Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Резина времени

    В последнее время стал актуальным вопрос какую роль в термодинамике и статистике равновесной высокоэластической деформации играет надмолекулярная организация Для ответа на него необходимо напомнить, что в некристаллических эластомерах микроблоки упорядоченной структуры имеют флуктуационное происхождение и, следовательно, характеризуются определенным, конечным временем жизни (см. гл. I). Так, для каучуков и резин время жизни надмолекулярных образований при 20 °С обычно заключено в интервале 10 —10 с, а при повышенных температурах становится намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того, чтобы судить [c.106]


    Часто возникает вопрос о том, какую роль в равновесной высокоэластической деформации играют надмолекулярные структуры в виде физических узлов сетки. Для ответа на этот вопрос необходимо учесть, что в некристаллических полимерах (эластомерах) структурные микроблоки упорядоченной структуры имеют флуктуа-ционное происхождение и, следовательно, характеризуются определенным конечным временем жизни. Так, для каучуков. и резин время жизни надмолекулярных образований при 20° С характеризуется временем 10 —Ю с (Х-процессы), а при повышенных температурах оно намного меньше. Молекулярная подвижность этих флуктуационных структур ответственна за медленный физический релаксационный процесс в эластомерах. Для того чтобы достичь равновесного состояния, практически надо наблюдать за [c.60]

    Жидкие и газообразные среды, в которых эксплуатируются металлополимерные подшипники, как правило, относятся к категории физически активных по отношению и к полимеру, и к металлу. В начальный период эксплуатации подшипников физически активные жидкости уменьшают трение вследствие смазывания зоны контакта. Затем интенсифицируется старение полимерных компонентов, а также возрастают трение и износ. Так, при эксплуатации резинометаллических подшипников в маслах увеличивается жесткость резин, время до появления трещин в поверхностном слое уменьшается в 4—5 раз. В подщипниках на основе жестких полимеров пластифицирование поверхностного слоя способствует переходу абразивного износа в усталостный [31]. [c.201]

Рис. 3.5. Зависимость восстанавливаемости Кя от деформации растяжения и сжатия для различных резин (время выдержки 10 мин) Рис. 3.5. Зависимость восстанавливаемости Кя от <a href="/info/161782">деформации растяжения</a> и сжатия для <a href="/info/749361">различных резин</a> (время выдержки 10 мин)
    Набор сит и пробу материала помещают в специальное механическое рассевное устройство марки 028, которое после включения одновременно выполняет операции встряхивания, вращения в горизонтальной плоскости и постукивания по крышке молотком с прокладкой из резины. Время рассева составляет 10 мин, после чего фракции, оставшиеся на каждом сите и поддоне, собирают и взвешивают. [c.105]

    Обычный или стандартный каучук GR-S получается полимеризацией при 50°, а более новый, так называемый холодный сорт GR-S получается при 5°. Название холодный дано этому каучуку потому, что он получается при более низкой температуре. С новыми сортами печной сажи холодный каучук дает самую лучшую протекторную резину, какую только удавалось получать из какого бы то ни было сорта каучука. Производство холодного каучука составляет около 65% от общего количества каучука GR-S. GR-S имеет все свойства натурального каучука, но характеризуется более высоким показателем гистерезиса и потому не применяется для производства каркасов шин, для которых в ходе эксплуатации имеет место сильное нагревание, что ввиду плохой теплопроводности резины приводит к размягчению ее и прорыву камер. Так как 75— 80% всего каучука используется для производства покрышек, камер и других деталей автомобилей, то потребность в природном каучуке для этих целей высока п в настоящее время ежегодный импорт составляет около 400 ООО т. [c.211]


    В качестве материалов для уплотняющих элементов применяют чугун, бронзу, баббит, а в последнее время все шире используют пластмассы (фторопласт и др.), резину и металлокерамику. [c.203]

    Для уплотнения сальников машин и аппаратов применяют различные набивочные материалы. Уплотнение фланцевых соединений трубопроводов, арматуры, аппаратов и машин достигается с помощью прокладок. Прокладочный и набивочный материалы (медь, алюминий, свинец, бронза, сухой асбест, паронит, фибра, резина и др.) подбирают в зависимости от температуры, давления и рабочей среды. В последнее время для уплотнения широко применяют пластмассы и стеклопластики. [c.94]

