Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Центры кристаллизации температуры

    Центрами кристаллизации выделяющейся воды могут быть кристаллы углеводородов и частицы механических примесей. Выделяющаяся из топлива вода при изменении температуры, влажности или атмосферного давления находится в виде эмульсии воды с топливом. Эмульсия воды в топливе может образоваться также при нарушении правил транспортировки, хранения, перекачки, когда в топливо попадает свободная вода. Эмульсию воды с топливом очень трудно обнаружить и удалить из топлива, поэтому она представляет большую опасность для нормальной работы систем и агрегатов летательного аппарата. Эмульсия — это, как известно, смесь двух жидкостей, где одна жидкость распределена в другой в виде мельчайших капелек. Размеры капелек воды в водо-топливных эмульсиях находятся в пределах 10—40 мк. [c.50]


    Переход охлаждаемой жидкости в кристаллическое состояние не всегда начинается точно при температуре замерзания. Если жидкость не содержит хотя бы мельчайших твердых частиц, которые могут служить центрами кристаллизации, то имеет место переохлаждение, и выделение кристаллов начинается при более низкой температуре. Процесс кристаллизации сопровождается выделением теплоты, вследствие чего температура системы вновь повышается и достигает равновесной температуры замерзания, при которой и протекает весь остальной процесс кристаллизации. [c.361]

    Штоббе и Позняк констатировали, что свежеперегнанный стирол полимеризуется при 200° только через 7 часов. Но стирол, сохранявшийся при комнатной температуре в течение нескольких дней, полимеризуется тотчас же1 нри нагреве до 200°. Повидимому, продукты окисления полимеризуемых соединений могут играть роль центров полимеризации, аналогичных центрам кристаллизации. Если нагревать различные углеводороды в атмосфере углекислоты и в атмосфере кислорода, то полимеризация будет более интенсивной в последнем случае, чем в первом, несмотря на весьма небольшие количества абсорбируемого кислорода. V [c.97]

    Исследованиями установлено, что при отрицательных температурах образованию кристаллов льда предшествует выделение капелек воды. Выделяющаяся из бензина вода может длительное время находиться в переохлажденном состоянии. Капли переохлажденной воды могут накопиться в бензине и в результате какого-либо незначительного внешнего воздействия выпасть в виде большого количества кристаллов льда. Таким воздействием может оказаться попадание в бензин инея, сильное перемешивание и т. д. Форма и размер кристаллов льда, находящихся в бензине, зависят от условий их образования и присутствия мельчайших волокон или других механических примесей. Эти примеси обычно являются центрами кристаллизации воды. [c.316]

    При сварке печных труб из аустенитных сталей большое внимание необходимо уделять удалению шлаковых включений из сварных швов, так как они играют роль центров кристаллизации для о-фазы. Чем больше неметаллических включений в шве, тем больше в нем образуется о-фазы. Сварные швы двухфазной стали также подвержены структурным превращениям с появлением о-фазы, но в еще более широком интервале высоких температур (500—875°С). [c.158]

    Особой тщательности требует работа с веществами, склонными образовывать пересыщенные растворы. При охлаждении растворов таких веществ кристаллы долго не выделяются главным образом вследствие отсутствия центров кристаллизации. Последующее выделение продукта из сильно пересыщенного раствора происходит слишком быстро, что создает неблагоприятные условия для правильного роста кристаллов. Некоторые соединения в отсутствие центров кристаллизации склонны выделяться из растворов в виде масла. Очистки вещества при этом, как правило, не происходит, даже если масло при дальнейшем понижении температуры затвердевает. Правильное проведение процесса в этих случаях может быть обеспечено путем стимулирования кристаллизации. [c.118]


    Таким образом, скорость выделения твердой фазы из раствора на образовавшихся центрах кристаллизации в значительной мере зависит от вязкости среды, средней длины диффузионного пути молекул к центрам кристаллизации, среднего радиуса молекул твердых углеводородов и разности между концентрацией раствора и растворимостью выделившейся твердой фазы при температуре кристаллизации. [c.133]

