Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Температура размер кристаллов

    Влиянию молекулярного веса парафина на размер образуемых им кристаллов посвящены работы [112, 120]. В этих работах показано, что с повышением молекулярного веса и температуры кипения парафина его кристаллическая структура становится все более мелкой. На рис. 36 показаны разные фракции ставропольской нефти, закристаллизованные в одинаковых условиях. Из рисунка видно, что при повышении температуры кипения фракции линейные размеры кристаллов парафина уменьшаются. [c.103]


    В химических лабораториях приходится нередко проводить перекристаллизацию веществ с целью их очистки, для разделения смеси кристаллических веществ и в ряде других случаев. Гфоцесс перекристаллизации основан на свойстве кристаллических веществ изменять свою растворимость в данном растворителе в зависимости от температуры. В огромном большинстве случаев растворимость кристаллических веществ с повышением температуры увеличивается, а с понижением—уменьшается, причем для разных веществ температура, при которой образуются насыщенные растворы, не одинакова. Это дает возможность, охлаждая горячие растворы, добиться дробного осаждения кристаллических веществ и таким образом отделить одно вещество от другого. При перекристаллизации очень большое значение имеет скорость охлаждения полученного насыщенного раствора. От этого зависит размер кристаллов, выделяющихся из данного раствора. Обычно при быстром охлаждении образуются мелкие кристаллы, а при медленном—более крупные. [c.149]

Рис.6. Зависимость константы скорости кристаллизации от температуры процесса и размера кристаллов 1-при Гтах = 0,2 им Рис.6. <a href="/info/1328694">Зависимость константы скорости кристаллизации</a> от <a href="/info/14086">температуры процесса</a> и <a href="/info/56080">размера кристаллов</a> 1-при Гтах = 0,2 им
    На степень восстановления и величину поверхности металлического никеля влияет способ приготовления, фазовый состав и содержание никеля в катализаторах никель на силикагеле [9]. В образцах, полученных осаждением никеля на гель 5102, никель находится в высокодисперсном состоянии при температурах восстановления 400—500 °С размер кристаллов составляет 1,7—2,2 нм. При повышении температуры до 600 °С размер кристаллов возрастает до 2,5—3,0 нм, однако дисперсность все еще высока. При восстановлении образцов, полученных смешением гидроокисей или пропиткой геля аммиакатом никеля, средний размер кристаллов никеля значительно больше (6,5—7,0 нм при 325—400 °С и при повышении температуры восстановления до 500—600 С он возрастает до 9,5—11,0 нм). [c.29]

    Кристаллизатор с принудительной циркуляцией. Последняя создается (рис. 71, г) насосами, установленными либо в аппарате, либо вне его, обеспечивая любую скорость циркуляции. Для процессов кристаллизации оптимальной считается скорость циркуляции по греющим трубам, равная 2,3 м/с, так как при больших скоростях происходит истирание кристаллов. Во избежание последнего, скорость вращения рабочего колеса насоса не должна превышать 570 об/мин. Концентрация суспензии в аппарате равна 10—20% по массе. Для увеличения размеров кристаллов снижают полезную разность температур до 3—5" С. Достоинство таких аппаратов заключается в гибкости регулирования процесса выпаривания и кристаллизации. [c.113]


    Следовательно, с повышением молекулярного веса и температуры кипения парафина его кристаллическая структура становится все более мелкой. При этом повышению температуры кипения соответствует весьма резкое уменьшение размера кристаллов. Для иллюстрации этого на рис. 8 приведена серия микрофотографий последовательных фракций одной из парафинистых нефтей, закристаллизованных в равных условиях. Из рис. 8 видно, что даже при относительно небольшом повышении температуры кипения фракции, например на 50° (от 400 —450° до 450—500°), уменьшаются линейные размеры кристалликов парафина более чем в 2 раза. [c.65]

    При колебаниях температуры размеры кристаллов льда на поверхности продукта увеличиваются, их температура становится ниже температуры основной массы продукта и приближается к температуре [c.169]

    С ростом температуры размеры кристаллов увеличиваются. Например, цри 400° С объем одного кристалла достигает [c.250]

