Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизмы реакций радикального замещения

    Рассмотрим несколько подробнее галогенирование толуола. В этом случае возникает вопрос куда направится, например, хлор при действии на толуол — в ядро или в боковую цепь В принципе, в обоих местах водород способен замещаться на галоген. Создавая условия, способствующие протеканию реакции по определенному механизму, можно направить замещение в нужном направлении. Метильная группа толуола — это остаток молекулы метана, остаток алкана. Известно, что замещение водорода на хлор в ряду алканов протекает по радикальному цепному механизму. Для осуществления такого процесса надо создать радикалы хлора (свободные атомы хлора) и тем самым инициировать цепной процесс. Действительно, при нагревании и в особенности на свету идет постепенное замещение атомов водорода боковой цепи толуола на хлор  [c.264]


    Механизм этой реакции радикального замещения у насыщенного атома углерода (как и реакции сульфоокисления) представляется следующей схемой  [c.88]

    Радикальный и ионный механизмы реакции галогенирования. Нуклеофильное замещение при насыщенном атоме углерода. Механизмы 5д,1 и 5д,2. Зависимость механизма реакции от строения исходных веществ и условий реакции. Электрофильное замещение в ароматическом ядре (5 ). Галогенирование ароматических соединений. Механизм реакции, я- и о-Комплексы. [c.76]

    Для насыщенных углеводородов характерны реакции радикального замещения 5/ , ненасыщенных — электрофильного присоединения Ае, ароматических — электрофильного замещения 5е. Эти же реакции часто свойственны производным углеводородов, т. е. соединениям других классов, содержащим углеводородные фрагменты. Поэтому в настоящей главе рассмотрены имеющие общий механизм однотипные реакции как самих углеводородов, так и их производных. [c.117]

    ОБЩИЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМЕ РЕАКЦИЙ РАДИКАЛЬНОГО ЗАМЕЩЕНИЯ [c.151]

    Показанные схемы механизмов, несмотря на их крайнюю упрощенность, позволяют, тем не менее, четко сформулировать условия, которые должны соблюдаться, если мы намерены получать при бромировании толуола избирательно либо бензилбромид (7), либо л-бромтолуол (8). В первом случае реакцию надо проводить при облучении, и реагенты не должны содержать примесей, способных вызвать образование бром-катиона (например, нельзя использовать без очистки толуол, хранившийся в железных бочках и содержащий следы ржавчины). Что касается ионного бромирования, приводящего к и-броотолуолу (8), то его лучше проводить в темноте, иначе почти неизбежно побочное образование продукта радикального замещения, бснзилбромида (7). [c.74]

    Гомологи бензола (например, толуол) могут вступать в реакции радикального замещения, но при этом замещение протекает в боковой цепи, т. е. в алкильном радикале. На свету при нагревании (в газовой фазе) по 5д-механизму происходит замещение водородных атомов на хлор  [c.351]

    Большинство изученных реакций радикального замещения в ароматическом ряду относится к замещению ароматического водорода или подвижного водорода некоторых функциональных групп (например, аминогрупп). Значительно меньше пока изучено радикальное замещение имеющихся в ароматическом ядре заместителей. К такого рода процессам относится обнаруженное Н. Н. Ворожцовым-мл. и Г. Г. Якобсоном с сотр. [592] замещение нитрогрупп хлором в 2,4-ди-нитрофторбензоле при хлорировании на радикальный механизм реакции указывает резко ускоряющее действие УФ-облучения. [c.409]


    В промышленности нитросоединения получают главным образом на основе парафиновых и ароматических углеводородов. Реакции нитрования насыщенных углеводородов протекают по радикальному и радикально-цепному механизмам, а введение нитрогруппы в ароматическое кольцо, как правило, происходит по ионному механизму путем электрофильного замещения атома водорода. [c.462]

    По аналогии с гетеролитическими процессами для реакций радикального замещения в алифатическом ряду возможны два механизма мономолекулярный и бимолекулярный. Поскольку в этих реакциях обычно наблюдается рацемизация асимметрического центра, то предпочтение отдается следующему механизму  [c.268]

    Механизм этих реакций — либо цепное радикальное замещение (аутоокисление). либо согласованное еновое [c.111]

    Прямым доказательством того, что в реакциях радикального замещения происходит атака с тыла, может быть открытие радикального замещения по асимметрическому атому углерода. Однако косвенные доказательства этого механизма можно получить, используя критерии скорости реакции. Скорость реакции чрезвычайно чувствительна к размеру R-группы, так как, атакуя, должен оказывать давление на R, для того чтобы приблизиться к связи С—X с противоположной стороны  [c.144]

