Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сульфаты методы анализа

    Различают весовой и объемный химический анализ. Весовой, нли гравиметрический, анализ основан на полном (количественном) выделении какого-либо компонента из анализируемого образца в виде строго определенного вещества и последующем точном взвешивании его. Пусть, например, требуется проанализировать образец нитрата бария на содержание основного вещества. Точную навеску образца растворяют в воде и осаждают ионы бария в виде сульфата бария, добавляя к раствору серную кислоту в избытке. Осадок отфильтровывают, промывают, сушат и взвешивают. По количеству полученного сульфата бария рассчитывают содержание нитрата бария в исходном образце. Весовой анализ дает очень точные результаты, но он очень трудоемок и длителен, поэтому все более вытесняется другими методами анализа. [c.75]


    В основу этого метода анализа положена малая растворимость в воде хлоридов, сульфатов и гидроксидов ряда катионов. [c.133]

    Любой метод анализа использует определенный сигнал, который в данных условиях дают конкретные элементарные объекты. Так, например, при добавлении раствора, содержащего ионы бария, к раствору с сульфат-ионами выпадает осадок. Сигнал в данном случае — появление осадка. При нагревании вещества, содержащего ионы натрия, наблюдается желтое окрашивание пламени. Сигнал — желтый свет, испускаемый атомами натрия, образовавшимися при высокой температуре. [c.11]

    С помощью нефелометрического и турбидиметрического методов анализа можно определять малые содержания многих ионов, которые образуют малорастворимые соединения. Так, сульфат-ионы определяют в виде взвеси сульфата бария хлорид-ионы определяют в виде взвеси хлорида серебра и т. д. [c.347]

    Соединение просушивают при 100°, причем образуется моногидрат. Азот определяют по методу Дюма. Калий и палладий определяют в той же навеске следуюш им путем. Соединение разлагают концентрированной серной кислотой, упаривают до незначительного объема (5—10 мл), обрабатывают холодной водой и палладий осаждают 1-процентным раствором диметилглиоксима в 95-процентном этиловом спирте. Образовавшийся при этом диметилглиоксимат палладия фильтруют с помощью фильтровального тигля с пористым дном, хорошо промывают горячей водой и сушат при 110°. Калий в фильтрате определяют в виде сульфата. Данные анализа K2[Pd( N),l.H20  [c.238]

    Ионообменная хроматография разработана и практически используется для выделения сульфатов при анализе многочисленных природных и промышленных объектов [407]. Наиболее часто мешающие определению сульфатов ионы металлов отделяют пропусканием пробы через колонку, заполненную катионитом Амберлит IR-120 в Н -форме [1071]. Катионообменный метод используют при анализе природных, морских, океанических и сточных вод в зависимости от емкости смолы и минерализации образца регулярно регенерируют смолу промыванием соляной кислотой. [c.57]

    Окислительно-восстановительная реакция, лежащая в основе титриметрического метода анализа ХеОз с помощью сульфата [c.102]

    В производстве формальдегида окислением метанола выполняются анализы водных растворов, содержащих метанол и формальдегид. Для проверки метода анализа проводят эксперименты, в которых исследуют растворы с известным содержанием метанола или формальдегида. Для этого используют следующие реактивы (растворы) метанол (5,00 г/л), формальдегид (5,00 г/л), дихромат калия (3,000-10 моль/л), сульфат железа(II)-аммония (0,2000 моль/л), иод [c.181]


    Косвенные методы, основанные на разрушении окрашенных соединений, применяют в основном для определения галогенид- и сульфат-ионов и некоторых других анионов. Каталитические реакции используют в кинетических методах анализа в сочетании с фотометрическими для определения как катионов, так и анионов. Основными затруднениями при косвенных определениях являются ограниченная селективность и различные побочные процессы. Косвенные методы трудоемки, и, как правило, менее точны. Однако в ряде случаев, особенно когда необходимо отделение определяемого иона осаждением, использование косвенных определений вполне оправдывается. Кроме того, при таких косвенных определениях может быть достигнута более высокая чувствительность. [c.228]