    В последнее время были развиты методы растворной полимеризации для получения чередующихся (альтернантных) сополимеров [16]. Такой подход к проблеме сополимеризации позволяет получить полимеры принципиально новой структуры и, возможно, избежать проблем, связанных с композиционной неоднородностью сополимера. Альтернантные сополимеры бутадиена с нитрилом акриловой кислоты уже выпускаются в промышленном масштабе. Показано, что в том случае, когда эти сополимеры содержат звенья бутадиена в гране-конфигурации, полимерные цепи способны к ориентационной кристаллизации [17, 18]. Для получения резин с оптимальными физико-механическими свойствами необходимо получение альтернантных сополимеров с достаточно высокой молекулярной массой ([г)] = 2—2,5). [c.63]

    В последнее время был выявлен еще один структурный параметр каучуков, который может оказывать существенное влияние на прочностные свойства резин. Речь идет о содержании дискретных полимерных частиц —частиц микрогеля, имеющих высокую молекулярную массу. Строение частиц микрогеля растворной полимеризации является более благоприятным, чем частиц эмульсионного микрогеля [12]. Благодаря большому количеству свободных концов, способных взаимодействовать с поверхностью сажевых частиц, а также благодаря специфическому строению, напоминающему строение полифункциональных узлов, частицы растворного микрогеля играют роль активного наполнителя. В то же время частицы плотного микрогеля эмульсионной полимериза- [c.86]

    В настоящее время резервы получения высокоэластичных резин за счет снижения температуры стеклования каучуков практически исчерпаны для цыс-полибутадиена величина Гс близка к предельно возможному для углеводородных цепей значению Гс = —120°С. [c.92]

    Таким образом, требования, предъявляемые к молекулярному строению высокомолекулярных эластомеров с точки зрения получения резин с наилучшим комплексом физико-механических свойств и в то же время высокотехнологичных, являются достаточно противоречивыми. Именно для разрешения этого противоречия во всех практически реализуемых процессах синтеза каучуков необходимо проводить работы по регулированию ММР (или в более общем случае регулированию молекулярного состава) образующихся полимеров с целью их оптимизации. Вопрос о синтезе каучуков с оптимальным молекулярным составом в каждом конкретном случае должен решаться отдельно с учетом существующей технологии переработки и требований, предъявляемых к основным показателям резин. [c.93]

    Благодаря особенностям макростроения полимерных цепей резины из литиевого полиизопрена превосходят резины из НК по относительному удлинению, не уступают, а в сажевых смесях и превосходят последние по эластичности и стойкости к тепловому старению. В то же время высокая молекулярная масса и узкое ММР этого полимера создают определенные трудности в технологии его переработки. [c.206]

    Вулканизаты на основе акрилатных каучуков отличаются сравнительно невысоким сопротивлением разрыву. В то же время для них характерно сохранение прочностных характеристик после теплового старения при 150°С на воздухе, в трансформаторном и серусодержащих (гипоидных) маслах, при тепловом старении в закрытом объеме при 200°С. Недостатками резин из акрилатных каучуков являются их сильная адгезия к форме, малая морозостойкость, низкая эластичность при комнатной температуре и, заметная коррозионная активность [1, 2, 19]. [c.393]

    В настоящее время резины из фторкаучуков используются для изготовления резинотехнических деталей — электроизоляции манжет для насосов, сальников, клапанов, прокладок, кольцевых уплотнений, мембран, которые длительно сохраняют свои свойства в контакте с маслами, топливами, окислителями и другими агрессивными средами. Резины на основе фторэластомеров широко используются в авиации, ракетной и космической технике, химической промышленности и др. Ожидаемое расширение температурного интервала эксплуатации резин от —60-ь70°С до 300—350 °С позволит решить еще ряд важных технических задач. В то же время следует отметить, что очень высокая стоимость фторкаучуков сильно ограничивает их применение. [c.521]

    Авторами приведены лишь некоторые примеры практического использования уретановых эластомеров, но и они свидетельствуют о том, что в настоящее время трудно назвать такую отрасль промышленности, которая не нуждалась бы в полиуретанах. И, несмотря на то, что стоимость их в 2—4 раза выше стоимости других каучуков и резин, применение полиуретановых эластомеров уже сейчас экономически выгодно вследствие высокого уровня физико-механических свойств и значительного увеличения срока службы изделий. [c.549]