    Обсуждение ион-радикального механизма реакций нуклеофильного замещения см. в. [26, 1976, т. 21, с. 256]. [c.406]

    У. Укажите механизм реакций замещения при взаимодействии тимола с СНдСОСЙ 1) без катализатора, 2) в присутствии АбСгд. а. Замещение радикальное б. Замещение нуклеофильное в. Замещение электрофильное [c.101]

    Реакции такого рода можно рассматривать как реакции радикального замещения. Аналогичные реакции возможны и для алкильных радикалов. Изучение этих реакций осложняется тем, что наряду с основным продуктом образуется много побочных соединений. Только в последние годы, с развитием хроматографических и спектроскопических методов, исследования дали возможность достаточно подробно изучить их механизм. Наибольшее количество [c.485]

    Галоиды могут вступать в реакции замещения и присоединения по ионному или радикальному механизму, что зависит от природы реагентов и условий реакции. Прямое замещение в алканах и цикло-алканах, присоединение к алкенам и ароматическим углеводородам может протекать по радикальному механизму, а замещение в ароматических углеводородах и присоединение к олефинам в присутствии ионных катализаторов (или в полярных средах) — через ионный. [c.266]

    В отличие от рассмотренного в гл. 5 галогенирования в ароматическое кольцо, которое идет по механизму электрофильного ароматического замещения, галогенирование в алкильные группы — реакция радикальная. Активным реагентом > этой - реакции является [c.231]

    Реакции замещения могут протекать не только по ионному (ге-теролитическому) механизму, который был описан выше, но и по радикальному механизму. При радикальном, или гомолитическом разрыве связи каждая из образовавшихся частиц получает по одному электрону, гомолитическая (радикальная) диссоциация молекулы всегда приводит к нейтральным веществам, содержащим один неспаренный электрон. Образовавшиеся радикалы могут атаковать устойчивые молекулы, при этом образуются новые молекулы и новые радикалы. Реакция радикального замещения может быть изображена следующим образом  [c.23]

    Химические свойства ароматических соединений. Реакции присоединения и окислеши. Реакции электрофильного замещения в ароматическом раду. Механизм электрофильного замещения. Влияние заместителей на ориентацию в бензольном кольце и реакционную способность. Цу клеофильное и свободно-радикальное замещение в ароматическом кольце. [c.190]

    При проведении реакции в инертной среде имеются все основания считать, что процесс происходит по свободнорадикальному механизму с первоначальным гомолитическим расщеплением связи S-—S (уравнение 162) [142]. После этого может происходить рекомбинация, сопровождаемая уходом из радикальной клетки некоторой части радикалов АгЗОг-, из которых образуются более окисленные продукты (уравнения 163, 164), а также реакции радикального замещения (уравнения 165, 166). Аналогичные реакции происходят при облучении [132]. [c.468]

    При реакциях с галогенид-анионами как нуклеофилами замещаемыми группами служат атом другого галогена, нитрогруппа, гидроксигруппа и диазониевая группа, замещение которой позволяет перейти от любого диазотируемого амина к галогенпро-изводному. Механизмы реакций нуклеофильного замещения при действии галогенид-ионов весьма разнообразны. Они могут протекать не только по типу 5ыАг через элементарную стадию образования а-комплекса, но при замещении диазониевой группы и через стадию образования арил-катиона (5н1) или радикальных частиц. [c.394]


    Многие физические и химические свойства обычных фенолов определяются возможностью сопряжения л-электронов ароматической системы связей с р-электронами атома кислорода гидроксильной группы, что зависит, главным образом, от взаимного расположения в пространстве бензольного кольца и гидроксильной группы . К таким свойствам фенолов относятся их повыщен-ная кислотность по сравнению с алифатическими спиртами, соответствующее положение сигнала протона гидроксильной группы в ЯМР-спектрах, склонность к участию в радикальных процессах, особенности механизма реакций электрофильного замещения и др. Очевидно, наиболее полно эти свойства реализуются в такой структуре фенола, в которой гидроксильная группа (связь С—О) копланарна с ароматическим кольцом. Отклонение гидроксильной группы от плоскости кольца будет приводить к уменьшению сопряжения неподеленной пары электронов атома кислорода с я-элек-тронами ароматического кольца и, следовательно, приближать свойства фенола, с одной стороны, к свойствам бензола, а с другой,— к свойствам алифатических спиртов. Возможность подобного отклонения гидроксильной группы наиболее вероятна у пространственно-затрудненных фенолов, содержащих третичные алкильные группы в орто-положениях, так как именно эти группы [c.9]

