда наступит равновесие между жидкой и газовой фазами, мы будем иметь увеличение концентрации нижекипящего компонента в парах и понижение его концентрации в жидкости. Подобный процесс, повторяемый многократно, и составляет сущность ректификации. [c.249]

    Ректификация — многократное испарение и конденсация — реализуется в колонках при противотоке пара и жидкости с частичным возвратом (флегмой) дистиллята при установившихся массо- и теплообмене. В ректификационных колонках в условиях известного температурного перепада по всей длине колонки создается последовательный ряд фазовых равновесий между конденсатом, стекающим обратно в перегонную колбу, и поднимающимся вверх паром. При этом высококипящий компонент частично конденсируется из паровой фазы, а низкокипящий — испаряется из флегмы. [c.277]

    При обратимом протекании процесса ректификации во всех сечениях колонны должно соблюдаться равновесие между паровой и жидкой фазами. Для этого следу- [c.187]

    Процусс ректификации осуществляется в условиях контакта двух фаз - паровой и жидкой. При отсутствии равновесия между фазами происходит переход вещества из одной фазы в другую -массопередача. Массопередача является сложным процессом,состоящим из переноса вещества в каждой из фаз я переноса вещества через границу раздела фаз. [c.28]

    Перенос распределяемого вещества пропсходит всегда из фазы, где его содержание выше равновесного, в фазу, в которой концентрация этого вещества ниже равновесной. Так, в процессе абсорбции распределяемое вещество переходит из газовой фазы в жидкую. В процессах перегонки и ректификации двухкомпонентной смеси болье летучее вещество преходит из жидкой фазы в паровую до тех пор, пока не наступит равновесие между фазами по содержанию этoгJ компонента. [c.159]

    Теория ректификации и методы ее расчета достаточно хорошо разработаны для бинарных смесей. Что же касается многокомпонентных смесей, то здесь еще имеется д1ного неясного и в применлемых методах расчета делаются различные допущения (предполагается равновесие между фазами разделение многокомпонентной смеси рассматривается как разделение бинарной смеси, состоящей из ключевых компонентов и т. п.). Разработанные методы расчета прилагаются главным образом к идеальным смесям. Что же касается неидеальных многокомпонентных смесей, то экспериментальное определение равновесного состава в жидкой и паровой фазах связано с большими трудностями. [c.33]

    При выводе основных уравнений ректификации мы исходили из наличия равновесия между фазами на каждой тарелке. Практически, в реальных колоннах, полного равновесия на тарелках не достигается и содержание низкокипяш,его компонента в парах оказывается всегда меньше равновеского. Благодаря этому вычисленное число теоретических тарелок, для заданных условий ректификации, оказывается недостаточным. Чтобы найти практически нужное количество тарелок ректификационной колонны для разделения смеси в реальных условиях ее работы, нужно учитывать коэфициент полезного действия тарелки, численное значение которого колеблется около 0,6—0,8. Деля теоретическое число тарелок колонны на коэфициент полезного действия тарелки, получим количество тарелок, фактически необходимое для разделения смеси. [c.30]

    Основным недостатком противоточной кристаллизации и з расплава является сравнительная трудность осуществления самого процесса, в частности, трудность в создании достаточно большого и однородного потока твердой фазы по высоте кристаллизационной колонны. Кроме того, диффузионные процессы в системе твердая фаза — жидкость протекает значительно медленнее, чем, например, в системе жидкость — жидкость (экстракция) или в системе жидкость —пар (ректификация). Это может привести к тому, что даже при выбранных оптимальных условиях равновесие между фазами в кристаллизационной колонне будет достигаться по существу лищь на границе их раздела. В результате в ряде случаев средний состав кристаллов твердой фазы при их прохождении по колонне в противотоке с расплавом будет изменяться мало, что соответственно будет обусловливать больщую величину ВЭТТ. [c.108]

    В химической технологии большое значение имеют процессы диффузионного обмена веществом между фазами. Сюда относятся с одной стороны перегонка (ректификация) жидких смесей,сдругой, — процессы абсорбции (поглощения газов жидкостями) и экстракции (переноса вещества меящу двумя несмешивающими ся яшдкими фазами). Перегонка представляет собой многократное повторение процессов испарения и конденсации при переменном составе жидкой смеси. Поглощение газа жидкостью подобно процессу конденсации, с той лишь разницей, что к диффузионному сопротивлению газа добавляется диффузионное сопротивление конденсированной фазы. Если абсорбция не сопровождается медленными химическими реакциями, то на поверхности устанавливается равновесие между концентрациями диффундирующего вещества в газовой и жидкой фазах. При стационарном протекании процесса он может быть описан моделью двух пленок газовой и жидкой. Как и всегда в подобных случаях, действует закон сложения последовательных сопротивлений  [c.166]

