Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ЯМР-спектроскопия корреляции

    Статистика показывает, что по точности предлагаемые методы не уступают общепринятым, например, методами фотоэлектронной спектроскопии (ФЭС). Для зависимости (4.7) коэффициент корреляции 0,85 - довольно высокое значение. Из полученных результатов следует, что уравнение распространяется на вещества с ПИ < 9, 045 эВ, т.е. охватывает большинство органических веществ. С применением эффективных ПИ и СЭ был впервые доказан орбитальный контроль процессов карбонизации [12, 13, 19] и растворения нефтяных асфальтенов в органических растворителях [26-28]. Развиваемый в данной работе подход использован для направленного синтеза многокомпонентных систем и сольвентов и изучения сложных органических смесей [29]. [c.94]


    В методе спектроскопии ЯКР, как и в других физических методах исследования, химики всегда стараются провести корреляцию получаемых данных с химической информацией и данными других методов. Данные ЯКР сопоставляются, в частности, с данными ЯМР, мессбауэровскими и ИК спектрами и т. д. Найдены полезные корреляции частот ЯКР некоторых изотопов с константами ионизации рКа карбоновых кислот, ст-параметрами Гаммета и Тафта, индексами реакционной способности и др. [c.109]

    Действительно, существует корреляция между химическими сдвигами 6 в ЯМР спектроскопии и А св в РЭС, что можно пояснить следующим образом. Для ядра А бд определяется разностью констант Дал в стандарте и образце. Поскольку внутренние электронные оболочки практически не меняются от соединения к соединению, при расчете диамагнитного экранирования Дбл их можно не учитывать. Влияние электронов атомов X,-, связанных с А, можно [c.160]

    Другая акустическая величина, предложенная для оценки физико-механических свойств чугуна, — частота fm, соответствующая максимальной амплитуде спектра донного сигнала. Для ее измерения используют широкополосный преобразователь и дефектоскоп-спектроскоп, позволяющий наблюдать спектр донного сигнала. Теоретический анализ показал, что значение связано с коэффициентом рассеяния. На него также влияет полоса пропускания преобразователя. Показана возможность контроля твердости чугуна по величине fm, при этом коэффициент корреляции выше, чем для контроля НВ по скорости и затуханию. Достоинство измерения твердости по величине т также в том, что ее измеряют по первому донному сигналу. Недостатки состоят в зависимости [c.261]

    В пособии изложены основы теории ЯМР, техника эксперимента в ЯМР-спектроскопии, вопросы, связанные с важнейшими понятиями спектроскопии ЯМР химический сдвиг и спин-спиновое взаимодействие, влияние обменных процессов и конформационных переходов молекул на спектры ЯМР, корреляция спектров ПМ1> со строением и реакционной способностью молекул. Акцентируется внимание на новейших достижениях в спектроскопии ЯМР (Фурье-спектроскопия, применение ЛСР и т. д.). [c.2]

    Следующий шаг состоит в установлении корреляции между данными о тепловых колебаниях, полученными в ходе структурного анализа, и аналогичными сведениями, даваемыми ИК спектроскопией. [c.139]

    В работе изучены окислительно-восстановительные свойства угля и сопутствую-щи.х углистых пород. Методом ядерной гамма-резонансной спектроскопии установлено, что в минеральной части угля и углистых пород содержатся соединения "двухвалентного железа. Показана корреляция окислительно-восстановительных потенциалов систем уголь—раствор, углистые породы — раствор с ЭДС гальванического элемента, Библиогр. 5 ил. 1, табл. 4. [c.147]


    Экспериментальный метод определения полных зарядов на атомах в молекуле дает РФ-спектроскопия (см. разд. 5.4). Обнаружено [8], что потенциалы ионизации внутренних оболочек в атомах молекул, образованных легкими элементами (например, углеродом), линейно коррелируют с рассчитанными полными зарядами на атомах. Для комплексов переходных металлов, как следует нз рис. 6.13, корреляция между потенциалами ионизации и формальным состоянием окисления, вообще говоря, плохая. Разброс значений потенциалов ионизации для данного состояния окисления может превышать разность средних значений при переходе от одного состояния окисления к другому. Хотя сам процесс сопоставления с суммарными зарядами на атомах переходных металлов содержит определенную долю произвола, существует общее согласие в том, что формальное состояние окисления не является надежной мерой полного заряда атома. [c.129]

