Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Суспензии реальная

    Получение коллоидных растворов высокой концентрации является трудной задачей. Проще получить суспензии порошкообразных металлов в углеводородной среде. В этом случае для создания стабильных суспензий нужно избежать осаждения диспергированных частиц. Для характеристики устойчивости реальных суспензий металлов в углеводородной среде с некоторым приближением можно использовать закон Стокса, согласно которому [c.93]


    Как правило, при таком подходе удобнее обратить задачу, т. е. жидкость в целом считать неподвижной, а ансамбль шаров — движущимся с постоянной скоростью сквозь жидкость в противоположном направлении. При этом становится возможным с единой точки зрения описывать как течение жидкости сквозь неподвижный или псевдоожиженный слой, так и реальное стесненное оседание концентрированных суспензий. [c.39]

    Эффективность депрессорных присадок при кристаллизации твердых углеводородов связывают с их полярностью, снижением сольватации молекул парафина молекулами масла, нарушением агрегативной устойчивости дисперсии парафина и повышением при этом компактности кристаллических агрегатов, образованием ассоциированных комплексов молекул присадки и твердых углеводородов, что приводит к увеличению скорости фильтрования в процессе депарафинизации масляного сырья. Изучение влияния депрессорных присадок на поведение суспензий твердых углеводородов в сопоставлении с электрокинетическими исследованиями позволяет сделать вывод о возможной электростатической природе их действия. В работе [104], проведенной в этом направлении, в качестве критерия эффективности маслорастворимых присадок, используемых для интенсификации процесса депарафинизации, предложено значение энергетического барьера, создаваемого присадками на поверхности частиц дисперсной фазы в их суспензиях. Энергетический барьер учитывает кроме электрокинетического потенциала частиц дисперсной фазы и их размеры. В работе показана возможность применения маслорастворимых присадок для создания электрического заряда у частиц твердых углеводородов, обеспечивающего образование устойчивых коллоидных систем. Электрокинетические исследования реальных систем твердых углеводородов показали, что присадки, обладающие только депрессор-ным действием, эффективны в дистиллятном сырье. Для остаточного сырья следует использовать металлсодержащие многофункциональные присадки. Однако многокомпонентность масляных рафинатов, сложность состава твердых углеводородов и присутствие двух ПАВ при осуществлении процесса депарафинизации нефтяного сырья в присутствии присадок сильно усложняют изучение механизма кристаллизации твердых углеводородов, что, в свою очередь, затрудняет направленный поиск наиболее эффективных присадок для интенсификации этого процесса. [c.171]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]


    Напряження, при которых происходит скольжение плоскостей, обычно в сотни раз меньше теоретически ожидаемых благодаря наличию дефектов в кристаллической структуре реальных тел. Дефекты неоднородны и хаотически распределены в объеме кристалла нли материала и на их поверхности. Они соответствуют областям избыточной энергии Гиббса, и при разрушении твердого тела его можно представить как заготовку будущей свободнодисперсной системы — порошка или суспензии. Как уже указывалось ранее, дробление материала приводит к уменьшению дефектов в структуре частиц, так как разрушение происходит по наиболее опасным дефектам. Отсюда следует, что прочность частиц и материала из них возрастает с увеличением степени раздробленности. Этот вывод послужил основанием для крылатой фразы путь к прочности материалов лежит через их разрушение. [c.383]

    Результаты, полученные в случае практических эмульсий и суспензий. Рассмотрим примеры произвольных дисперсных систем, таких как реальные эмульсии и суспензии. [c.366]

    Джонсон и Нил (1962) изучали свойства других видов суспензий. Они измеряли фактор потерь в диапазоне частот от 30 кгц до 5 Мгц в дисперсных системах порошка алюминия, порошка карбида кремния, фибры в воде, этиленгликоле, водном ацетоне и водном глицерине. Ими замечено два вида поглощения первое в диапазоне частот 10—30 кгц, которое соответствовало правилу т-й степени, другое — в области нескольких мегагерц с простым видом релаксации диэлектрической дисперсии. К сожалению, рассмотрение механизма диэлектрического поглощения нельзя продолжить из-за недостатка данных по реальной части диэлектрической проницаемости. [c.399]