    Анализ сульфидов проводится по полученным из них сульфатов, а анализ аренов — по циклогексанам, полученным гидрированием. Масс-спектрометрический метод часто применяется в комбинации с другими аналитическими методами, в особенности с газо-жидкостной хроматографией, инфракрасной, ультрафиолетовой и ЯМР-спектроскопией. Это дает возможность устанавливать большое число элементов детальной структуры того или иного класса соединений, в том числе порфиринов. [c.76]

    При помощи нефелометрического и турбидиметрического методов анализа можно провести анализ при малых концентрациях компонентов, которые образуют труднорастворимые соединения (сульфаты, галогениды и др.). Для этого можно пользоваться водными и неводными растворами. Однако из формулы (П1,24) видно, что количество частиц и объем их не одинаково влияют на рассеивание света. Очень трудно добиться, чтобы в стандартном и в испытуемом растворах получались частицы одинакового размера. Кроме того, влияет форма поверхности частиц, что не учитывается выражением (П1, 24) в то же время известно, что мелкие кристаллы, например сульфата бария, могут принимать разнообразную форму. Таким образом, трудно получить воспроизводимые результаты. В настоящее время редко применяют нефелометрический анализ, так как разработаны более удобные и точные другие фотометрические методы. [c.94]

    В качестве элемента-индикатора для косвенного определения серы используют также барий [368]. В основу метода анализа природных вод положено определение сульфат-иона по избыточной концентрации бария в пробе после отделения образовавшегося сульфата бария. Предполагается отсутствие в пробе других ионов, осаждающих барий. К 25 мл подкисленной хлороводородной кислотой (1 1) и нагретой до кипения пробы воды, со дер- [c.260]

    Предложенный метод анализа целестина и барита с азотной кислотой устраняет необходимость таких испытаний в осадке возникают в отличие от очень мелких кристаллов сульфатов довольно крупные изотропные кристаллы, благодаря чему оптический контроль здесь чрезвычайно прост и сводится лишь к определению показателя преломления. [c.42]

    Если позволяют обстоятельства, барий следует, подобно стронцию, осаждать и взвешивать в виде сульфата. Свинец, стронций и кальций мешают определению бария вследствие малой растворимости их сульфатов. Хлор, алюминий и железо, если они присутствуют в больших количествах, загрязняют осадок. Применяемые в таких случаях методы анализа приведены на стр. 694. [c.713]

    Простое качественное исследование образца (без хотя бы грубого определения количеств входящих в него компонентов) едва ли имеет ценность. Так, например, если образец сульфата аммония-железа (И) содержит ничтожную примесь мышьяка и примененные методы анализа были достаточно чувствительны, чтобы определить ее, сообщение о том, что анализируемый образец содержит Ре, Ы, 5 и Аз, было бы в высшей степени обманчивым. Даже при качественном анализе следует указывать по крайней мере порядок величины для содержания каждого компонента (например, большое содержание, умеренное, малое или следы). [c.207]

    Мешающие вещества. Определению мешают сульфаты при их содержании 200 мг/л. Пробы с большим содержанием сульфатов перед анализом разбавляют. Белки мешают определению, и их устраняют осаждением с гидроксидом цинка. Так как осадок уносит с собой и часть ПАБ, то нужно применить метод стандартной добавки. [c.358]

    Весовой анализ — один из наиболее давно известных, хорошо изученных методов анализа.С помощью весового анализа установлен химический состав большинства веществ. Весовой анализ является основным методом определения атомных весов элементов. Весовой метод анализа имеет ряд недостатков, из которых главные — большие затраты труда и времени иа выполнение определения, а та1сже трудности при определении малых количеств веществ. В настоящее время в практике количественного анализа весовой метод применяют сравнительно редко и стараются заменить его другими методами. Тем не менее весовой анализ используют для определения таких часто встречающихся компонентов, как, например, двуокись кремния, сульфаты и др. Методом весового анализа нередко устанавливают чистоту исходных препаратов, а также концентрацию растворов, применяемых для других методов количественного анализа. Изучение теории весового анализа очень важно также потому, что эти методы применяются для разделения элементов — не только в аналитической химии, но также в технологии, в частности, при выделении редких металлов, при получении чистых препаратов и др. [c.29]


