Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перемешивание, влияние на ход реакции

    Какое влияние оказывает перемешивание на скорость протекания гетерогенной химической реакции а) во всех случаях увеличивает скорость реакции б) в некоторых случаях увеличивает скорость реакции в) не влияет на скорость реакции  [c.105]

    Из сравнения кривых 1 я 2, соответствующих равенствам (11.6) и (П.12) ясно, что для достижения конверсии, равной 95% в реакторе непрерывного действия полного перемешивания, объем аппарата должен быть в 6,3 раза больший, чем объем реактора полного вытеснения или реактора периодического действия полного перемешивания. Для реакций более высокого порядка (кривые 3 ж 4) влияние типа реактора на степень конверсии еще более значительно. Для степени конверсии, равной 95%, объем непрерывно действующего реактора должен быть в 20 раз больше соответствующего реактора полного вытеснения. [c.31]


    В гомогенной газовой и жидкой системе с интенсивным перемешиванием скорость превращения обусловлена скоростью реакции. В следующей части данного раздела книги мы коснемся вопросов, относящихся к превращениям в потоке движущихся реагентов, а также рассмотрим влияние интенсивности перемешивания и неизотермических условий проведения превращений в разных типах реакторов на достигаемый результат процесса. [c.242]

    Измерения в таком же сосуде, но с диспергированием газа в жидкости также показали, что при высокой интенсивности перемешивания скорость абсорбции пропорциональна давлению кислорода. Скорость абсорбции оставалась неизменной при использовании кобальта вместо меди (с той же концентрацией). Это свидетельствовало о независимости скорости абсорбции от скорости химической реакции и о влиянии на нее лишь скорости переноса от поверхности в массу жидкости. По данным Филлипса и Джонсона, значения киа при 600 и 4500 оборотах ъ I мин составляли около 0,044 и 0,88 eк соответственно. [c.256]

    При гидрогенизации эфира жирной кислоты наблюдается отчетливая тенденция к преимущественному гидрированию одной из двойных связей этому способствует применение селективных никелевых катализаторов. Если активный катализатор применяется в виде суспензии в реакторе с перемешиванием, то селективной гидрогенизации благоприятствуют очень низкие концентрации водорода на поверхности катализатора, т.е. низкие давления водорода, малые скорости перемешивания и высокая температура /24/. И наоборот, неселективный процесс легче протекает при низкой температуре, высоком давлении и хорошем перемешивании. Влияние параметров процессов на ход реакции ясно видно на следующих примерах. [c.210]

    Измерение скорости реакции в лабораторном масштабе обычно осуществляется в условиях, исключающих влияние побочных факторов. Как правило, исследования ведутся при постоянных температуре, давлении и интенсивном перемешивании. Полученные таким образом кинетические данные очень полезны для изучения механизма реакции, но, как правило, не касаются количественной оценки скорости процесса. [c.203]

Рис. УП1-21. Влияние обратного перемешивания газа на скорость реакции в реакторе с псевдоожиженным слоем . Рис. УП1-21. <a href="/info/231129">Влияние обратного перемешивания</a> газа на <a href="/info/2823">скорость реакции</a> в реакторе с псевдоожиженным слоем .

    Когда диспергированной фазой служит жидкость (газ), возможна унификация продукта после его отделения от непрерывной фазы и перемешивания. Однако в этом случае, как правило, получается продукт с несколько иным составом, чем при потоке без сегрегации. Можно показать, что влияние сегрегации зависит от порядка реакции [27]. Для реакции, описываемой уравнением [c.330]

    Неравномерное протекание реакции вследствие влияния распределения скоростей в поперечном сечении потока может вызывать нежелательные эффекты. При полимеризации вязких смесей в ламинарном потоке будет наблюдаться более неравномерное распределение полимеров по молекулярной массе, чем в реакторах с хорошим перемешиванием. Это будет отражаться на некоторых физических свойствах продуктов, например изменяется интервал температур размягчения. В случае протекания побочных или последовательных реакций деполимеризации неточность определения времени реакции может вызывать такие серьезные трудности, что окажется необходимым перейти от реакторов выт не-ния к какой-нибудь конструкции реакторов с мешалками. [c.152]