    Здесь VI — средняя скорость движения среды в осевом направлении С с х, I), Т х, г)] — скорость роста кристаллов как функция концентрации раствора с и температуры Г Ф ( ) — скорость роста кристаллов как функция размера 1 В [с (х, 1), Т х, )] — скорость зарождения центров кристаллизации как функция с и Г ф 0) — скорость кристаллообразования как функция 1-, X — координата в продольном направлении. [c.75]

    Для ускорения кристаллизации растворителя рекомендуется после того, как температура его опустилась на 0,5—1° С ниже температуры затвердевания, бросить через боковую трубку 2 в растворитель маленький кристаллик растворителя, который представляет собой центр кристаллизации и вызывает быстрое отвердевание всего растворителя. [c.65]

    Ответственной стадией процесса является охлаждение мыльно-масляного расплава. Изменяя скорость охлаждения, можно значительно воздействовать на структуру, а следовательно, и на свойства смазок. Кристаллизация мыла, протекающая при охлаждении расплава, сопровождается образованием центров кристаллизации, ростом кристаллов и связыванием их друг с другом с образованием структурного каркаса смазки. В зависимости от типа и требуемого качества смазки охлаждение можно проводить с постоянным понижением температуры (медленно) или при резком перепаде температур (быстро) как в динамических, так и в статических условиях. При медленном охлаждении смазки в покое или перемешивании образуются крупные мыльные волокна, быстрое охлаждение способствует образованию мелких волокон. [c.255]

    На первой стадии (слабые взаимодействия) надмолекулярные структуры (центры кристаллизации) формируются за счет сил Ван-дер-Ваальса. В зависимости от природы ВМС нефти и величины сил взаимодействия молекул для каждого вида ВМС образуется свой тип надмолекулярных структур, обладающих определенными физико-химическими свойствами (асфальтеновый, парафиновый и другие ассоциаты). Парафиновые надмолекулярные структуры при повышении температуры дезагрегируются полностью или подвергаются одновременно дезагрегированию и химическому разрушению. Асфальтеновые ассоциаты с повышением температуры склонны к физическому и далее к химическому агрегированию. [c.158]

    Растворяющая сила дисперсионной среды, скорость изменения температуры в НДС влияет не только на кинетику первой стадии (возникновения центров кристаллизации), но и на кинетику второй стадии (роста центров кристаллизации). [c.158]

    Суммарная скорость кристаллизации зависит от соотношения скоростей обеих стадий кристаллизации и в общем случае определяется скоростью диффузии молекул к центрам кристаллизации, молекулярной и пространственной структурой сырья,температурой и длительностью процесса и др. Возможны три варианта соотношения скоростей а) скорость диффузии молекул к центрам кристаллизации больше скорости роста размеров кристаллов б) скорость роста размера кристаллов примерно равна скорости диффузии молекул к центрам кристаллизации в) скорость диффузии молекул к центрам кристаллизации лимитируется вязкостью системы и меньше скорости роста кристаллов углерода. При достижении укрупненными центрами кристаллизации (сложными структурными единицами) порога осаждения система расслаивается на фазы (третья стадия). [c.158]

    При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибких кристаллов. Процесс кристаллизации складывается из двух стадий стадия образования центров кристаллизации (или зародышей) и стадия роста этих центров. Вторая стадия кристаллизации — многоступенчатый процесс, который по различным причинам (например, вследствие возникновения механических напряжений) может останавливаться на любой промежуточной стадии. Монокристаллы образуются только в особых условиях. Обе стадии кристаллизации сильно зависят от температуры. Понижение температуры благоприятствует образованию зародышей кристаллизации, но в то же время уменьшает молекулярную подвижность, а вместе с ней и скорость роста кристаллов. Поэтому температурная зависимость скорости кристаллизации проходит через максимум. Большинство алканов имеет несколько аллотропических модификаций, кристаллизуясь в гексагональной, триклинной, моноклинной и орторомбической формах. Некоторые [c.190]


