Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакция перенапряжение химической стадии

    Сопоставление уравнений (У.ЗО) и (У.19) дает возможность предложить способ установления природы предельного тока, который, как было показано выше, может быть обусловлен либо диффузионными ограничениями (У.19), либо торможением химической стадии (У.ЗО). Если предельный ток диффузии изменяется в зависимости от скорости вращения электрода, то на предельный ток реакции перемешивание не влияет. Таким образом, если между величинами 1пр и У а> имеется прямая зависимость, то 1пр является предельным током диффузии 1/, если же с изменением величина р остается постоянно, то 1 пр является предельным током реакции р. При одновременном наложении торможений и диффузии и реакции зависимость от )/со имеет место, но она отклоняется от прямолинейной, причем тем больше, чем больше доля химического перенапряжения. Следовательно, изучив влияние перемешивания на скорость электродной реакции, можно установить природу замедленной стадии — диффузии или химического превраш.ения. [c.134]


    Доставка исходных веществ к поверхности электрода и отвод продуктов реакции могут осуществляться тремя путями миграцией, молекулярной диффузией и конвекцией. Миграция представляет собой передвижение ионов под действием градиента электрического поля, возникающего в электролите при прохождении тока. Молекулярная диффузия представляет собой перемещение частиц под действием градиента концентрации, возникающего в растворе при его качественной или количественной неоднородности. Конвекция представляет собой перенесение частиц растворенного вещества вместе с потоком движущейся жидкости, например при перемешивании. Отклонение потенциала под током от равновесного значения, вызванное замедленностью доставки и отвода участников реакции, называют концентрационной поляризацией. Концентрационная поляризация имеет важное значение для окислительно-восстановитель-ных процессов и меньшее значение — для разряда простых металлических ионов. Концентрационная поляризация не единственная причина отклонения потенциала электрода под током от его равновесного значения. Обычно изменение потенциала при наложении тока оказывается больше, чем концентрационная поляризация. Это является следствием торможения на стадии присоединения или отдачи электронов. Поляризация, вызванная замедленностью разряда или ионизации при протекании электрохимической реакции, называется химической поляризацией. Химическую поляризацию называют также перенапряжением. [c.204]

    Далее для упрощения принимается, что на электроде Е1 протекает только одна электрохимическая реакция. В таком случае при 1=0 на нем установится равновесный потенциал и. Положительные или отрицательные токи могут течь только при положительных или отрицательных отклонениях потенциала от (/. Это отклонение (I/— / )=Т1 называется перенапряжением. Функция /(11) дает представление о кинетике реакции и о той стадии, которая определяет ее скорость. Если скорость определяется самим переходом через границу раздела фаз, то функция /(г)) будет экспоненциальной (перенапряжение перехода). По этой причине кривые /(т)) обычно изображают в полулогарифмической системе координат. Напротив, если скорость реакции определяется химическим процессом или диффузией в среде, то плотность тока ] не зависит от потенциала, т. е. кривая I(ц) располагается параллельно оси потенциалов (концентрационное перенапряжение). Анало- [c.53]


    Химические стадии могут сопутствовать течению стадии переноса заряда на окислительно-восстановительных электродах, изменяя тем самым общую величину поляризационного сдвига потенциала. В общем случае полную величину такого сдвига можно представить как сумму перенапряжения перехода, диффузионного и реакции, т. е. [c.44]

    Для электродов металл/ион металла в качестве вещества 8, которое образуется (или потребляется) в результате протекания замедленной реакции, можно принять адсорбированные на поверхности электрода атомы металла. В этом случае замедленной стадией будет процесс кристаллизации. Однако, так как закономерности таких процессов сильно отличаются от закономерностей химических реакций, они не рассматриваются в разделе, посвященном перенапряжению реакции. Перенапряжение, причиной которого является торможение кристаллизационных процессов, называется но предложению Фишера и Лоренца перенапряжением кристаллизации и рассматривается в 75—77. [c.261]