    Для этой реакции постулирован также другой промежуточный комплекс [ я-С5Н5)2ре+—ЫгАг] [326]. Приведенные примеры показывают, что нет существенных различий в механизмах реакций электрофильного замещения в ферроцене и радикального замещения в феррицении. [c.189]

    Полученные результаты позволяют сделать следующий вывод. Механизм реакции диспропорционирования крайне сложен. С одной стороны, это — электрофильное замещение, гете-ролитическая реакция, катализируемая такими сокатализатора-ми, как вода и бромид водорода, и протекающая ч )ез образование л-комплекса по механизму 5е2. С другой стороны, это — реакция, в которой в присутствии кислорода происходит перенос электрона и образуются радикалы, превращение которых в дальнейшем приводит к появлению продуктов гетеролитическо-го процесса. Очевидно, это тот случай, когда параллельно и независимо протекают два процесса по ион-карбониевому и радикальному, механизмам, причем радикальный ингибируется кислородом [161]. По-видимому, стадии образования а-комплекса предшествует одноэлектронный перенос. Этот вывод косвенно подтверждают данные по превращению дифенилалканов [162]. [c.85]

    Радикальная атака обычно происходит по той связи, разрыв которой будет способствовать наибольшей делокалнзации песпа-ренного электрона, поэтому существует определенная корреляция между энергией активации реакции замещения п степенью делокализации электрона. Многие реакции радикального замещения осуществляются но цепному механизму. [c.68]

    Введение галогенов с помощью реакций нуклеофильного замещения осуществляется при действии галогеноводородных кислот, их солей со щелочными и переходными (медь и др.) металлами, солей комплексов галогеноводородов с кислотами Льюиса (НаВр4 и др.), галогенангидридов неорганических кислот (Р0С1з, ЗОСЬ) и т. д. Подвергаться замещению могут атомы другого галогена, нитрогруппа, гидроксильная и диазониевая группы замещение последней позволяет перейти от любого диазотируемого амина к галогенпроизводному. Механизмы реакций нуклеофильного замещения при действии галогенид-анионов весьма разнообразны. Они могут протекать не только по типу SNAг через элементарную стадию образования а-комплекса, но, при замещении диазониевой группы, также через стадию образования арил-катиона (5м1) или радикальных частиц. [c.327]

    В гл. 4 рассматривался процесс передачи цепи, усложняющий свободно-радикальную полимеризацию, поскольку реакция радикального замещения иклипивается, как известно, в процесс последовательного присоединения по двойным связям. В этой главе автор возвращается к рассмотрению класса реакций, в которых замещение является доминирующим процессом и реагенты присоединяются но двойным связям, следуя ценному механизму [c.189]

    Реакции отрыва водорода от органических молекул стабильными радикалами являются удобными моделями для изучения механизма реакций свободнорадикального замещения iJJ2I Протонная или радикальная подвижность доноров водорода во многом определяется условиями среды и активностью акцептора -стабильного радикала. Так, для реакций стабильных радикалов с различными донорами юдорода (разрыв 0-Н, С-Н и У-В. связей) предлагается как радикальный, так и ионный механизм ре-акции . [c.402]

    Подавляющее большинство органических реакций является реакциями замещения у углеродного атома. По основным особенностям механизма их протекания они подразделяются на нуклеофильные (сокращенное обозначение Sjv), электрофил ьные (Se) и радикальные (Sr). Справа цифрой обычно показывают молекулярность реакции (IV 2 доп. 3). Например, обозначение Sn2 соответствует бимолекулярной реакции нуклеофильного замещения. [c.546]

    По механизму реакцги между галогенами и алканами относятся к числу радикальных реакций замещения. Рассмотрим механизм реакции между метаном и хлором. Чтобы началась реакция, молекулу хлора надо действием теплоты или света расщепить на атомы  [c.235]