    Если в маловязком растворе будет находиться избыточное количество парафина, то, несмотря на медленность охлаждения, образуется много зародышей кристаллов, и масса парафина, кристаллизующегося при данной температуре, распределится между многочисленными центрами кристаллизации, что поведет к уменьшению размера кристаллов. [c.97]

    На основе этого Н.. И. Черножуков [5] сделал вывод, что асфальто-смолистые вещества, находящиеся в дисперсном состоянии в парафинистом нефтепродукте, становятся, таким образом, центрами кристаллизации, вокруг которых образуются скопления кристаллов парафина и церезина в виде друз. Очевидно, чем меньше содержится в нефтепродукте таких диспергированных частиц, тем крупнее должны быть при данной температуре скопления кристаллов. [c.99]

    ДНИ. При НИЗКИХ температурах в стадии, конечного охлаждения, когда основная масса твердых углеводородов уже выкристаллизовалась из раствора, скорость охлаждения может быть повышена. На полноту и четкость отделения твердой фазы от жидкой влияет также предварительная термическая обработка смеси сырья с растворителем, предшествующ,ая процессу охлаждения. Условия депарафинизации улучшаются при нагреве сырья с растворителем до получения однородного раствора и полного растворения мельчайших частиц твердых углеводородов, которые могли бы стать дополнительными центрами кристаллизации и привести При охлаждении раствора к образованию мелких кристаллов твердых углеводородов.  [c.176]

    Большое число центров кристаллизации в растворе (а ими могут быть частицы диспергированных твердых углеводородов) также способствует образованию мелких кристаллов. Для уничтожения центров кристаллизации сырье перед началом процесса нагре- вают до температуры, на 15—20°С превышающей температуру плавления твердых углеводородов, которые после расплавления полностью растворяются в масле. [c.349]

    Молекулы смол, не содержащие длинные алкильные цепи, не могут внедряться в кристаллы парафинов и образовывать смешанные кристаллы. Однако они обладают определенной поверхностной активностью, благодаря которой адсорбируются на поверхности кристаллов твердых углеводородов. Адсорбция таких смол на поверхности кристаллов в процессе кристаллизации вызывает поверхностные перенапряжения, усиливающиеся в связи с одновременным ростом и сжатием кристаллов из-за снижения температуры, вследствие чего поверхность кристаллов деформируется за счет смещения слоев. Активные участки, образовавшиеся в результате таких деформаций, не блокированные в момент образования смолами, служат новыми центрами кристаллизации, что приводит к образованию дендритных кристаллов, сформировавшихся из нескольких центров кристаллизации. Образующиеся дендриты могут иметь древовидные, шарообразные или иные формы /17/. [c.30]

    С точки зрения возможности появления твердой макрофазы важно не только количество образующейся дисперсной фазы, но и особенно размеры образующихся частиц. При кристаллизации размеры кристаллов определяются прежде всего скоростью образования центров кристаллизации. Статистическая вероятность возникновения центров кристаллизации, представляющих собой достаточно крупные группировки молекул, вблизи температуры насыщения очень мала. Кристаллические зародыши начинают появляться лишь по достижению в результате переохлаждения определенного пересыщения раствора. Связь между скоростью образования центров кристаллизации и переохлаждением системы выражается зависимостью /31/ [c.50]