    Полимеры, несомненно, занимают центральное место в промышленности XX века. Полимеры это - красители, ткани, резина, изоляционные материалы. Общее мировое производство получаемых из нефти и газа полимеров в настоящее время в 5 раз превышает производство алюминия. Около одной трети тканей и 70% резины человечество получает из нефти. [c.219]

    Неприятное свойство резины состоит в том, что она легко и быстро стареет... В наше время, когда пожары нередки, пожарные шланги стали источником опасности они внезапно лопаются как раз тогда, когда больше всего нужны. Старение резины и разложение материала шлангов приносило многомиллионные убытки до того момента, пока химики не вмешались в это дело. Сейчас шланги такие же надежные, как подача воды, а иногда и более. [c.541]

    В настоящее время комплекс квалификационных методов испытаний топлив для авиационных ГТД достиг по сравнению с другими наибольшего развития. Дальнейшее совершенствование комплекса должно быть связано с накоплением статистических данных по фактическому качеству топлив и влиянию его на работу авиационной техники для установления норм по вновь включенным методам испытания, по которым эти нормы еще не установлены, а также для унификации и сокращения числа существующих методов. Оно должно проводиться на основе данных по корреляции результатов испытаний разными методами, характеризующими одно эксплуатационное свойство топлива. Установлено, например, что нагарные свойства топлива, характеризуемые количеством нагара в однокамерной установке, высотой некоптящего пламени или люминометрическим числом, можно выразить в виде аналитических зависимостей фракционного состава топлива от плотности и содержания ароматических углеводородов [7, с. 41-43]. Это свидетельствует о наличии необходимых предпосылок для сокращения методов испытаний в комплексе. Возможности сокращения используемых методов есть при определении и других показателей эксплуатационных свойств, в частности, термоокислительной стабильности в динамических условиях, воздействия на резины, противоизносных свойств. [c.172]

    При обосновании партии запуска изделий из пластмасс и резины важно учитывать также условия эксплуатации технологической оснастки (пресс-форм и др.). Так, размер партий для крупносерийных пластмассовых изделий целесообразно принимать кратным объему производства за время межремонтного пробега пресс-формы. Такие расчеты можно проводить по формуле [c.195]

    Загрузка сырых шариков на ленту конвейерной сушилки также осуществляется автоматически (рис. 38). На верхний конец выгружной трубы в буферной емкости 1 надет резиновый шланг 2. К краям желоба 4 на кронштейнах кренится регулирующий кланан 3, мембрана которого трубкой соединена с пневматической частью вторичного прибора 10. По центру загрузочного бункера 6 на свободно качающемся стержне 8, чуть выше нижнего конца наклонной сетки сепарационного устройства 5, опущена небольшая металлическая плата 9, обклеенная с обеих сторон тонкой листовой резиной. Ось стержня 8 с помощью рычага 7 при своем вращении вправо или влево соответственно замыкает или размыкает электрическую часть вторичного прибора, связанную с его пневматической частью, регулируя таким образом поступление воздуха на мембрану клапана 3. При пустом загрузочном бункере плата 9 свободно висит в вертикальном положении в середине бункера. Резиновый шланг на конце выгружной трубы в это время опущен в желоб. Шарики из буферной емкости начинают поступать в сепарационное устройство и, отделившись от транспортной воды, ссыпаются в загрузочный бункер Достигнув платы 9, шарики при дальнейшем наполнении бункера своим весом отклоняют ее в крайнее положение, прижимая к стенке. В результате отклоняется и стержень 8. Ось стержня опускает рычаг 7, замыкая электрическую цепь. Тогда перекрывается доступ сжатого воздуха к мембране регулирующего клапана и выпускается воздух из системы автомата. Мембрана выпрямляется и поднимает вверх шток клапана, соединенного с резиновым шлангом 2. Конец шланга поднимается вверх и становится выше уровня воды в буферной емкости 1. Поступление шариков в загрузочный бункер прекращается. При опускании уровня шариков в загрузочном бункере плата под действием собственного веса возвращается в первоначальное положение и поступление шариков возобновляется. [c.151]

    В то же время в колоннах для получения криптонового концентрата, очевидно, может накопиться сравнительно большое количество озона. Имеются сведения о том, что на одном из металлургических комбинатов при определении содержания ацетилена в жидкости, сливаемой из конденсатора колонны для получения криптонового концентрата, обнаружили озон в количестве до 3— 4 см /л жидкости. В этих условиях часто наблюдается растрескивание резиновых шлангов, которые используют при проведении анализов жидкого кислорода на ацетилен. Характер разрушений шлангов указывает на типичное растрескивание резины в присутствии озона. [c.26]