    Реологическая кривая у (т) реальной тиксотропной системы может быть более сложной и содержать ряд различных участков (стадий). Так, 6 %-ная (по весу) суспензия бентонитовой глины обнаруживает при наименьших значениях т механически обратимое упругое последействие в практически неразрушенной структуре (рис. 5, стадия I) затем — медленное вязкопластическое течение ( ползучесть по Шведову — II) далее — бингамовское течение в энергично разрушаемой структуре (III) и наконец, эйнштейновское течение в полностью разрушенной структуре (IV). [c.312]

    Реальные суспензии очень часто содержат частицы, сильно отличающиеся по форме от шарообразных. При исследовании таких суспензий с помощью седиментационного анализа радиус частиц, подсчитанный по уравнению ( 11.20), представляет собой радиус воображаемых шарообразных частиц из этого же материала, оседающих с такой же скоростью, что и частицы изучаемой суспензии. Вычисленный таким образом радиус называется эквивалентным. [c.132]

    Если суспензия содержит три фракции частиц, седиментационная линия будет состоять из трех прямолинейных отрезков. При увеличении числа фракций, очевидно, будет увеличиваться число изломов на седиментационной линии и для реальной полидисперсной суспензии она превратится в плавную кривую, близкую к параболе (см. рис. 79). [c.143]

    Если суспензия содержит три фракции частиц, седиментационная линия будет состоять из трех прямолинейных отрезков. При увеличении числа фракций, очевидно, будет увеличиваться число изломов на седиментационной линии,и для реальной полидисперс-ной суспензии она превратится в плавную кривую, близкую к параболе (рис. 3.3). Если к точкам на данной седиментационной кривой, соответствующим разному времени оседания (г,, г,,. .. г,), провести касательные, они отсекут на оси ординат отрезки, равные массе фракций, оседающих за соответствующие промежутки времени О, - за время г, О - за время г,, Ож- за время, т. е. О - [c.61]

    Кроме рассмотренных условий применимости закона Стокса к реальным системам, связанных с допущениями, сделанными при выводе этого закона, следует учитывать и другие особенности изучаемых объектов, а также влияние внещних факторов. Так, суспензия должна быть устойчивой, не коагулировать в процессе седиментации. Если частицы плохо смачиваются средой, то образуется неустойчивая суспензия, коагулирующая в процессе оседания. В случае проведения седиментационного анализа дисперсной системы, частицы которой плохо смачиваются средой, необходимы добавки стабилизирующих веществ, улучшающих смачивание. Оседание частиц должно происходить в спокойной жидкости. Необходимо постоянство температуры в условиях опыта. Все частицы должны иметь одинаковую плотность, и при малых размерах частиц следует учитывать наличие сольватных и стабилизирующих слоев, так как сильное их развитие, в особенности для частиц малых размеров, внесет неточность в результат определения. В дисперсной системе не должно быть пузырьков воздуха или другого газа, направление движения которых противоположно оседающим частицам поэтому необходима тщательная подготовка образца для опыта. Рекомендуется взятую навеску предварительно обработать небольшими порциями жидкости при тщательном перемещивании, иногда при подогреве, чтобы удалить адсорбированные на поверхности частиц газы. [c.12]

    При рассмотрении реальных капиллярных систем следует учитывать, что внутри каждого капилляра возникает двойной электрический слой. Распределение плотности заряда в поверхностном слое, а следовательно, и величина -потенциала однозначно определяется (при данной температуре) составом фаз, а именно химической природой твердой фазы, составом раствора и его концентрацией. Таким образом, величина -потенциала по физическому смыслу не должна зависеть от структурных параметров, т. е, от размеров капилляра, что подтверждается и экспериментально. Точно так же, в коллоидных растворах, например в суспензиях, величина -потенциала у частиц дисперсной фазы не должна зависеть от их размеров .  [c.178]