    Вообще можно установить, что перенапряжение реакции возникает не просто при существовании предшествующей или последующей химической стадии процесса, а только при торможении одной из этих стадий. Если такое торможение не имеет места, то весь процесс осуществляется в результате протекания химических равновесий в предшествующей или последующей стадии и может рассматриваться как более сложный случай перенапряжения диффузии (см. 57). Сами до себе установившиеся химические равновесия в предшествующей или последующей стадии не могут быть причиной появления перенапряжения реакции. [c.263]

    Зная порядки химических реакций pj и р и стехиометрические коэффициенты vy/v, можно только выявить замедленную стадию химической реакции, включая определение вещества S. При этом стадия электродной реакции, по которой вещество S превращается электрохимически, может быть понята только в целом. При чистом перенапряжении реакции эта стадия электродной реакции рассматривается так, как если бы она находилась в равновесии. Вследствие этого из перенапряжения реакции ничего нельзя узнать о последовательности реакций в этой стадии суммарной электродной реакции. Поэтому для выявления механизма стадии электродной реакции необходимо определение порядков электрохимической реакции, которые могут быть установлены только из перенапряжения перехода. [c.487]

    Понятие о диффузионном перенапряжении. Доставка исходных веществ к поверхности электрода и отвод продуктов электродной реакции при отсутствии стадии промежуточного химического превращения может осуществляться тремя путями миграцией, молекулярной диффузией и конвекцией. [c.299]

    Температура. Повышение температуры влияет в основном в трех направлениях 1) понижает перенапряжение, 2) повышает скорость химических стадий реакции и 3) увеличивает скорость диффузии деполяризатора к катоду. Фактическое влияние повышения температуры на электролитическое восстановление является суммарным результатом всех этих факторов. Если процесс восстановления не требует слишком высокого перенапряжения, то можно ожидать, что повышение температуры вследствие действия второго и третьего факторов улучшит выход по току при восстановлении. Если, с другой стороны, процесс требует высокого катодного потенциала, то повышение температуры, поскольку оно понижает перенапряжение, будет сопровождаться уменьшением выхода по току. Если может иметь место восстановление до какой-нибудь промежуточ- [c.677]

    Очень часто перенос электронов при электровосстановлении органических соединений на электродах с высоким перенапряжением водорода сопровождается быстрыми химическими реакциями, протекающими в приэлектродном пространстве. Наиболее распространены электродные процессы с химическими стадиями, представляющими реакции протонизации, протекающие до или после переноса электронов. Иногда в приэлектродном пространстве протекают реакции димеризации образующихся на электроде первичных продуктов электрохимического акта. В случае восстановления некоторых альдегидов и кетонов в водной среде собственно электрохимической стадии предшествует дегидратация карбонильной группы (точнее, ем-гликольной группы). [c.44]

    В отдельных случаях концентрация окислителя-восстановителя у поверхности электрода зависит от скорости его образования химическим путем. Так, например, концентрация восстанавливающихся на катоде ионов Н+ из слабой кислоты может оказаться зависимой от скорости диссоциации молекул на ионы. Торможение электродной реакции может быть также вызвано замедленностью химической реакции, следующей за стадией перехода. Примером может служить значительное перенапряжение реакции восстановления водорода вследствие замедленности рекомбинации адсорбированных атомов водорода в молекулы. Поляризация, вызванная замедленностью химической реакции, называется перенапряжением химической реакции (т]р). [c.205]


    От двух других стадий электродного процесса зависит появление второй составляющей перенапряжения — химического перенапряжения или поляризации. С энергетической стороны оно объясняется следующим. Из химической кинетики известно, что в реакции вступают лишь активные молекулы, обладающие энергией выше определенного уровня W (энергия активации). [c.11]

    Скорость многостадийного процесса определяется скоростью наиболее медленной — лимитирующей стадии. Возникновение поляризации связано с наибольшим торможением в одной из стадий электродного процесса. Если известна природа лимитирующей стадии, то термин поляризация заменяется термином перенапряжение . Наибольшее замедление процесса в стадии 1 приводит к возникновению диффузионного перенапряжения Т1д. Если лимитирующей является стадия разряда или ионизации, то перенапряжение называется электрохимическим или перенапряжением (электронного) перехода т)э. Наибольшее торможение в стадии 3 сопровождается появлением перенапряжения химической реакции т]р, а в стадии 4 — фазового перенапряжения т]ф. В общем случае электродная поляризация складывается из перенапряжения всех видов, однако при конкретных электродных процессах может доминировать один вид перенапряжения, который и определяет поляризацию в целом. [c.310]