    Необходимая отличительная особенность всякой фильтровальной перегородки — наличие в ней сквозных пор, способных пропускать жидкость, но задерживать твердые частицы суопензии. При этом сквозные поры могут задерживать такие твердые частицы, размер которых меньше размера поперечного сечения пор в их самых узких частях (см. далее). В настоящее время применяют разнообразные по свойствам фильтровальные перегородки, в частности зернистые слои песка, диатомита, угля волокнистые слои из асбестовых и хлопчатобумажных волокон хлопчатобумажные или шерстяные ткани, а также ткани из синтетических волокон сетки из волосяных или металлических нитей пористые перегородки из кварца, шамота, спекшегося стеклянного или металлического порошка, а также из твердой резины (эбонита). [c.11]

    Производство гидрохинона и резорцина окислением изомерных диизопропилбензолов. Как известно, в настоящее время гидрохинон получают окислением анилина хромовой смесью или двуокисью марганца в присутствии серной кислоты, а резорцин—так называемым щелочным плавлением натриевой соли бензол-мета-дисульфокислоты. Ввиду сложности процесса и дороговизны исходных веществ резорцин и гидрохинон производятся в весьма небольших количествах, несмотря на имеющуюся большую потребность в них промышленности полупродуктов и красителей, лекарственных веществ, фотохимикатов и вспомогательных веществ, применяющихся в производстве каучука, резины и других высокомолекулярных соединений. [c.371]

    Литьевое оборудование. Самым распространенным методом формования резины является прессование, однако методу литья под давлением и литьевому оборудованию в настоящее время уделяется большое внимание. По сообщениям, 150 фирм используют 450 машин для литья под давлением. Доминирующими в США являются литьевые машины плунжерного типа, доля которых составляет 90% от всех литьевых машин, применяемых в процессах переработки эластомеров. [c.207]

    Поведение резин при многократных деформациях характеризуется их динамической выносливостью. Выносливост ь— работоспособность резины до момента ее разгружения, выраженная числом циклов прилагаемых деформаций. Используется и понятие динамическая долговечность резин — время, проходящее до их разрушения при эксплуатации в условиях многократных деформаций. [c.137]

    Зуев и Праведникова [492] изучили вопрос о критическом удлинении и нашли, что время, необходимое для появления треш,ин в разных резинах, уменьшается с увеличением степени удлинения образцов. Однако в то же время было установлено, что скорость роста треш,ин сначала возрастает с увеличением удлинения, проходя через максимум при некоторых небольших значениях удлинения, так называемом крютическом удлинении, а затем уменьшается вплоть до удлинения, равного 500%. Оказалось такн е, что для всех исследованных резин время до появления треш,ип в образцах с разной степенью растяжения проходит через минимум, соответствуюш ий значению критического удлинения. [c.137]

    При хранении и последующей вулканизации, когда внутреннее давление газа становится ниже из-за его диффузии, усадка микропористого листа становится больше. Поэтому для регулирования усадки изделия степень предвулканизации должна быть как можно ниже. Если она слишком низка, меньше становится прочность листа и стенок микропузырьков — более слабые микропузырьки разрываются из-за высокого давления азота, и в листах развиваются большие внутренние усадочные раковины. Из-за низкой теплопроводности резины время вулканизации микропористых листов зависит от толщины листа. При более глубокой формующей полости требуется большее время предвулканизации. Обычно для системы со средней скоростью вулканизации и обычным наполнением смеси для микропористых листов следует вести предвулканизацию приблизительно 0,8-1 мин на 1 мм глубины гнезда при температуре вулканизации 150 °С. При изготовлении скошенных микропористых листов или листов переменной толщины рассматривается время вулканизации самой толстой части. В таких случаях более тонкая часть листа вулканизуется в большей степени, что, естественно, ведет к несколько большей усадке. Оптимальная температура вулканизации 140-150 °С. [c.220]