    Если нагрузка превышает предел упругости, происходит либо упругий разрыв, либо возникает пластическая деформация. Типичная кривая кинетики деформации- реальной упруго-пластической системы (например, 30% глинистой суспензии) представлена на рис. 108. [c.259]

    В этом уравнении Q —поперечное сечение электродов Н — градиент потенциала а — степень диссоциации электролита Ик и Иа — подвижности катиона и аниона с — начальная концентра-. ция раствора и Р — число Фарадея. Применение этого уравнения к реальной системе — почвенной суспензии — не дало удовлетворительных результатов. [c.167]

    Понятие дисперсная система значительно шире, чем понятие коллоидная система . К собственно коллоидным системам относят дисперсные системы с наиболее высокой степенью раздробленности вещества дисперсной фазы. Однако коллоидная химия изучает дисперсные системы и с более крупными частицами, куда относятся многие реальные системы большой практической важности (эмульсии, суспензии, аэрозоли, порошки и т. д.). [c.365]

    В развитии указанных основных проблем современной науки и техники фундаментальное значение приобретают коллоидная химия и реология в тех основных формах, которые сложились под влиянием физико-химической механики и соответствующих областей практики. Большое значение коллоидной химии, т. е. учения о дисперсных системах и поверхностных явлениях, и реологии в развитии физикохимической механики связано с тем, что реальные твердые тела и отдельные кристаллы обладают своеобразной коллоидной структурой кроме того, образование твердых тел с характерными для них механическими свойствами зависит от процессов, изучаемых современной коллоидной химией и реологией в виде проблемы структурообразования в дисперсных системах (суспензиях) и в растворах высокомолекулярных соединений. Поэтому прежде чем рассматривать основные принципы и содержание физико-химической механики, необходимо вначале изложить те разделы коллоидной химии и реологии, с которыми непосредственно связана эта наука. [c.4]

    В этой главе мы рассмотрим подробнее дисперсионный анализ грубодисперсных систем, в частности, порошков, суспензий и эмульсий. Нахождение дисперсности этих объектов имеет особенно большое значение, поскольку она определяет производственные показатели многих промышленных материалов. Так, качество бетона во многом зависит от дисперсности цемента и песка, качество фарфора —от дисперсности каолина, интенсивность и тон краски — от размеров частиц пигмента и т. д. В реальных грубодисперсных системах спектр размеров частиц обычно столь широк, что определение среднего размера практически не имеет смысла. Поэтому для характеристики дисперсности. мы разделяем систему мысленно на ряд отдельных фракций, понимая под фракцией [c.45]

    В реальных системах с неоднородными частицами более крупные оседают быстрее, а более мелкие — отстают и четкой верхней границы суспензии с чистой средой не образуется. Поскольку наблюдать за скоростью движения отдельной частицы в суспензии очень трудно, были разработаны способы, основанные на регистрации изменений макроскопических свойств суспензии во времени. Наиболее распространенным и точным является метод непрерывного взвешивания, заключающийся в измерении веса чашечки, погруженной в суспензию на определенном уровне. Тонкую чашечку (изготовленную из стекла или фольги) подвешивают на [c.47]

    Реальные твердые тела, составляющие основу материальной культуры человечества (например, строительные материалы, металлические и деревянные изделия, одежда, бумага, полимеры) в подавляющем большинстве являются структурированными дисперсными системами (твердообразными структурами). Структурированные жидкости или жидкообразные структуры (например, глинистые растворы, многие промышленные суспензии) также имеют немалое практическое значение. [c.268]