    Пользуясь приведенными микрофотографиями фракций (см. рис. 8), нужно еще раз отметить, что, несмотря на резкое уменьшение размеров кристаллов парафина при повышении температуры кипения фракции, форма их остается неизменной, и они представляют тонкие мелкие пластинки, а форма мнимых иголочек [c.65]

    Исследованиями установлено, что при отрицательных температурах образованию кристаллов льда предшествует выделение капелек воды. Выделяющаяся из бензина вода может длительное время находиться в переохлажденном состоянии. Капли переохлажденной воды могут накопиться в бензине и в результате какого-либо незначительного внешнего воздействия выпасть в виде большого количества кристаллов льда. Таким воздействием может оказаться попадание в бензин инея, сильное перемешивание и т. д. Форма и размер кристаллов льда, находящихся в бензине, зависят от условий их образования и присутствия мельчайших волокон или других механических примесей. Эти примеси обычно являются центрами кристаллизации воды. [c.316]

    Горячий водный раствор вещества X непрерывно поступает в реактор смешения, снабженный холодильником. Интенсивность перемешивания достаточна, для того чтобы получающиеся в результате кристаллы были невелики и концентрация их была одинаковой во всем объеме реакционной смеси и на выходе из аппарата. В аппарате поддерживают стационарное пересыщение и постоянную температуру. Кристаллы зарождаются спонтанно, и скорость кристаллообразования зависит только от степени пересыщения и от температуры. Скорость роста кристаллов, которые с некоторым приближением можно рассматривать как сферические, также зависит только от степени пересыщения и температуры. В частности, линейная скорость роста кристаллов в направлении, перпендикулярном к их поверхности, не зависит от размера кристаллов. [c.132]

    Для того чтобы иметь информацию о функции распределения и размерах кристаллов в ходе процесса, эксперименты заканчивают при различных температурах (в различное время). Для проверки надежности определения функции распределения в ходе процесса, ставится обычно эксперимент, повторяемый при одних и тех условиях 3 раза, по ходу которого отбирают пробы раствора, а в конце определяют функцию распределения кристаллов по размерам. [c.303]

    Если кинетические кривые и функции распределения в каждом из этих опытов достаточно хорошо совпадают друг с другом, то предлагаемым методом определения кинетических параметров кристаллизации можно пользоваться. После каждого эксперимента из общего числа кристаллов отбирают случайным образом не менее 15 проб, которые затем фотографируются. После фотографирования определяются размеры кристаллов на этих фотографиях, доля кристаллов определенного размера, с помощью которых затем строятся функции распределения. Фотографирование можно проводить с помощью микрофотонасадки типа МФН-12, смонтированной на поляризационный микроскоп типа МИН-8. По полученным фотографиям определяют распределение кристаллов по размерам (объемам). Таким образом, в результате проведенных экспериментальных исследований становятся известны кривые изменения концентрации, равновесной концентрации, температуры раствора в ходе процесса, функции распределения кристаллов по размерам в некоторых последовательных временных точках. Так, на рис. 3.19 представлены функции распределения кристаллов щавелевой кислоты по объемам в различных временных точках. Эксперименты проводились при различных начальных концентрациях, температурах раствора при различных темпах охлаждения и чис- [c.303]

    При охлаждении мыльного расплава протекают одновременно два процесса зарождение и формирование кристаллов (волокон) и связывание их друг с другом с образованием структурного каркаса смазки. Размеры и форма волокон зависят от условий кристаллизации. прежде всего от исходной температуры охлаждения и его скорости. Быстрое охлаждение способствует образованию мелких, а медленное — крупных волокон загустителя. Изотермическое охлаждение (постоянная температура 100—150 °С) приводит к образованию однородных по размерам кристаллов, что способствует получению смазки с наиболее упорядоченной, структурой. [c.299]


    Рис. 4 дает общее представление о связи между температурой плавления, временем спекания и минимальным размером кристалла, который может существовать после спекания как одиночный компонент упаковки. Из этого графика можно видеть, что если, например, упаковка состоит из меди (температура плавления 1083° С) и спекается при температуре 200° С в течение 6 месяцев (в восстановительной атмосфере), то минимальный размер кристаллов должен быть более 1000 А, а если температуру повысить до 300° С, то размер кристалла будет более одного микрона, тогда как окись алюминия (температура плавления 2032° С) может находиться при температуре 500° С в течение 6 месяцев без превышения размера ее кристал- [c.37]