    Если принять вместе с указанными авторами, что тип и механизм реакции сульфирования диеновых углеводородов имеет скрытно-ионный, а не радикальный характер и близок, следовательно, к реакциям замещения у бензольных углеводородов, то имеются все основания распространить этот взгляд на фуран и другие пятичленные гетероциклы. В таком случае получается непрерывный ряд от диеновых углеводоров через пятичленный гетероцикл к бензолу. Большая легкость подобных реакций у диенов дает все основания принять за тип именно их, как более простую систему, а не бензол, и рассматривать реакции замещения у бензола, как частный случай винильного замещения. Что касается пятичленных гетероциклов, то А. П. Терентьев и А. В. Домбровский (115) приходят к следующему выводу Нам представляется более правильным при описании общих свойств и реакций таких гетероциклических соединений, как фуран, тиофен, пиррол, индол, сравнивать их не с бензолом ( ароматический характер ), а с дивинилом ( винильный характер ). Этот вывод согласуется и с другими свойствами фурановых веществ, часть которых рассмотрена выше таким образом устраняется путаница, существовавшая ранее в определении характера фурана, проистекавшая из сопоставления реакции замещения у него с бензольными, а не винильными соединениями. [c.16]

    В этой главе рассматриваются реакции, с помощью которых вводя или обменивают заместители в ароматических кольцах. На первом месг среди них стоят реакции электрофильиого замещения в ароматической ядре, но существуют также важные реакции, которые протекают ш механизму нуклеофильного или радикального замещения. Обсуждень примеры синтетически важных реакций каждого типа. Реакции электро фильного замещения в ароматических соединениях изучены очень по дробно и с точки зрения механизма реакцин, влияния структуры н реакционную способность эти исследования описаны в гл. 9 ки. 1. В дан ной главе внимание обращено ыа синтетические аспекты электрофиль ыого замещения в аренах. [c.228]

    Как видно, температурный интервал интенсивного распада полиизобутилена независимо от молекулярной массы находрпся намного выше значения предельной температуры полимеризации изобутилена, что обусловлено распадом ПИБ по свободно-радикальному, а не карбкатионному механизму. Выход и распределение низкомолекулярных продуктов свободнорадикальной реакции распада ПИБ определяют две характерные реакции деградация макромолекул по свободно-радикальному механизму и радикальные реакции замещения (передача цепи на полимер), что приводит в основном к образованию углеводородов изомерного строения (табл. 5.8) от С4 до С30 [52]. В этом случае понятие селективности процесса теряет смысл. [c.237]

    Катализируемое медью(1) замещение галогена в ароматическом ряду анионами, включая другие атомы галогенов, протекает гладко в ДМФА, ДМСО и N-метилпирролидоне при ПО—180° [151 ] и часто с почти количественными выходами. Механизм реакции может быть свободно-радикальным и, несомненно, не сводится просто к механизму 5jvAr. [c.39]

    Участие радикалов в реакциях ароматического замещения было обнаружено впервые в 1934 г. в классической работе Грива и Хея. С тех пор постоянно исследовались и уточнялись детали механизма и границы синтетического применения этой реакции. Реакция имеет широкие пределы, арильные и многие другие типы радикалов реагируют с ароматическими и гетероароматическими соединениями [34] по общему механизму, представленному в уравнениях (25) — (28). Хорошо известно также внутримолекулярное арилирование [35]. Большая часть работ по изучению механизма реакции была выполнена с арильными радикалами, генерированными из диароилпероксидов. Стадия присоединения, приводящая к образованию радикала (32) [уравнение (25)], является лимитирующей стадией для фенильного радикала эта стадия экзотермична ( к75 кДж-моль ) и при обычных условиях, по-видимому, необратима. Образующийся резонансно стабилизованный циклогекса-диенильный радикал (32) не реагирует с субстратом и не отщепляет спонтанно атом водорода с образованием продукта замещения (33), а подвергается быстрым радикал-радикальным реакциям [уравнения (26)—(28)]. Для реакции дибеизоилпероксида с бензолом при 80°С были определены константы скорости К = 2-10 , 3 = 4,5-10 , 2= 10,5-10 л-моль- -с . В этой реакции дибен-зоилпероксид разлагается также за счет взаимодействия с фенил-циклогексадиенильными радикалами. [c.582]


Смотреть страницы где упоминается термин Механизмы реакций радикального замещения: [c.474]    [c.63]    [c.188]    [c.42]    [c.324]    [c.1199]    [c.1207]    [c.1696]    [c.404]    [c.443]    [c.122]   
Теория технологических процессов основного органического и нефтехимического синтеза (1975) -- [ c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Замещение механизм

Радикальное замещение механизм

Радикальные реакции

Реакции замещения

Реакции замещения механизмы



© 2025 chem21.info Реклама на сайте