    Однако в реальных системах с неоднородными частицами более крупные оседают быстрее, более мелкие — отстают и четкой верхней границы с чистой средой не образуется. В этом случае задача анализа — оценка распределения частиц по размерам, иначе говоря — определение относительного содержания отдельных фракций в системе. Для решения этой задачи обычно помещают в суспензию на определенной высоте h легкую чашечку, соединенную с динамометром, и строят седиментационную кривую зависимости массы осевших частиц Р от времени. Эта кривая отражает постепенное затухание прироста Р, поскольку вначале оседают все частицы — и крупные и мелкие, затем все более мелкие, поскольку крупные уже осели. Проводя касательные к кривой и экстраполируя их на ось Р, можно по отсекаемым отрезкам определить фракционный состав. Подробное описание методики анализа и препаративного разделения суспензии на отдельные фракции дается [c.35]

    Большое влияние на качество цементирования оказывают и технологические приемы. Известно, что большие разрывы во времени между окончанием процесса цементирования и началом схватывания суспензий нередко являются причинами межпластовых перетоков и межколонных проявлений. Поэтому многие советские и зарубежные исследователи [516, 543, 544, 545] предлагают сокращать до минимума этот разрыв во времени. Однако эти рекомендации при существующей технологии цементирования не могут быть соблюдены. Обычно повсеместно у нас в стране и за рубежом растворение в воде реагентов, регулирующих сроки схватывания, производится в равных дозах на весь объем тампонажной смеси, исходя из максимально замеренной температуры на забое. Фактически же температура ствола скважины изменяется в процессе цементирования, а поэтому такая методика приготовления тампонажных растворов не соответствует реальным условиям. [c.227]

    Мы рассмотрели очень кратко физическую картину прохождения суспензии и эмульсии через пористую перегородку с оставлением на ней части гетерогенной фазы. Следует отметить, однако, что реальная проблема процессов фильтрации более сложна. При фильтровании происходит не просто засорение пор фильтра твердыми частицами, а довольно сложное физико-химическое взаимодействие частиц загрязнений, топлива и фильтровальных материалов, особенно пористых. Подобные процессы должны исследоваться на молекулярном уровне с привлечением квантово-хими-ческих методов. Эти теоретические проблемы процессов фильтрации должны быть решены в будущем. [c.213]

    Опыт автора подтверждает, что даже для новых партий одного сорбента той же фирмы может потребоваться серьезная корректировка методики заполнения колонок, так как химия их поверхности различается в деталях от партии к партии. Надо также учитывать тот факт, что фирмы, производящие и колонки, и сорбенты, не заинтересованы в разглашении секретов упаковки своих сорбентов. Следует с осторожностью относиться к чудодейственным жидкостям для приготовления суспензий обращенно-фазных и некоторых других сорбентов, составы которых не раскрываются фирмами-производителями. Утверждения об универсальности этих жидкостей для любого обращенно-фазного сорбента и о получении гарантированно высокоэффективных колонок являются не более, чем рекламой. Она нередко весьма далека от реальных результатов, которые удается получить, а воспроизвести их состав в случае успеха (особенно если речь идет о полном составе) довольно затруднительно. [c.121]

    Лиофильную коагуляцию следует рассматривать как первую, но не обязательную стадию коагуляционного процесса, на которой частично потеряна агрегативная устойчивость, но сохраняется кинетическая (седиментационная). Это состояние объединяет обширную область реальных глинистых суспензий с различными градациями коагуляции. Все доброкачественные буровые растворы должны находиться в этой области, причем, в зависимости от условий, на различных ее участках. Суспензии из бентонита с большим выходом раствора соответствуют максимальной гидрофильности, тогда как у ингибированных растворов (известковых, гипсовых и др.) она минимальна. Для коагуляции глинистых суспензий существенно, что основными элементами возникающих структур являются не первичные глинистые частицы, а пачки из них, представляющие собой компактные агрегаты. Это является предпосылкой для противоположно направленного процесса — пептизации, которая в той или иной мере может реализовываться параллельно с коагуляцией. [c.84]