    В гл. 5 был описан метод фотоэлектронной спектроскопии. Согласно теореме Купманса, потенциал ионизации есть орбитальная энергия, взятая с обратным знаком. Таким образом, следует ожидать корреляции между пиками в фотоэлектронных спектрах ароматических молекул и энергиями хюккелевских орбиталей. Действительно, экспериментально найдена хорошая [c.203]

    Двумерная корреляционная спектроскопия ЯМР. Корреляция за счет гомоядерного взаимодействия [c.260]

    Поскольку разл. типы внутр. движений имеют разл. времена корреляции, они м. б. выявлены с помощью измерения зависимостей времен спин-решеточной и спин-спиновой релаксации 7 и Tj от частоты магн. полей и т-ры. Измерения Т2 и обнаружение максимумов скорости спин-решеточной релаксации позволяют отнести наблюдаемые изменения к конкретным типам движений специфич. мол. фрагментов, однозначно указывают на последовательность размораживания разл. типов подвижности. Смещения максимумов Т при изменении Bq дают возможность измерить частоты соответствующих движений и на основании известных теоретич. моделей измерить термодинамич. параметры разл. процессов в изучаемом образце. В простых случаях, если доминирует диполь-диполь-ный механизм релаксации, то из данных релаксационной спектроскопии ЯМР извлекают сведения о межъядерных расстояниях в молекулах жидкостей. [c.519]

    Данный метод спектроскопии применяется для изучения процессов спин-спиновой релаксации и полезен также при исследовании молекулярных движений с временем корреляции от 10 ° до 10-3 с. [c.363]

    Спектроскопия ЯМР является мощным методом получения информации о структуре и динамике воды вблизи гидрофильных поверхностей различной природы [573—580]. Энергетическое возмущение исследуемой системы в спектроскопии ЯМР чрезвычайно мало ( 10 /гТ). Это выгодно отличает данный метод от других и позволяет исследовать образцы, не разрушая их, что особенно важно для диагностики биологических объектов. Чрезвычайно важным моментом является также хорошая динамическая чувствительность ЯМР непосредственно — в спектральном диапазоне 1—10 Гц и опосредованно — вплоть до частот 10 2 Гц. Метод ЯМР позволяет проводить оценки времен корреляции, времен жизни в различных состояниях и времен протонного обмена воды вблизи гидрофильных поверхностей. Уникальной особенностью спектроскопии ЯМР применительно к исследованию структуры граничной воды является возможность экспериментальной оценки ориентационных параметров порядка. Однако несмотря на то что метод ЯМР используется для изучения состояния воды в гидрофильных объектах уже свыше 30 лет, в этой области все еще остаются нерешенными некоторые важные проблемы, что прежде всего связано с неоднозначной интерпретацией получаемых экспериментальных данных. [c.229]

    Результаты исследований явились в значительной степени теоретической базой при разработке в СССР технологических процессов синтеза высокомолекулярных сукцинимидных присадок, алкилфенолов с высокомолекулярными радикалами линейного строения, компонентов поверхностноактивных веществ при жидкофазном окислении высших альфа-олефинов, ненасыщенных жирных кислот по реакции металлирования альфа-олефинов натрийорганическими соединениями, высокочистых полифениловых эфиров, эпоксидов, антиоксидантов синтетических каучуков, высокомолекулярной присадки для стабилизации полиметилсилоксановых жидкостей, применяемых в новой технике. Актуальное научное значение для дальнейшего развития молекулярной спектроскопии и теории строения молекул имеют конформационные исследования низкомолекулярных и высокомолекулярных соединений, спектрально-структурные корреляции по различным классам органических веществ. [c.3]