    VI-7. Толуол нитровали смесью водных растворов азотной и серной кислот в реакторе непрерывного действия при 35 °С с такой скоростью перемешивания, что влияние массопередачи можно не учитывать . Скорость реакции, выраженной в [c.199]

    Из уравнения (VI. 171) следует, что влияние продольного перемешивания, как и при массообмене, возрастает с увеличением глубины и скорости протекающего процесса [для массообмена — Г для химических реакций ( >0)— ]. [c.249]

    Типичные условия проведения реакций (хотя они и не во всех случаях оптимальны) описаны в последующих разделах. Так, до сих пор нет ясного понимания того, как влияет структура катализатора на скорость и выход реакции [27, 28], Влияние растворителя, катализатора и перемешивания обсуждалось в гл. 1 и 2, поэтому здесь мы дадим только некоторые практические рекомендации. [c.88]

    Исследование устойчивости адиабатического слоя можно распространить также на случай, при котором в потоке имеется продольное перемешивание. В работе Лин Шин-лина и Амундсона з изучалось влияние продольного перемешивания на профили температур и концентраций в случае одного или нескольких устойчивых состояний. Авторы рассматривали простую необратимую химическую реакцию первого порядка типа А В. [c.285]

    Если истинная Продолжительность реакции выдерживается в оптимальных пределах, то величина объемного соотношения кислота углеводороды не оказывает решающего влияния на процесс. Однако, как было показано в главе III, этот параметр определяет свойства образующейся эмульсии, и при выборе его оптимального значения следует учитывать углеводородный состав перерабатываемого сырья, а также экономичность процесса эмульгирования смесь, содержащая большое количество кислоты, имеет большую вязкость и плотность, вследствие чего требуются большие затраты э нергии на ее перемешивание. От свойств же эмульсии зависят результаты реакции алкилирования. [c.95]

    Уравнения множественных стационарных состояний для трубчатого реактора с осевым и продольным перемешиваниями получены в [49]. В работе [38] для неадиабатического реактора, в котором протекает реакция первого порядка, показано, что в зависимости от 1/Ре, реактор может иметь либо три, либо пять стационарных состояний. Влияние величины числа Ре на множественность (в реакторе отмечено пять стационарных состояний, а =ё 0) исследовано в [49]. [c.286]

    Для каталитических реакций скорость межфазного обмена газом и режим движения газа через непрерывную фазу взаимосвязаны. Если, например, скорость межфазного обмена газом мала и проскок, следовательно, значителен, то влияние перемешивания газа в непрерывной фазе становится несущественным и им можно пренебречь поскольку реакция фактически происходит только в непрерывной фазе. [c.336]

    Сначала рассмотрим более общий случай исключения влияния межфазного массопереноса. Характер температурной зависимости (энергия активации) не может служить в жидкофазных реакциях надежным критерием оценки по ряду причин. Вследствие возможного клеточного диффузионно-контролируемого механизма или ионного характера реакции истинная энергия активации реакции может быть малой. Далее, как указывалось в предыдущем разделе, наблюдаемая температурная зависимость может быть следствием изменения коэффициентов распределения реагентов между фазами. Вблизи критической области такое влияние может быть особенно сильным и сказывается такнлб на соотношении объемов фаз. Наконец, в жидкостях, в отличие от газов, сам коэффициент диффузии зависит от температуры экспоненциально, причем эффективная энергия активации диффузии в вязких жидкостях составляет заметную величину. Поэтому обычно о переходе в кинетическую область судят ио прекращению зависимости скорости реакции от интенсивности перемешивания или барботажа. Здесь, однако, есть опасность, что при больших скоростях перемешивания может наступить автомодельная область, а ири очень интенсивном барботаже измениться гидродинамический режим. В результате объемный коэффициент массопередачи может стать инвариантным к эффекту перемешивания и ввести, таким образом, в заблуждение исследователя. В трехфазных каталитических реакторах этот прием более надежен ири условии неизменности соотношения фаз в потоке. [c.74]