    Вследствие изоморфизма соединений по ряду РЗЭ вместе с цериевыми элементами возможно соосаждение значительного количества элементов иттриевой подгруппы. Для уменьшения степени соосаждения выделяют двойные сульфаты из очень разбавленных растворов (1—2%). Чаще всего осадитель добавляют до полного выделения из раствора неодима, что контролируется спектральными методами анализа. После отделения осадка, нагревая раствор, выделяют среднюю фракцию лантаноидов иттриевая подгруппа остается в маточном растворе. [c.109]

    Эшка в своем методе предусматривал дополнительное оки-сленке соединений серы, образовавшихся в результате прокаливания топлива со смесью. Для этого после выщелачивания водой прокаленной с топливом смеси Эшка раствор окисляют бромной водой, перекисью водорода, перекисью иатрия и пр. Проведенные ВТИ [Л. 351 работы и многолетний опыт показали, что прн нагреве смеси Эшка с топливом в электрическом муфеле соединения серы в топливе полностью окисляются до сульфатов н окисление раствора после выщелачивания смеси является излишним. Таким образом, отпадает эта дополнительная, а при работе с бромом и неприятная, операция и в последних ГОСТ на Методы анализа твердых топлив она совсем не предусматривается. Можно полагать, что при использовании горелки для нагрева тигля со слмесью Эшка и топливом не будет иметь места полное окисление образующихся сернистых соединений и для перевода их в сульфаты потребуется дополнительно окисление растворов после выщелачивания смеси. [c.130]

    Азот определяют по методу Дюма. Кобальт н калий опреде гяют в той же пробе. Пробу разлагают концентрй рованной серной кислотой, кобальт отделяют от калия осаждением сульфида кобальта, а затем-определяют, кач сульфат. Калий также определяют, как сульфат. Данные анализа КзСо(СЫ)б  [c.220]

    Пероксодисульфаты в качестве примеси обычно содержат перекись водорода. Существует достаточное количество надежных методов анализа этой смеси [1567]. Одну аликвотную часть обрабатывают сульфатом железа(П) и оттитровывают его избыток. Пероксодисульфат определяют в другой аликвотной порции. Раствор делают слабощелочными разлагают перекись водорода в присутствии OSO4 как катализатора. К оставшемуся в растворе пе-роксодисульфату добавляют серную кислоту и избыток сульфата железа(П) и оттитровывают его перманганатометрически. [c.109]

    Разработаны методы анализа пероксомоно-, и пероксодисульфатов и перекиси водорода. Согласно [1515], смесь титруют сульфатом церия, при этом окисляется перекись водорода. Затем к смеси добавляют сульфат ванадила, который восстанавливает кислоту Каро. Избыток сульфата ванадила оттитровывают перманганатом. В другой аликвотной части общее содержание H2SO5, [c.109]

    Химические методы анализа сточных вод описаны в монографии [285], ход анализа сточных вод сульфатно-целлюлозного производства дан в работе 1283]. Определение тиоцианатов в сточхшх водах кинокопировальных фабрик проводят по окраске комплекса с Fe(III) [1]. Сульфаты титруют растворм Ba l2 с индикатором ортаниловым К [370] и нитхромазо [238]. [c.182]

    Методы анализа при контроле производства серной кислоты и фосфорных удобрений см. в [213]. Сульфаты в широком интервале концентраций (0,01—40,0%) в фосфорных удобрениях определяют дифференциальным фототурбидиметрическим методом [362]. Оптическую плотность суспензий Ва304 измеряют при pH < 1 в присутствии глицерина в качестве стабилизатора. [c.206]