    В соответствии с проблемой корреляции спектроскопических и физико-химических параметров замещенных фенолов с константами заместителей проведены исследование и корреляционный анализ химических сдвигов 8 (ОН) 133 и констант ионизации рК 213 производных фенола, полученных экспериментально или на основании литературных данных. С целью исключения влияния концентрационной зависимости химических сдвигов ОН-групп и получения сравнимых данных по величинам 8 (ОН) для исследованной серии замещенных фенолов измерения 8 (ОН) проведены в растворах комплексообразующих растворителей — диметилсульфоксида (ДМСО) и гексаметилфосфорамида (ГМФА). Эксперименты показали, что в указанных растворителях в интервале концентраций 5—20% 8 (ОН) не зависит от концентрации. Все измерения проведены при 20°С на частоте 60 Мгц. Константы ионизации рК определялись в воде и метаноле при 25°С методом УФ спектроскопии. При отсутствии чистых образцов фенолов операции очистки проводились методами ректификации, молекулярной перегонки, перекристаллизации и адсорбционно-жидкостной хроматографии. Исследуемые соединения и растворители очищались от следов воды. [c.27]


    Актуальное научное значение имеют конформационные исследования низкомолекулярных и высокомолекулярных соединений, спектрально-струк-турные корреляции по различным классам органических веществ. Исследования, проведенные в области молекулярной спектроскопии, тесно соприкасаются с проблемами биоорганической химии, молекулярной биологии, теоретической и экспериментальной медицины. [c.97]

    К а р п о в О. П., П л и е в Т. Н. Корреляция между химическими сдвигами протонов ОН-групп в спектрах ЯМР и константами ионизации рК фенолов с константами заместителей. Журнал прикладной спектроскопии. 1975, т. 23, № 6, с. 1034. [c.106]

    Каждый исследователь, работающий в области спектроскопии, быстро осваивает эти и другие более специальные корреляции, связанные с его собственными интересами, и поэтому в течение нескольких минут способен сформировать свое мнение о природе неизвестного вещества. (Более полный набор корреляционных таблиц дан в приложениях 1 и 2.) [c.189]

    В следующей главе, посвященной мёссбауэровской спектроскопии, рассмотрена модель парциального градиента поля (ПГЦ) для корреляции градиентов поля на центральном атоме. Она оказывается полезной для установления молекулярных структур на основании данных мёссбауэровской спектроскопии. Эту модель можно также использовать для структурного анализа в случае ЯКР. Поскольку большинство данных, по которым была построена и проверена модель ПГЦ, получено с помощью мёссбауэровской спектроскопии, этот вопрос обсуждается в следующем разделе. [c.279]

    Распределение бром- и иодсодержащих соединений при перегонке нефти может дать информацию о приуроченности их к тем или иным классам нефтяных соединений. Так была обнаружена тесная связь между содержанием асфальтенов и брома [887, 967] эта связь менее выражена для силикагелевых смол [967]. Между содержанием иода и асфальтосмолистых компонентов нефтей корреляции не найдено [967]. На этом основании сделан вывод о том, что иод связан в соединения с углеводородами, а бром — с асфальтосмолистой и лишь в небольшой степени с углеводородной частью нефтей [967]. На основании УФ спектроскопии и качественного химического анализа установлено, что иод входит в состав неароматическжх углеводородов [888]. Однако в модельной реакции иодирование смеси углеводородов раствором К1 протекает преимущественно с образованием иодароматических соединений. Предполагается, что образующиеся в нефти иодаромати-ческие соединения переходят в неароматические через присутствующие в нефти сульфиды [888]. [c.178]

    Наиболее хорошо разработанными системами, в которых органично связаны аспекты моделирования и экспериментальных исследований, являются АСНИ для анализа молекулярных структур [8]. Научной основой разработки таких систем являются работы в области квантовой химии и спектроскопии. Стратегия исследования молекулярных структур новых веществ в АСНИ построена следуюпцтм образом. Из первоначального эксперимента определяется брутто-формула и наличие характерных групп атомов (на основе спектроструктурных корреляций) в исследуемом химическом соединении. Затем но этим данным на ЭВМ производится автоматический синтез вариантов гипотетических молекулярных образований с использованием ряда аксиом о запрещенных сочетаниях атомов (правил валентности). Для синтезированных вариант молекул, в которых встречаются обнаруженные экспериментально характерные группы, на основе квантовохимических моделей производится расчет (моделирование) колебательных спектров гипотетических синтезированных молекул. Сравнением рассчитанных и измеренных спектров выбираются наиболее вероятные структуры. По выбранным структурам после более тщательного моделирования спектров с учетом вариантов пространственного расположения атомов и дополнительного экспериментального исследования уточняется пространственное расположение атомов в молекуле. [c.61]