    Перенапряжение при выделении водорода определяется лимитирующей стадией процесса. На большинстве металлов наиболее медленно протекает стадия разряда. Основные положения теории замедленного разряда совпадают с теорией электрохимического перенапряжения. На металлах платиновой группы наиболее медленной стадией является рекомбинация атомов водорода в молекулу. При этом перенапряжение отвечает перенапряжению химической реакции и описывается уравнением  [c.328]

    Перенапряжение перехода возникает тогда, когда наиболее медленной стадией электродного процесса является собственно электрохимическая реакция (разряд, ионизация). Основы теории перенапряжения перехода в 1930—1940 гг. были предложены М. Фольмером, Т. Эрдей-Грузом, А. Н. Фрумкиным и другими в применении к процессу выделения водорода в более поздних работах была дана общая теория этого вида перенапряжения. Теория Фольмера и Эрдей-Гру-за разработана для концентрированных растворов электролитов при отсутствии специфической адсорбции поверхностно-активных веществ на электродах. Она основана на общих положениях химической кинетики, устанавливающих зависимость между скоростью реакции и энергией активации. Однако для электрохимических процессов следует учитывать зависимость энергии активации от потенциала электрода. Рассмотрим теорию перенапряжения перехода в применении к катодной реакции Ох + ге" Red. Скорость этой реакции равна разности скоростей прямой реакции восстановления и обратной — окисления. Скорость каждой из них описывает уравнение [c.505]

    Однако то, что именно замедленная стадия перехода электрона характеризуется экспоненциальной зависимостью тока от перенапряжения, было показано теоретически значительно позднее Батлером (1924 г.), Фольмером и Эрдей-Грузом (1930 г.). Появление экспоненциальной зависимости можно представить себе следующим образом. При протекании реакции с замедленным переходом электрона электрический заряд должен преодолеть разность потенциалов между электродом и раствором, на что необходимо затратить определенную энергию. В соответствии с законами химической кинетики такая энергия необходима для достижения переходного состояния (энергия активации). Для электрохимической реакции переходное состояние локализуется в плотной части двойного слоя. Поскольку плотная часть двойного слоя ограничена поверхностью металла и плоскостью, отстоящей от нее на расстояние радиуса иона, то в одной области плотной части двойного слоя потенциал ускоряет прямую реакцию, а в другой — замедляет обратную реакцию (рис. Б.39). [c.339]

    Выяснение природы перенапряжения при электрохимических процессах представляет определенный теоретический и практический интерес. Электродная поляризация в общем случае складывается из четырех составляющих 11р. 11 . Для оценки природы поляризации необходимо найти вклад, который вносит в ее общую величину каждая составляющая. Поскольку в настоящее время отсутствуют необходимые для этого данные, используется упрощенный подход к решению этого вопроса. Во-первых, определяется лимитирующая стадия. Вид перенапряжения, ей свойственный, относится к электродному процессу в целом. Во-вторых, величина поляризации разделяется только на две части концентрационную, к которой относится перенапряжение диффузии, и активационную, объединяющую все остальные виды перенапряжения. Для определения природы поляризации используются различные методы. К их числу относится метод, основанный на применении вращающегося дискового электрода, метод поляризационных кривых и др. Широкое применение нашел температурно-кинетический метод, предложенный С. В. Горбачевым. Оп основан на изучении зависимости скорости электродных процессов от температуры. Уравнение Аррениуса, связывающее константу скорости k химической реакции с температурой и энергией активации [c.510]