    Как метод отражений , так и ячеечная модель не свободны от недостатков. В частности, оба метода навязьшают суспензии излиишюю степень упорядоченности, поскольку расположение частиц в суспензии заранее фиксируется. В реальных суспензиях положение частиц определяется их гидродинамическим взаимодействием и имеет, в какой-то мере, случайный характер. В ячеечной модели, кроме того, вызывает сомнение достаточно произвольный выбор формы ячейки и вида граничных условий на ее поверхности. [c.69]

    Прп быстром смешивании реагентов увеличивается число центров кристаллизации, вследствие чего образуются мелкокристаллические осадки. Интенсивное перемешивание может влиять на размер частиц и препятствовать их слипанию. Наличие посторонних ионов влияет на химию поверхности осадков. После осаждения концентрация электролита высока это может нарушить двойной электрический слой вокруг частиц п привести к образованию хлопьевидного осадка. Если же избыток электролита отмыт, то частицы могут образовать устойчивый коллоидный раствор, который трудно отфильтровать. Твердый комионент выделяют из таких суспензий центрифугированием, что позволяет получать высокодисперсные материалы. Использованпе закономерностей коллоидной химии открывает реальные возможности в целенаправленном воздействии на заряд новерхности, размер и морфологию частиц, что в конечном итоге позволит проводить направленный синтез катализатора с заранее заданными свойствами 4, 5]. [c.123]

    В дисперсиях, эмульсиях, суспензиях, где присутствует большое число частиц с формой, близкой к шаровой, можно предположить, что любая частица, выбранная наугад, окружена сферически симметричным слоем близлежапщх частиц ( облаком ). Если радиус такого сферического облака равен Ь, то в первом приближении можно принять, что геометрическое место точек, в которых результирующие поля перечисленных величин достигают экстремума, образует сферу радиусом Ъ=Ы2. Такая интерпретация физических явлений в дисперсной среде тем ближе к реальной картине явлений, чем равномернее дисперсия (т. е. когда локальное объемное содержание дисперсной фазы близко к общей удерживающей способности аппарата ф). [c.140]

    Таким образом, результаты исследования позволяют правильно оценивать реальную аэродинамическую обстановку в вихревой сушилке, производить кинетические расчеты процессов тепло- и массообмена и выбирать оптимальные конструктивные параметры при проектировании сушилок подобного типа. В сушильной камере можно создать условия для интенсивного контактирования материальных потоков и тепло- и массообмена между ними. При этом увеличиваются удерживающая способность камеры по дисперсной фазе, влагонапряжен-ность ее объема, быстро стабилизируются температурные и концентрационные поля на выходе. Например, при сушке катализаторных суспензий в вихревой сушилке влагонапряженность единицы объема сушильной камеры достигала 3,0-5,0 т/(м ч). [c.175]

    Под коллоидной химией понимают науку о поверхностных явлениях и дисперсных системах . К поверхностным явлениям относятся процессы, пронсходящне на границе раздела фаз, о меж-фазном поверхностном слое и возникающие в результате взаимодействия сопряженных фаз. Каждое тело ограничено поверхностью, и поэтому объектами коллоидной химии могут быть тела любого размера. Однако поверхностные явления проявляются сильнее всего в телах с высокоразвитой поверхностью, которая придает им новые важные свойства. К таким телам относятся поверхностные слои, пленки, нити, капилляры, мелкие частицы. Совокупность этих дисперсии вместе со средой, в которой они распределены, образует дисперсную систему. Дисперсные системы являются наиболее типичными и вместе с тем сложными объектами коллоидной химии, потому что в них проявляется все многообразие поверхностных явлений, формирующих особые объемные свойства этих систем. Именно такими системами является большинство окружающих нас реальных тел. Отсюда все основания называть пауку о поверхностных явлениях и дисперсных системах физикой и химией реальных тел. Все тела, как правило,— это полпкристал-лнческпе, волокнистые, слоистые, пористые, сыпучие вещества, состоящие из наполнителя и связующего, находящиеся в состоянии суспензий, паст, эмульсий, пен, пыли и т. д. Почва, тела растительного и животного мира, облака и туманы, многие продукты пронз-водства, в том числе строительные материалы, металлы, полимеры, бумага, кожа, ткани, продукты питания —все эго дисиерсные системы, особые свойства которых изучает коллоидная химия. [c.9]