    Сераорганические соединения входят в состав большинства нефтей. По содержанию и составу сернистые соединения нефти сильно различаются. В нефтях, кроме элементной серы и сероводорода, присутствуют и органические соединения двухвалентной серы меркаптаны, сульфиды, тиофены, соединения типа бензо- и дибензотиофенов. Поэтому проблема технологии нефтехимической переработки серосодержащих нефтяных фракций требует разработки качественно новых экспрессных методов оценки физико-химических свойств фракций и входящих в них компонентов. В частности, таких важнейших характеристик реакционной способности, как потенциал ионизации (ПИ) и сродство к электрону (СЭ), которые определ пот специфику взаимодействия веществ с растворителями, термостойкость и другие свойства [1]. Чтобы перейти к изучению фракций серосодержащих нефтей целесообразно изучить зависимости изменений физико-химических свойств в гомологических рядах индивидуальных соединений, содержащих серу Определенные перспективы в этом направлении открывает электронная абсорбционная спектроскопия. Целью настоящей работы является установление существования подобных зависимостей между ПИ и СЭ в рядах органических соединений серы и логарифмической функцией интегральной силы осциллятора (ИСО). Основой данной работы явились закономерности [2-4], что ПИ и СЭ для я-электронных органических веществ определяются логарифмической функцией интегральной силы осциллятора по абсорбционным электронным спектрам растворов в видимой и УФ области. Аналогичные результаты получены для инертных газов. Обнаружена корреляция логарифмической функции ИСО в вакуумных ультрафиолетовых спектрах, ПИ и СЭ [3]. [c.124]

    Спектроскопия оптического смешения и корреляция фотонов/Под ред. Г. Камминса и Э. Пайка. М. Мир, 1978. 583 с. ил. [c.222]

    Еще более экспрессные методы определения ПА в нефтяных маслах предполагают использование УФ-спектроскопии (Россия, США, Польша) в области 385 или 260—350 нм. Возможен анализ самого масла или его диметилсульфоксидного экстракта. В последнем случае (метод FDA, США) анализ проводят в области 280— 289 нм. Концентрация абсорбированных соединений при этом прямо пропорциональна УФ-поглощению. Между результатами биологических испытаний и методом FDA имеется достаточно высокая корреляция (-77%), особенно в указанной области излучения. В табл. 2.20 представлены сравнительные данные по методу FDA и классификации Американской конференции по промышленным канцерогенам (A GIH). Отсутствие ПА всегда коррелирует с малой интенсивностью поглощения в УФ-области. [c.107]

    Спектроскопия оптического смешения и корреляция фотонов / Пер.с англ. под ред. Г. Камминса и Э.Пайка. — М. Мир, 1978. — 574 с. [c.324]

    Рассмотренные в разделе методы исследования дают ценнейшую информацию о строении, электронных эффектах и передаче взаимного влияния групп в органических, элементорганических, неорганических и координационных соединениях. Как спектроскопия ЯКР, так и мессбауэровская спектроскопия оказались весьма полезными при изучении некоторых биохимических объектов и проблем, показана перспективность их применения в макромоле-кулярной химии. Получено много интересных эмпирических корреляций параметров, определяемых из спектров ЯКР и ЯГР, с другими физико-химическими характеристиками веществ. Оба метода позволяют исследовать структуру и динамику твердых фаз, фазовые переходы, подвижность молекул в кристаллах и многие другие проблемы. [c.131]