    Во многих работах ионообменные процессы были предложены в качестве способа решения химико-аналнтических задач. В самом общем виде в ге-терофаэной системе ионообменный сорбент — раствор можно осуществить абсолютное и относительное концентрирование определяемого компонента. Конечно, эти процессы в ходе аналитического определения являются вспомогательными, но во многих случаях они необходимы, иначе их применение было бы неоправданным иа фоне интенсивно развиваемых разнообразных прямых химических, физико-химических и физических методов современной аналитической химии. При недостаточном пределе обнаружения существующих или доступных в конкретной ситуации методов анализа прибегают к абсолютному концентрированию, например, путем упаривания, экстракции, осаждения. В ионообменном методе абсолютное концентрирование проводят поглошением определяемого элемента ионообменным сорбентом и регенерацией последнего малым объемом специально подобранного реагента (элюента). При недостаточной селективности существующих или доступных методов анализа прибегают к относительному концентрированию — отделению определяемого элемента от мешающих примесей. При ионообменном отделении мешающих элементов, далеких по ионообменным свойствам от определяемого компонента, относительное концентрирование выполняют простым пропусканием анализируемого раствора через слой (колонку) ионита в так называемых динамических проточных условиях (напрнмер, поглощение щелочноземельных металлов катионитом при титриметрическом определении сульфатов). Наконец, при отделении мешающих элементов, близких по свойствам к определяемому элементу (например, смесн щелочных, щелочноземельных, редкоземельных элементов, галогенов и пр.), относительное концентрирование осуществляют методом ионообменной хроматографии, т. е. методом разделения сме- [c.5]

    Описаны методы определения кальция в антимониде алюминия с концентрированием примесей на ионите Дауэкс-50WX8 [606], а также метод анализа окиси алюминия различных модификаций [568]. При анализе чистого металлического бария основу отделяют в виде сульфата. Чувствительность определения кальция составляет 10 —10 % [248]. Описано определение кальция в смеси карбонатов ш,елочноземельных металлов [155]. [c.118]

    Количественный и качественный элементный анализ. Методы анализа органических соединений были созданы в начале XIX в., но их усовершенствование продолжается до иаших дней. В основе методов анализа лежит полное расщепление органического вещества в результате окисления или другим путем и определение химических элементов известными методами. Углерод определяют в виде СО2, водород — в виде Н2О, азот — измерением объема Мп или определением МНз или ЫаСЙ (в зависимости от вида расш.епле-ния), галогены — в виде галогенид-ионов, серу — в виде сульфат-или сульфид-иоиа, фосфор — в виде фосфат-пона и т. д. [c.19]

    В книгу внесены потенциометрические методы анализа фенолятов, пиридиновых оснований, сульфата аммония. Включены новые фотоколориметри ч ё с к и е методы определения тиофена и сероуглерода в бензоле. Дан примерный метод исследования состава бензольных углеводородов и определения сероуглерода с помощью хроматографии. Разработанные за последнее время методы и приборы автоматического определения влажности шихты, каменноугольной смолы, сульфата аммония в книге не освещены детально ввиду отсутствия серийного производства приборов. В настоящее время конструкторское бюро автоматики Гипрококса проводит окончательную их разработку поэтому в соответствующих разделах книги изложены только принципы, на которых основано автоматическое определение влаги, и дана ссылка на работу Гипрококса. То же относится и к автоматическому методу определения остаточных бензольных углеводородов в коксовом газе. [c.7]

    В последнее время широко используются спектральные методы анализа анионных ПАВ. ИК-спектроскопия была признана эффективной для исследования анионных ПАВ в общем [8,9,10], и алкилбензолсульфонатов в частности [43]. Обычно для характеристики используются следующие полосы поглощения 1100-1250 см-1 для С-О-С, Ф-О-С и С-ОН 1680-1720 см для карбоновых кислот 1550-1650 см-1 для солей карбоновых кислот 1213-1245 см-1 и 1010-1040 см-1 для сульфатов и 1335-1375и 1165-1195см-1 для сульфонатов. [c.129]