    Для образования первоначального тонкого слоя отложений может играть существенную роль температурный градиент у самой стенки в диффузионном подслое. Это особенно важно в тех случаях, когда температурный профиль скважины может оказаться н монотонным. Такая картина наблюдается в скважинах Западной Сибири из-за наличия зон вечной мерзлоты на различных глубинах /21/. В таких случаях на колебания температур у стенки оперативно будет реагировать, прежде всего, пограничный подслой, тогда как на средней температуре потока небольшие колебания градиента по сечению трубы могут не сказаться. Между тем даже небольшие колебания температуры в пограничном слое приведут к существенному изменению его состояния как дисперсной системы. При этом из-за изменения скорости возникновения центров кристаллизации существенные колебания будут происходить в наиболее высокодисперсной части спектра распределения частиц дисперсной фазы, всецело определяющей интенсивность формирования отложений в гидродинамических условиях. Такого рода аномалии были отмечены при обработке результатов исследований ряда скважин Западной Сибири /21/. [c.123]

    Углерод как фаза, имеющая более высокую температуру перехода в кристаллическое состояние, образуется в жидком расплаве первым в виде фуллеренов, которые могут являться центрами кристаллизации для железа (как модификаторы). [c.25]

    При снижении температуры в ПЗП и стволе скважины до температуры начала кристаллизации происходит интенсивное образование в нефти кристаллов парафина, которые переходят из растворенного во взвешенное состояние. Эти кристаллы служат центрами кристаллизации и последующего более интенсивного выпадения парафина из нефти и осаждение его на твердой поверхности. [c.72]

    Добавка ПАВ к высокопарафинистой нефти приводит к заметному изменению ее структурно-механических свойств при пониженных температурах [14, 15, 16]. ПАВ, адсорбируясь на центрах кристаллизации парафинов, предотвращают рост кристалликов и образование ими прочной структуры. [c.16]

    Поскольку масляное сырье представляет собой многокомпонентную смесь кристаллизующихся углеводородов, растворенных в кизкозастывающихся компонентах, при депарафинизации в основном будет иметь место совместная, то есть многокомпонентная, кристаллизация с образованием различных более сложных смешанных форм кристаллической структуры. При совместной кристаллизации из углеводородных сред в первую очередь выделяются кристаллы наиболее высокоплавких углеводородов, на кристалли — меской решетке которых последовательно кристаллизуются углеводороды с более низкими температурами плавления. При этом (рорма кристаллов остается ромбической, а их размер зависит от молекулярной массы и химической природы кристаллизующихся углеводородов. Так, с повышением молекулярной массы и температуры кипения н-алканов кристаллическая структура их становится все более мелкой. Обусловливается это тем, что с повышением молекулярной массы уменьшается подвижность молекул парафина. Это затрудняет их диффузию к ранее возникшим центрам кристаллизации и вызывает образование новых дополнительных кристал — Аических зародышей малых размеров. [c.254]

    Пргжтикой эксплуа тации установок депарафинизации уста— П0ПЛ0110, что скорость охлаждения наиболее важна на начальной стадии охлаждения, то есть в момент образования первичных центров кристаллизации. При температурах конечного охлаждения, КОГД.1 основная масса парафинов выкристаллизовалась из раствора, скорость охлаждения может быть повышена. [c.259]

    На гюл юту и четкость отделения кристаллов парафинов от диспсрс11он1юй среды влияет также предварительная термическая обработ ка раствора до температуры на 10—15 °С, превышающей темпергиуру по иой растворимости мельчайших частиц парафинов в масло, которые могут стать первичными центрами кристаллизации с образонаниом мелких кристаллов твердых углеводородов. [c.259]

    Весьма большую роль в кристаллообразовании парафинов играют мелкокристаллические высококипящие парафины, влияющие на структуру парафинов с более низкими температурам кипения. При добавке к раствору крупнокристаллического парафина даже самых незначительных количеств высококипящих мелкокристаллических парафинов сразу же резко снижаются размеры образуюнщхся кристаллов. Это обусловливается тем, что высококипящие парафины, будучи менее растворимыми в различных растворителях, в том числе и в нефтяных маслах, начинают выкристаллизовываться первыми и образуют большое число центрой. кристаллизации. Последующее выделение менее высококипяпщх и по природе крупнокристаллических парафинов происходит на уже образовавшихся многочисленных центрах кристаллизации, вследствие чего вся выкристаллизовавшаяся масса парафина рассеивается по этим многочисленным центрам кристаллизации, приобретая в результате этого мелкую структуру, отвечающую наиболее высококипящей высокомолекулярной ее части. [c.67]