    С точки зрения возможности появления твердой макрофазы важно не только количество образующейся дисперсной фазы, но и особенно размеры образующихся частиц. При кристаллизации размеры кристаллов определяются прежде всего скоростью образования центров кристаллизации. Статистическая вероятность возникновения центров кристаллизации, представляющих собой достаточно крупные группировки молекул, вблизи температуры насыщения очень мала. Кристаллические зародыши начинают появляться лишь по достижению в результате переохлаждения определенного пересыщения раствора. Связь между скоростью образования центров кристаллизации и переохлаждением системы выражается зависимостью /31/ [c.50]

    Образование зародышей может происходить путем самопроизвольной кристаллизации. При этом оба процесса (образование зародышей и рост кристаллов) протекают одновременно. Если скорость образования зародышей больше скорости их поста, получается большое количество мелких кристаллов. Если же скорость роста больше скорости образования зародышей, получается меньшее количество крупных кристаллов. Изменяя факторы, влияющие на скорость образования зародышей и скорость их роста, можно регулировать размеры кристаллов. Быстрое охлаждение, перемешивание раствора, высокая температура и низкий молекулярный вес кристаллов способствуют образованию зародышей и получению мелких кристаллов. Наоборот, медленное охлаждение, неподвижность раствора, низкая температура и высокий молекулярный вес способствуют процессу роста и получению крупных кристаллов. [c.513]

    Влияние материала носителя на каталитическое действие обсуждалось в гл. 2, где было показано, что размер кристаллов носителя во многом определяет степень стабилизации активности. Нанесенные катализаторы обычно показывают относительно низкую активность, особенно, если измеряется не начальная, а рабочая активность. Некоторые катализаторы риформинга изготовляются описанным способом, однако они имеют ограниченное применение. Катализаторы, содержащие в своей основе окислы алюминия и магния, очень тугоплавки, и поэтому могут быть использованы в реакторе вторичного риформинга как защитный слой, находящийся выше обычного катализатора. Это то место, где достигаются наиболее высокие температуры на катализаторе в результате ввода воздуха. Однако при наличии хорошего тугоплавкого катализатора вторичного риформинга (такого, как 54-2) отпадает необходимость в низкоактивном катализаторе нанесенного типа. [c.96]

    В присутствии соединений кислорода скорости как окисления, так и восстановления железа являются значительными. Повторные окисление и восстановление железа, возможно, происходят как один непрерывный процесс, во время которого железо может спекаться. Скорость спекания возрастает с увеличением концентрации Н О, особенно при повышенных температурах. Увеличение размера кристаллов железа — необратимый процесс, в результате которого происходит постоянное уменьшение поверхности и активности железа. [c.164]

    Суммарная скорость кристаллизации зависит от соотношения скоростей обеих стадий кристаллизации и в общем случае определяется скоростью диффузии молекул к центрам кристаллизации, молекулярной и пространственной структурой сырья,температурой и длительностью процесса и др. Возможны три варианта соотношения скоростей а) скорость диффузии молекул к центрам кристаллизации больше скорости роста размеров кристаллов б) скорость роста размера кристаллов примерно равна скорости диффузии молекул к центрам кристаллизации в) скорость диффузии молекул к центрам кристаллизации лимитируется вязкостью системы и меньше скорости роста кристаллов углерода. При достижении укрупненными центрами кристаллизации (сложными структурными единицами) порога осаждения система расслаивается на фазы (третья стадия). [c.158]

    Как на степень обессеривания в предкристаллизационный период, так и на степень графитации большое влияние наряду с групповым составом остатка оказывает температура. Для каждой температуры выше начала кристаллизации имеется своя степень графитации, предел, который достигается в течение определенного времени. Обычно чем выше температура, тем быстрее достигается предел и желаемая степень графитации. Естественно, этот предел лри данной температуре графитации для различных видов углеродистых материалов неодинаков. С другой стороны, максимальная степень графитации (ф=1) для различных видов нефтяных углеродов достигается щри различных размерах кристаллов, например по La в пределах 1000—1500 А [30]. Поскольку важнейшей характеристикой графита являются размеры кристаллов, они при ф=1 могут иметь различные физико-химические свойства (плотность, УЭС, КТР и т. д.). [c.217]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Для низкомолекулярных алканов температура перехода одной кристаллической структуры в другую на десятки градусов ниже температуры плавления, в то время как для высокомолекулярных алканов этот температурный интервал составляет всего 3—16°С, а для некоторых вообще не Обнаруживается. При кристаллизации из неполярных растворителей, в том числе из нефтяных фракций, образуются кристаллы орторомбической формы. Характерна ступенчатая слоистость кристаллов, т. е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей [14]. Из всех-углеводородов наибольшие размеры кристаллов и число ромбических плоскостей имеют нормальные алканы. При кристаллизации из растворов с полярным растворителем только алканы образуют кристаллы правильной ромбической формы. [c.191]