    Как следует из гл. 1, для реакций с наличием двух и более фаз в потоке, т. е. гетерогенных, необходимо изучать кинетику в условиях сильного перемешивания, исключающего влияние на процесс диффузии компонентов реакции между фазами. Это относится и к системам жидкость — жидкость, и к системам жидкость — газ. Однако в аппаратурном отношении здесь имеются некоторые различия, также как и для гетерогенно-каталитических реакций с обоими типами потоков. [c.67]

    Если доля обрыва цепей на поверхности пренебрежимо мала или если поверхность благоприятствует протеканию процесса в нужном направлении (инициирует радикалы, разлагает побочные нестабильные промежуточные продукты и т. п.), то здесь интенсификация теплоотвода и оптимизация реакции достигается максимальным усилением перемешивания и особых проблем не возникает. Иначе обстоит дело при вредном влиянии поверхности за счет обрыва цепей или разложения активных промежуточных продуктов. Тогда направления интенсификации теплообмена и повышения скорости и (или) селективности реакции противоположны. Эту противоположность нельзя обычно устранить каким-либо покрытием поверхности, поскольку, как правило, неактивные в химическом плане поверхности (фосфорные, борные или силикатные эмали) мало теплопроводны. Кроме того, часто вообще не удается подобрать инертное покрытие. В таком случае задачу надо решать расчетом, подбирая решение, оптимальное в химическом или экономическом смысле. Основой такого решения будет математическая модель реактора, представляющая собой систему кинетических уравнений вида (2.5), дополненную уравнениями гибели радикалов на стенке и (или) разложения на стенке кинетических промежуточных продуктов реакции. Без уточнения механизма реакции такую систему с учетом принципа Боденштейна для проточных аппаратов полного смешения (более частый [c.103]

    При исследовании режимов работы ячейки можно, ввиду отмеченной эквивалентности уравнений, использовать все результаты исследования режимов работы изолированного зерна. Поскольку Р < Р и а < а, под влиянием перемешивания в ячейке переход в диффузионный режим наступает при меньших температурах, чем на изолированном зерне. Однако, в силу уравнения (VI.141), максимальный возможный сдвиг критической температуры (в газах при Ке — 10 ) в реакциях с обычными значениями энергии активации может составить лишь несколько градусов. [c.250]

    На рис. 124 представлена зависимость доли прореагировавших паров воды от отношения веса образца кокса к скорости потока газов на входе. Влияние перемешивания для реакции паров воды с коксом оказалось менее существенным, чем для реакции с двуокисью углерода. Этому способствовало также использование более высоких скоростей потока. Величины К2 и Аз[СЛ находили расчетом функции по уравнению (1У-42) и графическим интегрированием. Оказалось, что при умеренных режимах реакции функция и нечувствительна к изг 1енениям константы К в интервале 0,4—0,8, соответствующем области температур от 900 до 1200°. Приняв значение К равным 0,5. [c.237]

    Развитие механосинтеза, особенно на средней и конечных его стадиях, которые оказывают наиболее существенное влияние на структуру и свойства конечных продуктов, определяется свойствами промежуточных структур межполимеров. Например, если мономер наращивает более эластичные блоки, чем исходный полимер, то интенсивность механокрекинга снижается, и это приводит не только к замедлению механосинтеза, но и к полному его прекращению. В этом случае осуществляется просто перемешивание продуктов реакции, пластифицированных остатками мономера, не вошедшего в реакцию. Наоборот, наращивание более жестких блоков может привести к повышению интенсивности процесса, к его самоускорению при сохранении режима механического воз- [c.140]