    Типичная кривая седиментации реальной полидисперсной системы представлена иа рис. IV. 1о. Эту кривую можно представить как ломаную линию, отвечающую бесконечно большому числу фракций. Кривая седиментации, представленная на рис. IV. 1 в разделена на четыре участка, соответствующих выбранным временам полного осаждения фракций (т н, то, Тмакс)- Такое разделение кривой лучше проводить после предварительного определения времени осаждения самой крупной и самой мелкой фракций. Полному осаладению самой крупной фракции отвечает Тмин. Время осаждения самой мелкой фракции соответствует времени окончания накопления осадка Тыакс В точках кривой, отвечающих моментам окончания осаждения фракций (В, С, О, Е) проводят касательные до пересечения с осью ординат, на которой получают отрезки, соответствующие массам фракции частиц. Зная высоту столба суспензии и время полного осаждения фракций, можно по формуле (IV. 20) определить скорость осаждения и по формулам (1 .8) или (IV. 22) рассчитать радиус частиц каждой фракции. Очевидно, что применительно к полидисперсным системам этот радиус является граничным для соседних фракций, а средний радиус фракции тем ближе отражает истинное значение, чем на большее число фракций разделена полидисперсная система. [c.197]

    Для седиментационного анализа следует применять разбавле1[ 1ые системы, для которых можно пренебречь изменением скорости движения частиц в результате их столкновения. Поскольку большинство реальных систем (суспензии, порошки) имеют частицы неправильной формы, по уравнению (П1.2) можно рассчитать так называемый эквивалентный радиус, т. е. радиус частиц сферической формы, оседаю цих с такой же скоростью. На практике дисперсну о систему характеризуют распределением частиц по размерам и фракцион ым составом системы (содержание дисперсной фазы в заданных интервалах радиусов частиц). Эти хара <теристикн получают, анализируя кинетические кривые осаждения (кривые седиментации), обычно предста зляющие собой зависимость массы осевшего вещества от времени осажде ИЯ. [c.82]

    Структурообразование в дисперсных системах в условиях ие-црерывиого разрушения структуры изучается с помощью специальных вискозиметров, позволяющих измерять вязкость при различных скоростях потока жидкости или наблюдать изменение вязкости во временн прн фиксированной скорости потока (при фиксированном градиенте скорости сдвига). Приборы, основанные на первом принципе, используют для получения реологических констант тамгюиажпых растворов, которые необходимы при гидравлических расчетах. Подобные измерения можно производить только во время стадии И, когда структурно-механические свойства портландцементной суспензии меньше изменяются во времени. Для изучения кинетики структурообразования тампонажных растворов в условиях непрерывного разрушения структуры применяются приборы, называемые консистометрами. Они фиксируют сопротивление, оказываемое суспензией перемешиванию при постоянной частоте вращения мешалки. Измеряемая величина, называемая консистенцией, характеризует эффективную вязкость суспензии прл интенсивности перемешивания, примерно соответствующую реальным условиям цементирования глубоких скважин. [c.110]

    Работы Эйнштейна явились первыми и наиболее известными микрореологичес-кими исследованиями, заключающимися в определении реологического поведения сложных дисперсных систем при помощи известных реологических свойств составляющих их элементов, предполагая квазиоднородность и квазиизотропность материалов. Было принято, что в рассматриваемых дисперсных системах — суспензиях — дисперсная фаза представляет собой твердые частицы шарообразной формы, а пространство между ними заполнено непрерывным образом дисперсионной средой — простой вязкой жидкостью. Как показала практика, за исключением простейших случаев, а тем более для сложнейших нефтяных систем, такой подход непригоден ввиду сложности действительного строения дисперсных систем. При этом целесообразно вводить вместо реальной системы некоторые модели, предполагая аналогичность их поведения поведению рассматриваемых реальных объектов. [c.88]