    Однако потребность в глубокообезмасленных высокоплавких церезинах из года в год растет. В связи с этим исследованию возможности интенсифицировать процесс обезмасливаиия твердых углеводородов, особенно петролатумов, посвящено много работ. Известно, что некоторые примеси и специально введенные присадки могут изменять течение и характер кристаллизации твердых углеводородов при понижении температуры, влияя как на образование центров кристаллизации, так и на последующий рост кристаллов. Использование модификаторов структуры твердых углеводородов для интенсификаций обезмасливаиия представляет большой интерес. В этом случае без особых капитальных затрат можно значительно увеличить скорость фильтрования суспензии твердых углеводородов и, как следствие этого, увеличить производительность установки при одновременном повышении качества получаемых церезинов. Эффективность модификаторов структуры твердых углеводородов при обезмасливании зависит от их правильного выбора, который определяется природой и механизмом действия модификатора, составом и содержанием твердых углеводородов в сырье, а также структурой и содержанием в нем смолистых веществ. [c.176]

    В режиме кавитации скорость зародыщеобразования в растворах сильно возрастает. Чалмерс [3] предположил два механизма зарождения центров кристаллизации в ультразвуковом поле в режиме кавитации понижение температуры стенки пузырька при его расширении и сдвиг температуры плавления, вызываемый ударной волной. Подробное обсуждение этих механизмов приводится в работе Р. Хиклинга [8]. [c.148]

    Обратимся теперь к самой кинетике таких процессов. Рассмотрим, как протекают процессы при отсутствии готовых центров выделения новой фазы, например при замерзании воды, не содержащей таких загрязнений, которые могли бы служить центрами кристаллизации при СС или при температурах, немною более низких (рис. 166). В таком случае вода может быть охлаждена до этих температур без замерзания при более же глубоком охлаждении в ней начнут образовываться кристаллики сначала очень малых размеров, постепенно увеличивающиеся. По отношению к таким более крупным кристаллам вода является уже переохлажденной и начинает интенсивно на них кристаллизоваться это сопровождается более интенсивным выделением теплоты и приводит к повышению температуры до 0° С — температуры равновесия между водой и крупными кристаллами льда. После этого процесс протекает уже обычно при постоянной температуре с той или другой скоростью, определяемой скоростью отвода теплоты. [c.490]

    Темпцжтура. Поскольку энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, но и регулировать соотношение между скоростями распада и уплотнения, а также, что особенно важно, между скоростями реакций поликонденсацни, тем самым меняя свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию в зависимости от целевого назначения процесса. Для получения кокса с лучшей упорядоченностью структуры коксования сырья целесообразно проводить при оптимальной температуре. При пониженных температурах из-за малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые препятствуют дальнейшим реакциям уплотнения и форхшрованию мезофазы. При температурах выше оптимальной скорости реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средних (оптимальных) температурах коксования ( 480 С), когда скорости реакций деструкции и уплотнения соизмеримы со скоростью роста мезофазы. Коксующийся слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.63]

    Характер кристаллизации парафинов (церезинов) при охлаждении топлив и масел зависит от скорости зарождения кристаллизационных центров н скорости рост.з кристаллов. Чем ниже температура, тем выще скорость зарождения центров кристаллизации, но меньше скорость роста кристаллов. Поэтому обычно при относительно высоких температурах образуется небольшое число крупных кристаллов, а при низких темпеэатурах— много мелких. Кроме того, на кристаллизацию оказывают Е лияние свойства кристаллизующихся компонентов (температура и теплота плавления) и среды (вязкость) их растворимость в данной нефтяной фракции наличие в составе нефтепродукта поверхностно-активных веществ и различных примесей скорость охлаждения нефтепродукта, степень перемешивания и разность между температурой нефтепродукта и температурой насыщения. [c.52]