    Долгое время не удавалось экспериментально подтвердить правильность соотношений (62.12) и (62.16). Это можно объяснить, во-первых, тем, что реальная структура поверхности кристалла оказывается гораздо более сложной, чем предполагалось в теории Фольмера и Эрдей-Груза. Так, на кристаллической поверхности электрода имеются ступени атомной высоты s, выступы, или кинки к, реберные вакансии I и дырки h (рис. 169). Во-вторых, поверхность электрода в ходе электроосаждения непрерывно изменяется, а потому меняется истинная плотность тока, а следовательно, и перенапряжение. В результате обычный метод снятия стационарных поляризационных кривых имеет ограниченные возможности. Наконец, на практике стадия образования зародышей не всегда оказывается наиболее медленной. В зависимости от природы металла и условий опыта процесс электрокристаллизации может лимитироваться диффузией реагирующих частиц к поверхности, химическими реакциями в объеме раствора и на поверхности электрода, стадией разряда, а также поверхностной диффузией разрядившегося иона (адатома) и встраиванием его в кристаллическую решетку. Поэтому количественная проверка изложенной теории оказалась возможной лишь после того, как в 50-х го- [c.331]

    Т. е. вблизи равновесного потенциала поляризационная характеристика линейна. При больших анодных перенапряжениях анодный ток достигает предельной величины , которая определяется природой химической реакции и состоянием поверхности электрода и не зависит от скорости размешивания раствора. Если медленная гетерогенная химическая реакция предшествует стадии разряда, то в таких условиях предельный кинетический ток, равный г о, должен наблюдаться на катодной поляризационной кривой, а анодная кривая должна удовлетворять тафелевской зависимости (Vni.97). [c.244]

    Электрохимическая поляризация (перенапряжение). Изменение потенциала, обусловленное замедленностью собственно электрохимических стадий реакций, называется электрохимической поляризацией (перенапряжением). Крупный вклад в разработку теории замедленности электрохимической стадии разряда (теории замедленного разряда) внес советский ученый А. Н. Фрумкин. Замедленность электрохимических стадий объясняется существенной перестройкой структуры реагирующих частиц в ходе реакции. Как и при химической реакции, электрохимические процессы происходят лишь тогда, когда реагирующие частицы обладают энергией, которая больше или равна энергии активации. [c.205]

    Из уравнения (17.146) вытекает, что в общем случае на электрохимическое перенапряжение может накладываться (или даже сделаться преобладающей) концегтрационная поляризация. Для металлических электродов это может быть связано с замедленностью доставки частиц А и отвода частиц В (диффузионное перенапряжение) или с замедленностью каких-либо химических стадий, предшествующих акту переноса заряда, либо следующих за ним (реакционное перенапряжение). Для полупроводниковых электродов помимо этих возможностей появляются их аналоги па стороне полупроводника — замедленность транспортировки электронов или дырок в зону электродной реакции илн от нее (диффузионное перенапряжение) и замедлетюсть генерации пары электрон — дырка (аналог реакционного неренапряжения)  [c.380]

    Перенапряжение реакции вызвано замедлением стадии химической реакции, предшествующей электрохимической стадии или последующей ей. Если электрохимическая стадия представляет собой, например, процесс Ох + ze Red, то предшествующая разряду химическая реакция может быть в общем виде представлена как vA -> Ох, а последующая vRed -> В. Например, при катодном выделении меди из раствора, в котором содержится u( N)2, до разряда идет химическая реакция u( N)2 u N + N", после чего наступает электрохимическая — u N + i" u + N". При выделении водорода за счет разряда ионов НзО образуются атомы водорода, которые затем участвуют в реакции молизации 2Н -> - Н2. [c.509]

    Замедленность гомогенных химических стадий, входящих в суммарное уравнение электродной реакции, также служит причиной отклонения концентраций веществ от их равноЕ есных значений и приводит к необратимому характеру электродного процесса, как и замедленность диффузионных стадий. В этом проявляется сходство механизма возникновения перенапряжения ди )фузии и реакции. Оба вида перенапряжения могут встречаться одновременно, что только усиливает наступающие концентрационные изменения. В таких случаях пользуются термином концентрационной поляризации для вы-ра ження сул1мы т) и т),. [c.161]