    Изложены результаты работ сотрудников ГЕОХИ АН СССР за 1982—1985 гг. по созданию методик анализа природных и сточных вод. Подробно описаны исследования по усовершенствованию и созданию методик атомно-абсорбционного и атомно-эмиссионного определения тяжелых металлов, в том числе с сорбционным и экстракционным концентрированием фотометрическое определение тяжелых металлов и сульфатов ионометрическое и вольтамперометрическое определение тяжелых металлов, аммония, сульфидов и галогенидов проточно-инжекдионный метод анализа природных вод и атмосферных осадков. Описано также определение минеральных компонентов сточных вод методом тонкослойной хроматографии, ряда нормируемых органических соединений — методами газовой, жидкостной и ионной хроматографии, а также методами ИК-спектроскопии и лазерной флуориметрии. [c.2]

    Основные научные работы посвящены химии комплексных соединений, разработке методов анализа благородных металлов и контроля их производства. Исследовал комплексные аммиачные и аминовые хлороплатиннты серебра и цинка, сульфаты иридия, гидролиз соединений платиновых металлов. Разработал промыщленный метод получения иридия. Предложил методы анализа платинусодержащих шламов и полупродуктов аффинажа благородных металлов. [c.414]

    В весовых методах анализа фактором пересчета называется десятичная дробь, выражаюш ая отношение массы определяемого компонента к эквивалентному весу некоторого другого вещества. В большинстве обычных анализов вряд ли имеются основания для применения факторов, рассчитанных с точностью, превышающей 1 на 2000. В некоторых руководствах, например, фактор для пересчета окиси железа на железо (Ре = — 55,847) дается в виде 0,699436, в других руководствах 0,6994. Применение первого фактора пересчета означало бы точность 1 на 699436, что бессмысленно применешЕе второго фактора предполагает точность 1 на 6994, такая точность возможна, хотя и трудно достижима в анализе. В действительности очеш. мало весовых определений железа пострадало бы при применении фак гора 0,7. Точно так же фактор для пересчета сульфата бария (Ва = 137,34 8 = 32,064 Н = 1,00797) на серную кислоту иногда дается в виде 0,42017, чаще в виде 0,4202. Но если не применяются совершенно исключительные меры для получения особенно точных результатов, аналитгЕк имеет очень мало оснований применять более точный фактор, чем 0,42. Подобным же образом редко оправдывается применение фактора 0,7403 вместо 0,74 для пересчета окиси циркония на цирконий (2г == 91,22) или 0,7930 вместо 0,793 для пересчета окиси вольфрама па вольфрам (W 183,85). Наконец, фактор для пересчета хлорида серебра (Ag =107,868, С1 =35,453, Н = 1,00797) на соляную кислоту следует принимать равным 0,2544, а не 0,254 или 0,25441 или 0,254405, так как точность определения здесь выше, чем 1 на 600, но не выше, чем 1 на 25 ООО. [c.30]

    В приводимых ниже методах анализа и разделения предполагается, если нет других указаний, что платиновые металлы и золото находятся в виде хлоридов или, точнее, в виде хлорокислот.. Платина, например, в растворах образует хлоре платиновую кислоту HaPt lg и в реакциях ведет себя как часть комплексного аниона. При анализе металлов платиновой группы и золота исходные растворы чаще всего содержат именно эти соединения. Поэтому в основе методов разделения обычно лежат реакции, свойственные этим комплексным анионам или ионам, образующимся в результате разложения таких комплексов. В отдельных случаях при анализе используются также и другие соединения этих металлов. Так, например, при отделении рутения дистилляцией или при отделении родия от иридия восстановлением солями титана (III) целесообразнее оперировать с растворами, в которых эти металлы находятся в виде сульфатов, а для успешного отделения многих неблагородных металлов от платиновой группы гидролитическим осаждением прибегают к предварительному переведению платиновых металлов в комплексные нитриты. [c.406]