    Вязкость нефтяных остатков при высоких температурах изменяется по сложной зависимости по мере увеличения концентрации дисперсной фазы она непрерывно возрастает. Только при замедлении скорости перехода системы из аномального жидкого С0СТ0Я1ШЯ в твердое до оптимального ее значения, когда вязкость обеспечит диффузию молекул к центрам кристаллизации, возможен рост крупных кристаллов. При одних и тех же условиях получения нефтяного углерода соответствие между указанными скоростями и ростом кристаллов создается подбором сырья определенной молекулярной структуры (крекинг-остатки дистиллятного происхождения, ароматические концентраты). В температурном интервале перехода системы из состояния с критическим напряжением сдвига предельно разрушенной структуры Рг к состоянию с критическим напряжением сдвига необратимо твердеюшей системы Рд возможен пнтенсивный рост кристаллов углерода с анизотропными свойствами. Величина температурного интервала зависит от температуры процесса перехода. При высоких температурах этот интервал минимален, что существенно ограничивает рост кристаллов. Он минимален также при использовании сырья, со- [c.47]

    Анализ этого уравнения применительно к кристаллизации переохлажденной жидкости, показывает, что с ростом степени переохлаждения скорость зарождения центров кристаллизации увеличивается (уменьшается AG) и уменьн1ается скорость доставки вещества (увеличивается вязкость). Такие зависимости должны давать максимум на кривой зависимости скорости образовании центров кристаллизаций от температуры (рис. 11.25), Например, [c.103]

    Физические явления, связанные с действием различных присадок, понижающих температуру застывания, можно разграничить на 1ве"категории. Часть присадок, к числу которых можно отнести парафлоу и нефтяньГё нейтральные смолы, влияет на понижение темп атуры кристаллизации парафинов в маслах. Другие присадки, не дающие йСТИ растворов с маслом, а только тонко диспергирующиеся в нем или выделяющиеся при охлаждении масла в виде мицелл, обладая полярными свойствами, служат центрами кристаллизации парафинов, В результате, вокруг такой мицеллы образуется крупный агрегат кристаллов парафина, что приводит к меньшему связыванию кристаллической сеткой парафинов жидкой фазы и увеличению ее подвижности и, следовательно, к понижению температуры засты ания масла. [c.243]

    Интересным яыиется поведение содержащихся в нефтях в заметных количествах асфальтенов в процессе кристаллизации углеводородов. Было показано /27/, что диспергированные асфальтены при искусственном введении в небольших количествах (0,15-0,7 % масс) в кристаллизующийся раствор могут служить центрами кристаллизации для парафинов, образуя скопления в виде грузов, в которых кристаллы парафинов радиально расположены вокруг частицы асфальтенов. Однако, не отрицая принципиальной возможности такой ситуации, следует отметить, что асфальтены обладают весьма высокой температурой затвердевания и формируют в нефтях самостоятельную дисперсную фазу при заметно более высоких температурах, поэтому их участие в процессах кристаллизации углеводородов при практически встречающихся температурах представляется маловеро- [c.30]


Смотреть страницы где упоминается термин Центры кристаллизации температуры: [c.71]    [c.174]    [c.175]    [c.133]    [c.148]    [c.149]    [c.100]    [c.104]    [c.202]    [c.109]    [c.49]    [c.52]    [c.52]   
Кристаллизация из растворов в химической промышленности (1968) -- [ c.74 ]




ПОИСК





Смотрите так же термины и статьи:

Температура кристаллизации



© 2024 chem21.info Реклама на сайте