    Впервые важная роль химической стадии в электрохимической кинетике была установлена в ходе полярографических исследований. Основы теории полярографических волн с учетом диффузионных и химических ограничений были разработаны чешской школой полярографистов — Брдичкой (Вгс11ска, 1943), Визнером и другими, а также Делагеем с сотрудниками. Впоследствии представления о важной роли химических превращений были перенесены и на другие области электрохимической кинетики. Так, Феттер и Гери-шер (1951) ввели понятие о реакционном перенапряжении, отвечающем тому случаю, когда скорость электродного процесса определяется условиями протекания химической реакции. [c.484]

    Кажущийся катодный коэффициент переноса а может иметь понижен тое значение при некотором нарушении равновесия предшествующей химической реакции. О медленном протекании предшествующей химической стадии при восстановлении комплексов Р(ЗС1 на палладии при больших перенапряжениях катодного процесса свидетельствует уменьшение по линейному закону произведения с увеличением плотности катодного тока / (т — переходное время в неперемешиваемом растворе) [403, вторая ссылка]. [c.192]

    Скорость электродного процесса определяется скоростью наиболее медленной стадии. Наибольшее торможение в стадиях а и б приводит к изменению концентрации реагирующих веществ около электрода и изменению его потенциала. В этом общем случае поляризацию можно назвать концентрационной. Если лимитирующей является только стадия транспортировки, то возникающую в этом случае поляризацию называют диффузионнгам перенапряжением. Еслп наиболее медленно протекает стадия химического превращения, то электродная реакция сопровождается реакционным перенапряжением. Поляризацию, имеющую место в том случае, когда электродный процесс лимитируется скоростью электрохимической реакции (стадия в ), чаще всего называют электрохимическим перенапряжением. Наибольшее торможение в стадии г вызывает фазовое перенапряжение. Поскольку стадии а и в свойственны всем электрохимическим процессам, а б и г — лишь их определенным группам, большее внимание в дальнейшем будет уделено диффузионному и электрохимическому перенапряжению. [c.332]

    Начало выяснения природы процессов, лежащих в основе обнаруженных закономерностей, было положено работами чешской школы полярографистов Брдичкой (1943), Брдичкой и Визнером, Брдичкой и Коутецким (1947) и др., а также Делагеем с сотр. (1952). В этих работах, развитых впоследствии Феттером и Геришером (1952), была показана необходимость учета роли чисто химических превращений в кинетике эл Зктродных процессов и заложены основы теории химического Лх или, как его чаще называют, реакционного т] перенапряжения. Оказалось, что во многих электродных процессах замедленной может оказаться именно химическая реакция, что и приводит к появлению реакционного перенапряжения. Рассмотрим некоторые типичные примеры электродных процессов, в слючаюпи1х в себя стадии. химического превращения. [c.320]

    Если электрохимический акт ограничивает скорость всего электродного процесса, то наблюдающееся смещение потенциала под током называется часто либо перенапряокением замедленного разряда (замедленной ионизации), либо, особенно в последнее время, перенапряжением переноса заряда. Однако сущность собственно электрохимической стадии не сводится только к изменению валентного состояния частиц (акты разряда и ионизации) или только к переносу заряда через границу раздела электрод — электролит. Приобретение (или потеря) частицей электрона ириводит одновременно к изменению ее физико-химического и энергетического состояния. Так, например, в ходе реакции [c.345]

    Расчет величины перенапряжения реакции т]р зависит от того, в предшествующей разряду или последующей ему химической реакции будет наибольшее торможение. При замедлении стадии vRed В зависимость перенапряжения от плотности тока i выражается уравнением [c.509]


Смотреть страницы где упоминается термин Реакция перенапряжение химической стадии: [c.50]    [c.172]    [c.298]    [c.316]    [c.149]    [c.431]    [c.114]    [c.297]    [c.317]    [c.379]    [c.317]    [c.379]    [c.199]    [c.241]    [c.317]    [c.379]   
Теоретическая электрохимия (1981) -- [ c.298 ]




ПОИСК





Смотрите так же термины и статьи:

Перенапряжение

Перенапряжение химическое

Перенапряжение химической реакции



© 2025 chem21.info Реклама на сайте