    Если в маловязком растворе будет находиться избыточное количество парафина, то, несмотря на медленность охлаждения, образуется много зародышей кристаллов, и масса парафина, кристаллизующегося при данной температуре, распределится между многочисленными центрами кристаллизации, что поведет к уменьшению размера кристаллов. [c.97]

    Известно, что в кристаллах ионы решетки колеблются возле узлов решетки. При повышении температуры амплитуда колебаний их увеличивается, прочность связи в решетке уменьшается и при определенных условиях появляется возможность обмена местами. Если нагреваемый порошок состоит из одного вещества или из веществ, не вступающих между собой в хилшческое взаимодействие, то при высоких температурах размеры кристаллов в результате собирательно п И(пилФяпт1ияяпии vвeличивaют я, т.е. происходит спекание. Если ке вещества могут взаимодействовать между собой, то в данных условиях протекает химическая реакция в твердой фазе. [c.32]

    Рассмотрим модель кристаллизатора [27]. Изучается процесс кристаллизации в периодическом кристаллизаторе идеального смешения. Полагается, что выделение теплоты кристаллизации не изменяет температуры раствора и пересыщение раствора пропорцио-нально его концентрации Ас с— , t). Скорость роста т] считается зависящей от пересыщения раствора и размера кристалла, а скорость образования зародышей / — от пересыщения. Рост линейного размера кристаллической затравки при изменяющемся пересыщении описывается следующим образом  [c.173]

    Неизотермическая модель идеального вытеснения по раствору [5, 81—85]. Математическая модель процесса кристаллизации в псевдоожиженном слое выводится на основании следующих допущений 1) средний размер кристаллов в слое, средняя порозность слоя и средняя скорость в кри-сталлорастителе являются величинами постоянными 2) в рабочем диапазоне температур равновесная концентрация раствора линейно зависит от температуры, удельные теплоемкости раствора С,т и кристаллов Сат являются постоянными 3) псевдоожиженный слой по циркулирующему раствору представляет систему идеального вытеснения 4) температуры раствора и кристаллов в слое равны между собой на любой высоте слоя в любой момент времени, т. е. раствор и кристаллы находятся в термодинамическом равновесии. [c.231]

    Показано [196], что повышенпе температуры от 300 до 500 °С при обработке водородом катализатора Pt/AljO (предварительно восстановлен 500 С, затем окислен 0,j 450 °С), приводит к значи-тельно.му снижению хемосорбционной емкости платины по водороду, измеряемой отношением Н Pt. Размер кристаллов платины при это.м не увеличивается, что было установлено с помощью электронной микроскопии. Явление это, однако, обратимо, и первоначальное значение Н Pt можно получить, обработав катализатор кислородом при 450 X и проведя восстановление водородо.м при 30Q X. Снижение хемосорбционной емкости платины объясняют образованием сплава платины с алюминием, а ее восстановление разрушением этого сплава [c.86]

    По данным рентгеноструктурного анализа, катализатор из Ы1А1з имеет структуру ГЦК-никеля. Линейный размер кристаллов возрастает симбатно температуре и продолжительности выщелачивания алк>минида. Ы 2А1з полностью разрушается только в очень жестких условиях. Все это обусловливает существенную разницу в физико-химических свойствах катализаторов указанных фаз. [c.35]