    Два тома посвящены Периодической системе Д. И. Менделеева, рассматриваемой как основа химии. Освоение учения о Системе должно послужить мощным двигателем мысли и трудов новых поколений научных работников. Особое внимание во 2-м томе обращено на экспериментальные и теоретические успехи спектроскопии атомов и молекул и в особенности на их энергетику использованы также сведения о радиуаах максимальной радиальной плотности электронных зарядов в атомах в тепременном сопоставлении их и взаимодействии с энергетическими уровнями. В развитие учения о Системе вводятся понятия о кайносимметрии, рассматривается учение о вторичной периодичности, об эффективных ядерных зарядах и о частичном проникновении внешних электронов под внутренние экраны уделяется внимание учению о превентивном появлении х-электронов в больших периодах, о ранних и поздних р-,й-тл /-элементах, об электронной корреляции, об использовании экстравалентных электронных уровней и о реакционной способности веществ. На примерах биогенных элементов отмечается перспективная, характерная для современной науки тенденция к сближению неорганической и органической химии. [c.3]

    Теорема Купманса свидетельствует о том, что канонические хартри-фоковские молекулярные орбитали могут служить в качестве тех элементов, которые не меняются в определенном приближении при переходе от молекулы к ее катиону. В зависимости от орбитальной энергии канонической орбитали получается целый спектр потенциалов ионизации, зарегистрировать которые можно с помощью фотоэлектронной (при / 30 эВ) и рентгеноэлекгронной спектроскопии (при / - 200 - 500 эВ). При этом теорема Купманса, не учитывающая многие эффекты, в частности орбитальные различия молекулы и катиона (так называемую орбитальную релаксацию), специфику межэ-лектронного взаимодействия (электронную корреляцию) и др., дает обычно точность порядка 1 - 2 эВ в фотоэлектронной области и порядка 1 - 5 эВ в рентгеноэлектронной области. [c.291]

    Теперь мы рассмотрим эксперименты, которые включают спиновое эхо, такие, как INEPT, INADEQUATE и R T. Во всех этих примерах эхо используется ие для того, чтобы добавить что-либо новое к экспернменту. Оио устраняет влияние химического сдвига. Есть еще один класс экспериментов, в которых эхо непосредственно определяет получаемый результат. Онн объединены здесь под общим названием J-спектро-СК01ШЯ , подчеркивающим тот факт, что влияние структуры мультиплета на вид окончательного спектра представляет главную особенность этих экспериментов. J-Спектроскопии было уделено большое внимание на раннем этапе развития двумерного ЯМР, н ее теоретические н практические аспекты были весьма подробно проанализированы. Одаако вследствие различных обстоятельств большинство нз этих экспериментов не имеет столь общего применения, как корреляции химических сдвигов, рассмотренные нами в двух предыдущих главах. По этой причине и из-за доступности обширной литературы я не буду излагать этот вопрос детально, а просто представлю короткий обзор основных экспериментов по спиновому эху и некоторых их приложений. [c.368]

    В экспериментальном спектре, поскольку сложно оцифровать Vi достаточно тонко из-за того, что эта координата включает весь диапазон химических сдвигов для протонов-до 10 м, д. Еслн химические сдвиги убрать с этой координаты, что в принципе можно сделать с помощью спинового эха, то только ширина самого широкого мультиплета из тех, которые нужно охарактеризовать, будет определять диапазон частот по Vi, что уже делает возможным достижение высокого разрешения. Таким образом, последовательность нормальной корреляции химических сдвигов модифицируется просто добавлением протонного л-импульса в центре периода эволюции (рис, 10,18), при этом убираются химические сдвиги с координаты Vj. Эксперимент подробно описан в работе [14], Этот эксперимент имеет те же ограничения, что и гомоядерная J-спектроскопия, но характеризуется более низкой чувствительностью из-за того, что детектируется гетероядро, поэтому пользоваться им следует только в самых крайних случаях-при полном перекрываннн сигналов в нормальном J-спектре. На рис. 10.19 показаны результаты. [c.390]

    Информацию о структуре М., состоянии межфазных пленок, межчастичных взаимод. и др. получают по данным светорассеяния, фотон-корреляц. спектроскопии, малоуглового рассеяния рентгеновских лучей и нейтронов, ЭПР, ЯМР и др. [c.86]