    Иногда предпочтение отдают связывающей эбонитовой резиновой смеси, особенно когда валы имеют толстое резиновое покрытие и подвергаются значительным динамическим напряжениям. Сейчас небольшие и средние валы почти исключительно изготавливают с помощью веществ, осуществляющих химическое связывание. Эбонит обеспечивает очень высокую прочность отслаивания, и резиновое покрытие подвергается небольшой деформации, так как до четверти этого покрытия может состоять из эбонита, который деформируется слабо. При использовании эбонитовой склеивающей (связывающей) системы нельзя допускать перевулканизации покрытия мягкой резины (время отверждения эбонита значительно больше) и следует соблюдать осторожность, чтобы обеспечить оптимальную вулканизацию эбонита (поскольку при недостаточно высокой степени отверждения адгезия неудовлетворительна). Кроме того, в случае перевулканизации происходит выраженная миграция серы между эбонитом и мягкой резиной, ведущая к формированию тонкого слоя полуэбонита на границе между эбонитом и мягкой резиной. Такой по-луэбонит (полужесткая резина) обладает неудовлетворительными механическими свойствами и часто приводит к разрушению между двумя материалами. Дополнительное связывающее вещество обычно применяется для поглощения мигрирующей серы без ухудшения механических свойств, чтобы избежать такого нарушения адгезии между эбонитом и слоями мягкой резины. [c.367]

    Для использования в шинной иромышленности рекомендуется полимер с AI (3 3,5) 10 и MwlMn = 2,5—3,0 с удовлетворительными физико-механическими и технологическими свойствами. Такой тип каучука в настоящее время освоен промышленностью. Резины, полученные на его основе, характеризуются высоким сопротивлением разрыву и эластичностью как при 20, так и при 100 °С. Кроме того, для них характерна высокая износостойкость и морозостойкость. По этим показателям вулканизаты на основе СКД значительно превосходят вулканизаты из НК. Вместе с тем для изготовления, например, целого ряда резинотехнических изделий, кабелей тонкого сечения, резиновой обуви СКД с таким ММР неприемлем. Для удовлетворения потребителей таких изделий освоен выпуск каучука с MJMn = 4,0 5,0. [c.191]

    В последнее время промышленностью СК начато производство маслонаполненного каучука СКД, содержащего от 20 до 30 ч. (масс.) ароматического масла. Введение ароматического масла в каучук приводит к улучшению обрабатываемости резиновых смесей при сохранении высоких механических свойств вулканизатов на его основе [70, 71]. Использование маслонаполненного таучука СКДМ позволяет получить протекторные резины с меньшей остаточной деформацией, чем у аналогичных резин из СКД [72]. Применение СКДМ-25, каучука с 25 ч. (масс.) масла, в промышленности РТИ позволило упростить процесс изготовления обкладочных резин для транспортерных лент [73] и заметно сократить затраты на их производство. Для наполнения маслом можно использовать также высокомолекулярный полимер (вязкость по Муни при 100°С 70—80) с узким ММР (М /Л = 2,0). [c.191]

    В последнее время получены альтернантные БНК путем каталитической полимеризации в растворах. Эти полимеры, независимо от состава полимеризуемой смеси мономеров, имеют один и тот же молекулярный состав (бутадиен акрилонитрол = 1 1) с правильным чередованием звеньев мономеров. При высокой маслобен-зостойкости такие БНК характеризуются более низкой температурой стеклования, а резины на их основе — более высокой прочностью по сравнению с резинами из аналогичных эмульсионных БНК [34]. [c.365]

    Наиболее трудной задачей является использование жидких каучуков для получения шинных резин вследствие очень высоких и разнообразных требований, предъявляемых к различным деталям пневматической шины. Однако в настоящее время удается получить литьевые материалы на основе полибутадиендиолов, которые по некоторым свойствам не уступают шинным резинам на основе высокомолекулярных каучуков. Тем самым могут быть созданы предпосылки для коренного изменения технологии получения шин. [c.456]

    Термическая стабильность в вакууме иллюстрируется малыми потерями массы силоксановой резиной за 7 сут при остаточном давлении 1,33 мПа при 100°С 1%, при 205°С 1,8% [72, с. 146]. В условиях напряженного старения в вакууме особенно устойчивы вулканизаты полисилкарбораниленсилоксана дексил 201 у наполненного время падения напряжения на 50% при 350 °С составляет около 15 ч, у ненаполненного больше 2 сут (при 450 °С около 5 ч) [73]. [c.493]