    Структурные характеристики ткани оказывалт значительное влияние на величину граничного сопротивления - в начальный период скорость фильтрации суспензии парафина через разные ткани различна. Однако с увеличением температур выкипания сырья, особенно с повышением конца кипения и уменьшением среднего размера кристаллов парафинов с 0,3-0,35 ш> до 0,05 - 0,07 мм, разница между величинами граничных сопротивлений для различных тканей уменьшается. Резкое увеличение граничного сопротивления происходит из-за большего взаимного перекрытия пор в осадке парафина и ткани, так как размеры кристаллов парафинов (0,05 - 0,07 мм) приближаются к размеру открытых пор тканей (0,04-0,1 мм). [c.74]

    На рис.3 графически представлены данные об изменении удельной поверхности кристаллов парафина в зависимости от температуры и конечного размера кристаллов. Как видно из рисунка, удельная поверхность особенно резко возрастает в начальный период, повса кристаллы имеет малые размеры. [c.91]

    В процессах кристаллизации для охлаждения сырья и разделения суспензии чаще всего используют специальное оборудование кристаллизаторы, вакуум-фильтры и центрифуги. В процессе фирмы Phillips Petroleum o. (США) устройства для разделения суспензии заменены очисткой кристаллов в противоточных колоннах. Ниже будут рассмотрены показатели работы этого оборудования. При выборе кристаллизаторов необходимо учитывать количество твердой фазы в образовавшейся суспензии и размер кристаллов п-ксилола, получающихся при охлаждении сырья. Кристаллизаторы скребкового типа способны перерабатывать суспензию, содержащую до 25 вес. % твердой фазы, кристаллизаторы дискового типа — до 35 вес. %, емкостные кристаллизаторы — до 45 вес. %. Количество образующейся твердой фазы при кристаллизации зависит от концентрации п-ксилола в сырье и температуры его охлаждения. [c.106]

    Применяемый в процессе депарафинизации карбамид содержит примеси биурета и некоторых других веществ. Кроме того, биурет образуется в результате гидролиза карбамида при применении водного раствора последнего и при разрушении комплекса водой. Присутствие небольших количеств биурета не оказывает отрицательного действия, а в отдельных случаях его могКпо рассматривать даже как положительный фактор. Так, Шампанья с сотр. [10] показал, что в то время как химически чистый карбамид образует исключительно устойчивые гели, присутствие до 1% биурета ограничивает размеры кристаллов комплекса, что уменьшает опасность закупорки трубопроводов. Повышенное содержание биурета сказывается отрицательно на депарафинизации, уменьшая, в частности, депрессию температуры застывания масла. Так, Б. В. Клименок с сотр. [107] показал, что если при отсутствии биурета в карбамиде удается достичь температуры застывания дизельного топлива —56° С, то при содержании в карбамиде 1, 3 и 5% биурета температура застывания дизельного топлива равна соответственно —51,5, —50 и —49° С. В связи с отрицательным влиянием, которое оказывает повышенное содержание биурета на свойства карбамида (не только при депарафинизации), его содержание в мочевине различных сортов ограничивают следующими предельно допустимыми нормами. [c.61]

    Взаимодействие карбамида с и-парафинами осуществляется в основном в первые минуты контактирования, однако для полноты вовлечения соответствующих углеводородов в комплекс время контакта обычно доводят до 1 ч. А. М. Гранат с сотр. [60] показал, что при депарафинизации фреонового масла из эмбенских нефтей комплексообразование происходит весьма быстро для снижения температуры застывания масел с —5 до —47° С достаточно 15 мин контактирования. Н. И. Черножуков с сотр. [54] считает необходимым при депарафинизации масел устанавливать продолжительность перемешивания порядка 30 мин. Фрейнд и Батори [74] показали, что время реакции и длительность индукционного периода при проведении процесса с водным раствором карбамида во многом определяются размерами кристаллов карбамида с увеличением их время реакции и индукционный период возрастают. Б. В. Клименок и Э. М. Игнатов [138] установили, что с увеличением продолжительности перемешивания температура застывания депарафината сначала проходит через некоторый минимум. Так, при перемешивании в течение 0,5 1 2 и 4 мин температура застывания равна соответственно —65, —77, —66 и —66° С. Значительно ускорить комплексообразование можно применяя коллоидную мельницу [50, 139, 140]. [c.75]