    Уравнение (231) устанавливает связь между составом паров, поднимающихся на какую-либо тарелку, и флегмы, стекающей с этой тарелки. Оно носит название уравнения концентраций. Уравнение равновесия фаз устанавливает связь между составом паров, поднимающихся с тарелки, и ншдкостн, стекающей с этой же тарелки, поскольку эти потоки находятся в состоянии равновесия. В отличие от уравнения равновесия фаз уравнение концентраций устанавливает связь между составами встречных потоков жидкости и наров, не находящихся в состоянии равновесия. Между парами, поднимающимися на данную тарелку, и жидкостью, стекающей с нее, имеется разность фаз, что является необходимым условием осуществления процесса ректификации. Разность фаз является движущей силой процесса ректификации. [c.213]

    В некотором отношении этот метод имеет много обш,его с рассмотренными нами ранее методами разделения смесей путем ректификации и экстракции ( 122 и 130). Как н в тех случаях, метод основан в сущности на изменении различия в содержании данного комЬонента в двух взаимодействующих фазах—от минимального (при первоначальном равновесии между этими фазами) до значительного (на выходе фаз из аппарата). Это достигается благодаря соответсгвующей форме проведения процесса, когда за одну операцию прн постепенном изменении условий (в данном случае концентрации компонента) равновесие сдвигается и происходит перераспределение компонента. Однако названные методы обладают и существенным различием. В то время как методы ректификации и экстракции обычно применяются в форме непрерывных методов со встречным перемещением взаимодействующих потоков материалов, при хроматографическом методе поглотитель не перемещается в колонке, т. е. вместо принципа противотока здесь применяется принцип фильтрации через покоящийся слой поглотителя, и в соответствии с этим процесс требует периодической за1руэки и выгрузки поглотителя, т. е. является не непрерывным, а периоди ческим. [c.374]

    При дистилляции (или простой иерегонк е) молекулы, отрывающиеся с поверхности испарения, движутся в одном и том же направлении до момента достижения поверхности конденсации. Отличительная же особенность ректификации состоит в том, что поток жидкости (как правило сконденсированных паров) направляется навстречу поднимающемуся потоку паров. Если дистилляция состоит всего лишь из процессов испарения и конденсации, то при ректификации благодаря тесному контакту двух фаз в колонне имеет место массо- и теплообмен. Рассмотрим в общих чертах процесс, протекающий на тарелке колонны (рис. 24). При установившемся режиме составы пара и жидкости на одной и той же тарелке изменяются в направлении достижения термодинамического равновесия между ними под влиянием градиентов температур и концентраций. Вследствие переноса вещества в вертикальном направлении (парами вверх, а жидкостью вниз) это равновесие нарушается, что благоприятствует дальнейшему обогащению паров легколетучими компонентами [1]. Другими словами, поток жидкости (флегма) на своем пути из зоны более низких температур (вверх колонны) в зону более высоких температур (кипятильник) поглощает из потока паров высококипящие компоненты и выделяет легколетучие компоненты. Температурному градиенту в колонне соответствует перепад концентраций в парах и в жидкости. При этом в кипятильнике пар менее насыщен легколетучим компонентом, чем в головной части колонны, а жидкость (флегма) в верху колонны содержит больше легколетучего компонента, чем на входе в кипятильник. [c.39]

    Выделение ректификацией. Изучение равновесия между жидкостью и паром в системе Н2О—НРе04—Н2504 при атмосферном и пониженном давлениях [66, 67] показало, что паровая фаза обогащена рениевой кислотой. Присутствие молибдена в сернокислом растворе вплоть до 20-кратного его избытка по отношению к рению не оказывает значительного влияния на обогащение рением паровой фазы. То же относится и к другим сопутствующим рению примесям (Ре, Си, К, N3, Са и т. д.). Путем ректификации ренийсодержащих сернокислых растворов в определенных усло- [c.623]

    На рис. 95 изображена кривая равновесия между жидкостью и паром OGAEDBF и построение, обычно выполняемое при графическом определении флегмового числа. Точка D, лежащая на диагонали, отвечает составу гетероазеотропа, расслаивающегося на две жидкие фазы, составы которых изображаются точками Л и В. Рабочие линии выходят из точки С, отвечающей составу жидкой фазы отбираемой после расслаивания конденсата. Как и при обычной ректификации, минимальное флегмовое число для смеси состава Хо определяется положением рабочей линии, проходящей через точку О (с абсциссой Xq) на кривой равновесия у = f x). Очевидно, минимальное флегмовое число, по геометрическим соображениям, определяется из выражения [c.255]


Смотреть страницы где упоминается термин Равновесие между фазами при ректификации: [c.72]    [c.161]    [c.289]    [c.232]    [c.441]    [c.159]    [c.368]    [c.141]    [c.84]    [c.6]    [c.11]   
Процессы и аппараты химической технологии (1955) -- [ c.466 , c.476 ]




ПОИСК





Смотрите так же термины и статьи:

Равновесие между М.АТР

Равновесие между фазами

Равновесие фазой



© 2025 chem21.info Реклама на сайте