    Так, если рассмотреть по схеме черного ящика какой-либо органический синтез, проводимый периодически, например реакцию Гриньяра,то, вероятно, к числу контролируемых входов можно будет отнести следующие параметры температуру в реакторе, количества загруженных эфира, магния и бромалкила, влажность эфира, размеры аппарата и мешалки, скорость перемешивания, длительность реакции и др. К числу неконтролируемых входов придется отнести наличие микропримесей в материалах аппаратуры (их трудно проанализировать, вдобавок мы предполагаем, что их влияние мало), интенсивность космических лучей (по-видимому,, их влияние несущественно, хотя ионизирующее действие излучения может немного сказаться), настроение аппаратчика (оно может сильно повлиять, но мы не умеем измерять его количественно), погоду, попадание посторонних примесей из воздуха и бесчисленное множество других факторов. [c.121]

    Количество кислоты определяет величину поверхности раздела кислота - толуол на весовую или объеинув единицу толуола и благодаря разности в плотностях серной кислоты и толуола оказывает влияние на степень перемешивания. Побочной реакцией является сульфирование толуола, протекающее с выделением моля виды на моль сульфокислоты. Выделяющаяся вода резко уменьшает концентрацию кислоты, поэтому общее количество последней отражается на скорости падения активности катализатора. [c.34]

    Описаны реакции алкилирования тетраэтоксисилана в одну стадию путем пропускания газообразного хлористого метила, а также хлористого этила через смесь тетраэтоксисилана и магния при перемешивании. Продуктом реакции является смесь моно- и диалкилалкоксисиланов. Проведение процесса под давлением не оказывает существенного влияния на выход продуктов. [c.42]

    Зависимость от скорости перемешивания. Влияние диффузионных факторов ослабляется по мере ускорения массопереноса путем более интенсивного перемешивания. Этот вывод становится особенно очевидным, если встать на позиции представлений о неперемешиваемом слое (слое Нернста) как о физической реальности, для которой применим первый закон Фика. Из гидродинамики следует, что толщина неперемеши-ваемого слоя уменьшается при увеличении скорости потока жидкости вокруг частицы. Таким образом, зависимость наблюдаемой скорости ферментативной реакции от скорости перемешивания или скорости протока субстрата указывает на существенную роль диффузии в процессе. Увеличение скорости протока субстрата через колоночный реактор и повышение числа оборотов мешалки в реакторе перемешивания должно ослабить диффузионные ограничения. Существенное ускорение перемешивания может, в принципе, перевести реакцию из диффузионной области в кинетическую. [c.105]

    Растворение металла, идущее одновременно с образованием Нг из ионов Н в растворе, представляет собой случай, в котором анодный и катодный процессы протекают на одном и том же электроде. (Эти процессы называются полиэлектродными.) При этом как диффузия, так и химические процессы могут стать лимитирующими. Ранние работы по растворению амальгам натрия [7-6] в кислотах и основаниях указывают на то, что скорость реакции имеет первый порядок по Н" и приблизительно порядок /2 по концентрации натрия. Для кислых растворов эти факты объяснялись тем, что процесс лимитируется диффузией. Однако, как показали более поздние исследования [77—80], скорость растворения металлов в различных кислотах и растворителях пропорциональна концентрации недиссоциированной формы кислоты и относительные константы скорости в различных кислотах хорошо ложатся на прямую Бренстеда. По-видимому, в этом случае лимитирующей стадией является перенос протона от молекулы недиссоциированной кислоты к поверхности металла , причем реакция подвергается специфическому катализу кислотами. При растворении солей, таких, как Na l, в системах с перемешивающим устройством предполагается, что скорость реакции лимитируется диффузией, причем диффузия происходит через пограничный слой насыщенного раствора соли на поверхности кристаллов соли. Хотя подобная картина, по-видимому, является правильной для простых солей, таких, как галогеииды щелочных металлов, в случае солей металлов переменной валентности картина может быть другой. Так, например, безводный СгС1з очень медленно растворяется в воде, при этом скорость реакции не зависит от перемешивания. Было обнаружено, что небольшое количество Сг " в растворе оказывает огромное влияние на скорость реакции. Вероятно, в этом случае осуществляется перенос заряда между частицами Сг - в растворе и Сг в твердой фазе. Эти системы, по-видимому, заслуживают дальнейшего изучения. [c.557]