    Н. И. Черножуков указывает, что уменьшение размеров кристаллов должно увеличить их поверхность и, следовательно, поверхностные силы, могущие связывать частицы масла, что в конечном счете должно дать эффект, прямо противоположный эффекту от введения присадок [53]. Кроме того, еще старыми опытами Н. И. Черножукова [54] и Б. Г. Тычинина [29] было показано, что присадка, смолистых веществ к парафинсодержащему маслу, вызывая понижение температуры застывания последнего, не препятствует росту кристаллов. При охлаждении чистого раствора парафина или церезина в бесцветном керосине парафин (церезин) выкристаллизовывается в виде мелких кристаллов и вся система имеет гелеобразную структуру. В присутствии небольшого количества смолистых веществ на дне собираются крупные агрегаты кристаллов парафина, а верхний слой раствора осветляется [5]. [c.107]

    Из характера действия присадок, понижающих температуру застывания масел, очевидно, что для увеличения размера кристаллов при охлаждении растворов масел в различных растворителях необходимо подобрать такие присадки, которые целиком или частично не могли бы молекулярно диспергироваться в растворе. Тогда мельчайшие частички, диспергированные в растворе, становятся центрами, вокруг которых собираются скопления кри-. сталлов в виде крупных друз. К присадкам указанного типа относятся асфальтены, стеарат алюминия, депрессатор АзНИИ, сантопур, окисленный петролатум и ряд других аналогичных по характеру действия присадок, описанных В. А. Каличевским и К. А. Кобе [13]. Некоторые присадки, например парафлоу, способствуют изменению характера кристаллов твердых углеводородов и препятствуют образованию прочных структур кристаллов, что облегчает отделение их от раствора. [c.213]

    Эффективность этого процесса также определяется структурой и размерами кристаллов выделяющегося парафина, которые зависят от качества сырья (фракционного состава, содержания парафина и вязкости), скорости его охлаждения, температур охлаждения и фильтрования, давления фильтр-прессования, толщины камеры фильтр-прессов. Чем меньще скорость охлаждения сырья и больше давление при фильтр-прессовании, тем выше содержание твердых углеводородов б гаче и производительность процесса. Температура процесса определяется качеством сырья и требованиями к получаемому продукту. С повышением температуры фильтр-прессования температура плавления гача и скорость фильтрования повышаются, однако выход гача снижается. Толщина камеры фильтр-прессов составляет 16—25 мм. Для интенсификации [c.195]

    На электронно-микроскопических снимках цементного камня, приведсмшых на рис. У.Ю с увеличением примерно 10000 раз, видно, что нри температуре 430 К размеры кристаллов а-гидрата СгЗ значительно увеличились к 28 сут твердения по сравнению с 7 сут. [c.124]

    Молекулярное строение кристаллизующихся углеводородов обуславливает различную способность их к плотной упаковке при кристаллизации и образованию твердых растворов различной структуры. Исследования структуры кристаллов, образующихся при кристаллизации углеводородов разных гомологических рядов, показали /27/, что при кристаллизации из растворов нефтяных фракций все они образуют кристаллы орторомбиче-ской формы со ступенчатой слоистостью кристаллов, т.е. каждый новый слой кристаллизуется на предыдущем, образуя пирамиду из параллельных ромбических плоскостей. Наибольшие размеры и число ромбических плоскостей имеют кристаллы нормальных алканов. Наличие нафтеновых и особенно ароматических структур в составе молекул кристаллизующегося вещества приводит к уменьшению размеров и слоистости образующихся кристаллов. При совместной кристаллизации углеводородов различных гомологических рядов повторяются эти же закономерности образуются смешанные кристаллы переменного состава орторомбической структуры, при этом чем больше циклических углеводородов, тем меньше размеры кристаллов и число наслоений. Способность циклических углеводородов (циклоалканов и аренов) образовать смешанные кристаллы с алканами обусловливается наличием в их молекулах длинных алкильных цепей в основном нормального строения. При отсутствии таких цепей циклические углеводороды кристаллизуются при значительно более низких температурах. [c.27]


Смотреть страницы где упоминается термин Температура размер кристаллов: [c.241]    [c.109]    [c.133]    [c.160]    [c.68]    [c.207]    [c.67]    [c.99]    [c.115]    [c.168]    [c.12]    [c.152]   
Кристаллизация из растворов в химической промышленности (1968) -- [ c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Температура к кристаллов



© 2025 chem21.info Реклама на сайте