    Иногда под М. а. понимают только установление строения хим. соединений. При этом сначала определяют его эмпирич. ф-лу по данным качеств, и количеств, элементного анализа. Эмпирич. ф-лу и мол. массу соединения можно также определить масс-спектрометрически, напр, с помощью масс-спектрометрии высокого разрешения (погрешности измерения масс ионов 10 " -10 атомных едшшц). Спектроскопия в видимой и УФ областях позволяет установить класс (тип) соединения, наличие в его молекуле хромс -форов. С помощью ИК спектроскопии осуществляют функцион. анализ в-в. Большой объем информации о строении хим. соединения дает спектроскопия ЯМР и масс-спектро-метрия. Совместное употребление данных ЯМР, оптических и масс-спектров в подавляющем большинстве случаев позволяет однозначно установить строение хим. соединения. Дополнительно используют рентгеноструктурный анализ, рентгеноэлектронную спектроскопию и др. методы. Автоматизир. системы установления строения орг. в-в включают помимо набора спектральных, хроматографич. и комбинир. приборов также ЭВМ, банки спектральных данных и пакеты программ для ЭВМ, позволяющие обрабатывать полученные спектры, сравнивать их с данными банков, устанавливать и использовать спектрально-структурные корреляции и т. п. [c.120]

    Основу применения спектроскопии протонного магнитного резонанса и в общем ядерного магнитного резонансг (ЯМР) для определения структуры неизвестных веществ составляют эмпирически найденные корреляции между спектральными параметрами, химическим сдвигом и спин-спиновым взаи модействием, с одной стороны, и строением образца — с дру гой. В этом отношении ядерный магнитный момент оказалс5 [c.12]

    Эмпирические корреляции. Уже на начальном этапе развития спектроскопии ЯМР было предложено большое число эмпирических соотношений между химическими сдвигами и молекулярным строением, которые наиболее полезны для анализа спектров С. Некоторые из них можно разумно объяснить на основе концепций, обсуждавшихся в предыдущем разделе, но можно рассматривать их также как чисто эмпирические корреляции, которые более или менее самосогласо-ваны. [c.404]

    В спектроскопии ЯМР строго однокорреляционным, согласно этому определению, является только процесс броуновской вращательной диффузии. Зависимости времен релаксации Т1 и Гг от тс Хг 1Т для данного процесса представлены на рис. 14.2 сплошными линиями. В минимуме Т] (при < оТгЛ 0,616, (йo = 2яvo — резонансная частота) выполняется условие Т 1Т2 1,6. Экспериментально обычно получают зависимости Г] и Гг от -Хс ЦТ, которые схематически представлены на рис. 14.2 пунктирными линиями. Минимум Г1 более пологий, чем для броуновской вращательной диффузии (иногда наблюдаются даже два минимума [597]), и в точке минимума Т выполняется условие Г1/Г2>1. Это свидетельствует о наличии распределения времен корреляции, т. е. о том, что вид временной автокорреляционной функции заметно отличается от экспоненциальной [576]. В гетерогенных системах для воды возможно однородное и неоднородное распределение времен корреляции [596]. Однородным называется распределение, которое связано с внутренней неэкспоненциальностью функции 0 1), что справедливо, на- [c.233]

    Поскольку частоты, используемые в ЭПР-спектроокопии,. приблизительно в 100 раз выше, чем в ЯМР-спектроскопии,. для получения четких спектров времена корреляции (дополнение 5-А) не должны превышать 10 с. Хотя четкие спектры можно получить и для растворов, все-таки, чтобы затормозить движение молекул, образцы замораживают и измерения проводят при очень низких температурах. При исследовании спиновых меток в липидных бислоях ширина и вид линий служат чувствительными критериями характера движения молекул, которое может быть как хаотичным, так и направленным. Для сопоставления формы линий, получен-,ных при различных условиях, с предсказанными на основании определенных теорий уширения линий часто с успехом [c.350]


Смотреть страницы где упоминается термин ЯМР-спектроскопия корреляции: [c.229]    [c.233]    [c.77]    [c.202]    [c.299]    [c.504]    [c.163]    [c.549]    [c.270]    [c.400]    [c.9]   
Аналитическая химия синтетических красителей (1979) -- [ c.219 ]




ПОИСК





Смотрите так же термины и статьи:

Спектроскопия корреляция с данными

Спектроскопия эмпирические корреляции

ЯМР-спектроскопия время корреляции



© 2025 chem21.info Реклама на сайте