    Каскад реакторов полного перемешивания, равнозначный по выходу определенному реальному реактору, будем называть заменяющим каскадом (рис. УПЬЗЗ). Расчет реактора можно свести к расчету заменяющего его каскада, если удастся определить число ступеней. Для этого нужно количественно описать отклонения от полного вытеснения в реальном реакторе. Такие отклонения обусловлены 1) неравномерным распределением скорости потока в осевом (продольном) направлении 2) флуктуациями скорости и завихрениями 3) молекулярной диффузией. Это приводит к тому, что продукты реакции перемещаются из конечной части аппарата в направлении к входу, исходные же вещества переносятся в обратном направлении. На конечном участке аппарата они разбавляют смесь пpoдyкtoв и снижают выход реакции. Следовательно, в общем случае указанные эффекты оказывают неблагоприятное влияние на работу реактора. [c.322]

    Возможен прямой экспериментальный подход, при котором изучается влияние всех параметров процесса, например начальных концентраций, растворителей, температуры, давления, скорости теплообмена, перемешивания, объемной скорости и свойств катализатора. При помощи графиков и диаграмм, на которых показано влияние этих переменных, в сочетании с имеющимися уже соотношениями для физических процессов, определяющих характер данной реакции, можно сделать выбор условий работы промышленной установки. Разработка и создание лабораторного и опытного оборудования не могут здесь рассматриваться. Однако можно сделать ссылки на литературу, особенно на серию посвященных имеющимся опытным установкам статей, которые появлялись с 1947 г. в журнале Industrial and Engineering hemistry . Кроме того, в последнее время издан ряд книг, в которых затрагиваются принципиальные и практические вопросы проведения экспериментальных работ - .  [c.340]

    Поскольку а 1, постоянная времени перемешивания Тс фактически соответствует аппарату значительно меньшей емкости, чем второй аппарат (см. рис. Х-5). Таким образом, регулятор значительно ускоряет ответную реакцию системы. Соответствующим сочетанием пропорциональной и дифференциальной систем регулирования можно исключить влияние одной из постоянных времени. Регулирование по производной допускает такм<е использование значительно больших коэффициентов усиления, чем в случае только пропорционального регулирования. [c.132]

    С целью анализа влияния структуры потока в химическом реакторе на его рабочие характеристики (степень превращения и избирательность) сравним работу реактора для проведения некоторых цаиболее раопро С праиенцых типов реакций iB режимах идеального вытеснения и полного перемешивания. [c.244]

    Наибольшая однородность слоя достигается при увеличении скорости 4aaaJ и повышении кинетической энергии струй, поступающих через распределительную решетку реактора однородность слоя снижается при увеличении скорости жидкой фазы наличие твердой фазы затрудняет- перемешивание. Таким образом, гидродинамические и диффузионные факторы оказывают значительное влияние на протекание реакций гидрокрекинга. [c.67]

    Детальный анализ работы в новых условиях показал, что незначительное увеличение скорости реакции обусловливается недостаточной сте1[енью перемешивания, быстрой конденсацией кислотной пыли на стенках реакционной камеры (в результате кругового завихрения этилен-кислотной смеси тялгелые капли серной кислоты под влиянием центробежной силы вылетали из смеси к стенкам цилиндра и на них осаждались) и неудачными соотношениями объема и линейных размеров аппарата. Для сохраиения одинаковой интенсивности распределения кислотной пыли и ее смеси с газом на всем про- [c.30]