    Диэлектрические свойства силоксановых вулканизатов очень высоки и мало изменяются при повышении частоты до 10 Гц и даже до 10 ° Гц, а также при повышении температуры и в условиях теплового старения (при 250 С —за 10 000 ч). Они сохраняются также длительно в воде. Так, за три недели пребывания резины в воде при 20 5°С удельное объемное сопротивление снижается лишь до 10 10 Ом-см. Изоляция из силок-сановой резины при однократном пробое или действии открытого огня образует, в отличие от органической резины, непроводящую золу (SIO2), способную некоторое время предотвращать падение напряжения в сети. Введением проводящих наполнителей (газовой сажи или металлических порошков) можно получить силоксановые резины с низким электрическим сопротивлением (до 3—5 Ом-см) [72, с. 137—139]. [c.494]

    Остаточная деформация сжатия при 200 °С после 24—48 ч выдержки составляет 100%. Применение для вулканизации радиационного метода позволяет улучшить остаточную деформацию сжатия резин, а именно после 24 ч выдержки при 250 °С остаточная деформация сжатия резин на основе сополимера винилиденфторида с перфторметилвиниловым эфиром составляет 70%, а в то же время у сополимера винилиденфторида с гексафторпропиленом в тех же условиях 61%. Путем специальной обработки сополимера винилиденфторида с перфторметилвиниловым эфиром удается получить химические вулканизаты с остаточной деформацией сжатия вулканизата 60% (после 24 ч выдержки при 250°С). [c.509]

    В последнее время для стабилизации синтетических каучукои находят широкое применение антиоксиданты, относящиеся к производным дигидрохинолинов (типа ацетонанила). Они позволяют получать только темные марки каучуков, однако значительно меньше окрашивают полимер чем, например, неозон Д. Эти производные одновременно рекомендованы и в качестве химических антиозонантов и противоутомителей для резин. [c.635]

    Производные п-фенилендиамина применяются для выпуска только темных марок каучуков, так как они окрашивают каучук даже в большей степени, чем вторичные ароматические амины. За последнее время все более широко применяются для стабилизации синтетических каучуков алкилированные фенолы, бис-, трис-и тетракисфенолы. В США производство этих антиоксидантов составляет более 30% от общего количества стабилизаторов, выпускаемых для каучуков и резин. Они позволяют получать каучуки, предназначенные для изготовления светлых и цветных резиновых изделий. За рубежом стереорегулярные бутадиеновые и изопреновые каучуки, этилен-пропиленовые каучуки, алкиленоксидные каучуки, многие виды термоэластопластов выпускаются только с применением этих антиоксидантов. [c.636]

    Для выяснения воздействия этих соединений на резину были поставлены следующие опыты. Образцы резин испытывали в окисленном топливе Т-6 в присутствии акцептора свободных радикалов — ионола [0,1% (масс.)] и без него в среде аргона при 140°С. За время опыта (4 ч) концентрация гидропероксидов в результате распада (в том числе с образованием свободных радикалов) уменьшилась с 10 до 5-10 моль/л. В присутствии ионола физико-механическнс свойства резины не изменились, а в его отсутствие она полностью теряла эластичность. Аналогичные результаты получены в индивидуальных углеводородах (табл. 7.4) [335]. Из этих данных следует, что гидропероксиды сами по себе, по-видимому, не влияют на физико-механнческие свойства резины. Ухудшение ее свойств происходит под воздействием свободных (пероксидных и алкильных) радикалов. [c.232]

    Эбониты иа основе бутадиен-стирольного каучука (СКС — сополимер бутадиена и стирола) характе)щзу10тся более высоко химической стойкостью по сравнению с резинами. Так, эбо Шты на осиове каучуков СКС-30 могут служить длительное время в 36%-иой соляной кислоте при температуре до 80° С. Кроме того, эбониты стойки в сухом и влаж1юм хлоре при температуре до [c.440]

    В 19O6 г. в США было продано — 270 тыс. г протекторной резины. Следует отметить, что в последнее время наблюдается повышение заинтересованности крупных фирм в производстве собственной протекторной резины. Причем мелкие заводы и мастерские ставятся в трудные условия, так как их производство, как правило, использует устаревшую технологию, не имеет квалифицированной ремонтной службы, не может осуществлять надежного контроля. В условиях крупного производства псе эти проблемы легче разрешить и с наименьшими затратами [260—261]. [c.205]


Смотреть страницы где упоминается термин Резина времени: [c.49]    [c.335]    [c.148]    [c.98]    [c.76]    [c.510]    [c.149]    [c.204]    [c.209]    [c.70]   
Расчеты и конструирование резиновых технических изделий и форм (1972) -- [ c.30 ]




ПОИСК







© 2025 chem21.info Реклама на сайте