    Ниже приводятся три метода анализа. Первый из них предназначен для определения сульфат-ионов в растворах, содержащих только серную кислоту, и для точных анализов растворов, не содержащих других веществ, кроме сульфатов и хлоридов щелочных металлов. При точных анализах серной кислоты и во всех случаях, когда в растворах находятся соли щелочных металлов, необходимо вводить поправки, согласно приведенному ниже методу. Когда не предполагается вводить поправки, анализ растворов, содержащих умеренные количества сульфат-ионов в присутствии солей щелочных металлов или аммонийных солей, лучше проводить методом описанным на стр. 802, так как происходящие при этом потери возмещаются окклюзией хлорида бария. Метод, приведенный на стр. 803, предназначается в первую очередь для определения больших количеств сульфат-ионов в растворах, содержащих значительные количества железа (как, например, при анализе пирита) и умеренные количества другйх элементов, например алюминия, цинка или кальция. [c.800]

    Все металлы группы платины образуют комплексные соединения с серной кислотой. Этот класс соединений, а также химическое поведение платиновых металлов в сернокислых растворах изучены мало, между тем в анализе платиновых металлов широко используются сернокислые растворы. Комплексные сульфаты являются менее устойчивыми комплексными соединениями, чем комплексные хлориды, поэтому в их растворах могут осуществляться реакции, не протекающие в растворах соляной кислоты. Однако очень часто к сернокислым растворам неприменимы известные для хлоридов методы анализа и разделения платиновых металлов. Это объясняется тем, что комплексные сульфаты легко гидролизуются и существуют в растворах главным образом в виде аквогищюкбосульфатов сложного многоядерного строения. [c.47]

    Если концентрация соли в анализируемом растворе очень мала, то концентрация анионов в вытекающем растворе будет так же мала, и необходимо иметь надежный метод ее оиределения. Дюкре и Ратуй [23 [ установили, что сульфат-ионы нри концентрации ialO М могут быть определены после их обмена на эквивалентное количество ионов тиоцианата. Значительный интерес представляет также обмен меченых анионов (радиоактивных изотопов). Во всех случаях применения анионооблгенных методов рекомендуется проводить предварительные опыты с известными количествами определяемых анионов. Таким путем решается вопрос о пригодности выбранного ионита для данного анализа. Малые количества слабокислотных или слабоосновных групп в ионите, безвредные при другрхх методах анализа, могут явиться серьезным препятствием к выполнению микрохимических определений. [c.239]

    Фтор является чрезвычайно энергичным окислителем и может превратить водные растворы сульфатов, карбонатов, боратов и ( зосфатов в растворы соответствующих пероксосоединений, причем сам фтор восстанавливается до фтористого водорода. При взаимодействии фтора с одной водой образуется небольшое количество перекиси водорода и фтористого водорода, а также различные другие окислители, например кислород, РзО и, возможно, озоп. Природа этой реакции очень мало известна ввиду недостаточной надежности методов анализа продуктов. В одном опыте Фихтер и Владергрен 1179] пропускали фтор в 50 мл воды в платиновой чашке с наружным ледяным охлаждением. Максимальная концентрация перекиси водорода 0,2% была обнаружена через 20 мин., после чего концентрация падала во времени. Эти авторы приписали исчезновение перекиси реакции ее с озоном, поскольку после первых 30 мин. ощущался запах озоиа и, кроме того, в результате пропускания фтора в водный раствор едкого кали при—20° получался продукт, свойства которого были аналогичны свойствам озоната калия. Однако не менее вероятно, что перекись водорода разлагалась за счет реакции с другими присутствующими в растворе веществами. Хюккель [180] сообщил, что при реакции фтора с водой или льдом образуется РоО, перекись водорода, фтористый водород и кислород, но, как максимум, лишь следы озона. [c.82]


Смотреть страницы где упоминается термин Сульфаты методы анализа: [c.104]    [c.169]    [c.292]    [c.77]    [c.96]    [c.34]    [c.77]    [c.96]    [c.29]    [c.340]    [c.192]   
Справочник по основной химической промышленности Издание 2 Часть1 (0) -- [ c.299 ]




ПОИСК





Смотрите так же термины и статьи:

Методы анализа природных сульфатов

Методы анализа природных сульфатов г фосфоритов и апатитов

Сульфат натрия метод анализа



© 2024 chem21.info Реклама на сайте