    Устойчивость реакторов с полным перемешиванием для гомогенных процессов являлась предметом изучения многих исследователей. Система в этом случае описывается обыкновенными дифференциальными уравнениями первого порядка. В случае гетерогенных каталитических процессов задача сильно усложняется. Модель реактора с неподвижным слоем катализатора рассматривали Лин Шин-лин и Амундсон Анализировался адиабатический реактор, в котором отсутствует радиальный тепло- и массоперенос. Выло принято также, что тепло- и массоперенос в осевом направлении осушествляются только за счет вынужденной конвекции. Скорость потока считалась равномерной по всему сечению реактора, а влияние длины реактора и изменения температуры на скорость потока — пренебрежимо малыми. Тепло- и массообмен происходил на пористой поверхности зерен катализатора. Исследовалась необратимая реакция первого порядка типа А—-В. Более сложные реакции также могут быть рассмотрены с помошью этого метода без введения дополнительных параметров. Полученная система дифференциальных уравнений была решена методом характеристик. [c.262]

    VIII-8), что в его экспериментальном диапазоне зависимость между j i и к, по существу, не зависит от изменения высоты осевшего слоя (к аналогичным выводам пришли также Оркатт с соавт. и Ланкастер ). Это означает, что эффективности катализатора в верхней и нижней частях реактора сопоставимы. Данное заключение примечательно, так как, согласно измерениям, дискретная фаза диспергирована более тонко в основании, чем в верхней части псевдоожиженного слоя со свободно барбо-тирующими пузырями Эти наблюдения качественно объяснимы, если предположить, что уменьшение поверхности пузыря и скорости переноса по высоте слоя сопровождается одновременным понижением скорости реакции за счет падения концентрации реагента (т. е. перемешивание в непрерывной фазе неполное). Следовательно, если, например, скорость реакции была бы лимитирующим фактором в основании слоя, то это положеняе должно было бы еще сохраниться на выходе из него, где скорости реакции и массопередачи были бы меньше и в результате не наблюдалось бы никакого влияния высоты слоя на его характеристику. Иная ситуация может возникнуть при больших расходах газа, когда возможно уменьшение скорости межфазного обмена газом из-за образования очень больших пузырей или при высоких скоростях реакции. [c.367]

    Обычно в аппаратах с механическим перемешиванием можно проворить корректность кинетической схемы. Корректность допущения о характере физических процессов может быть показана на модельных системах. Допущения о характере влияния конструктивных факторов и параметров процесса такя е могут быть изучены на моделях отдельных конструктивных элементов даже в отсутствие реакции. [c.24]

    Исследование реакторов для систем газ—жидкость с целью их эасчета и проектирования ведется в следующих направлениях 10] изучение механизма и скорости процесса массопередачи, осложненного химической реакцией моделирование структуры потоков двухфазной системы оценка влияния продольного перемешивания на эффективность реакторов определение межфазной поверхности, удерживающей способности, перепада давления. Важным вопросом является выбор типа реактора. Сравнение коэффициентов массоотдачи по жидкой фазе для систем газ—жидкость в различных реакторах приведено в табл. 4.1 [10]. [c.83]


Смотреть страницы где упоминается термин Перемешивание, влияние на ход реакции: [c.321]    [c.321]    [c.190]    [c.243]    [c.295]    [c.45]    [c.65]    [c.72]    [c.24]    [c.240]   
Введение в теорию и расчеты химических и нефтехимических реакторов Изд.2 (1976) -- [ c.81 ]

Введение в теорию и расчеты химических и нефтехимических реакторов (1968) -- [ c.97 ]




ПОИСК





Смотрите так же термины и статьи:

Перемешивание, влияние на ход



© 2025 chem21.info Реклама на сайте