    Формула Эйнштейна многократно подвергалась экспериментальной проверке. Проведение таких опытов связано с большими трудностями, так как условия, положенные в основу теории, редко соблюдаются в реальных системах. Хорошее совпадение с предсказаниями теории было получено Эйрихом (1936—1937 гг.) при исследовании вязкости суспензии стеклянных шариков. [c.73]

    Если при установившемся седиментационно-диффузионном равновесии основная масса частиц дисперсной фазы за сравнительно короткое время окажется в осадке, систему считают кинетически (седиментационно) неустойчивой. Это характерно для микрогете-рогенных систем (суспензий, эмульсий и т. п.). Если же частицы в основном остаются во взвешенном состоянии, система является кинетически (седиментационно) устойчивой. К таким системам относятся ультрамикрогетерогенные системы — коллоидные растворы (золи). В реальных системах частицы обычно неоднородны по размерам, и в задачу седиментационного анализа входит опре-дение распределения частиц по размерам, т. е. относительного содержания различных фракций в полидисперсной системе. [c.375]

    Более резко изменяется вязкость связиодисперсных систем с коагуляционной структурой. В этом случае можно рассматривать целый спектр состояний между двумя крайними состояниями системы с неразрушенной и с полностью разрушенной структурой, и зависимости от приложенного напряжения сдвига (скорости течения) реологические свойства структурированных дисперсных систем могут меняться в широких пределах — от свойств, присущих твердообразным телам, до свойств, характерных для ньютоновских жидкостей. Это разнообразие реологических поведений реальных дисперсных систем с коагуляционной структурой описывается, по Ребиндеру, полной реологической кривой. Иа рис. XI—20 приведен пример такой зависимости= 7 (" ) суспензии тонкодисперсного бентонита. Кривая позволяет выделить четыре характерных участка. [c.327]

    НОВСКИХ жидкостей. Ого разнообразие в реологическом поведении реальной дисперсной системы с коагуляционной структурой огшсыва-ется, по Ребиндеру, полной реологической кривой. На рис. XI-20 приведен пример такой зависимости V = V (т) для суспензии тонко-дисперсного бентонита. Кривая позволяет выделить четы >е характерных учасгка. [c.391]

    Глинопоршки в количестве 40% веса цемента вводили в цемент, и смесь сухих материалов затворяли водой при В/Т = 0,9. Приготовленные таким образом суспензии с различным кристаллохимическим строением глинистых минералов по своим технологическим параметрам (удельному весу, подвижности и т. д.) соответствовали реальным облегченным цементно-глинистым там-понажным растворам, применяемым в практике цементирования скважин (добавка глины (палыгорскита) в 40% выбрана как один из оптимальных вариантов, описанных ниже технологических испытаний). [c.123]

    Несмотря на то что предварительное диспергирование глины в воде затворения обеспечивает получение тампонажного раствора с лучшими свойствами,более реальным является разработка рецептур смеси на основе глинопорошков, выпускаемых промышленностью, так как технологическое оборудование не приспособлено для проведения цементажа скважин с использованием суспензий. [c.153]

    При малой концентрации твердой фазы, когда структурообразование весьма затруднено, лишь в нескольких случаях удалось получить 5-образные кривые зависимости напряжения сдвига от скорости сдвига, типичные для структурированных систем. Однако благодаря применению метода минимизации структурного риска показано, что системы, подвергшиеся испытанию, подчиняются модели Гершеля-Балкли, а следовательно, реально обладают пластическими свойствами. Именно пластическое напряжение сдвига может служить мерой устойчивости возникающей структуры и, соответственно, стабильности суспензий. [c.74]

    Квазигомогеиное приближение. Многие реальные системы отличаются крайне нерегулярной геом структурой, характеризуемой широким спектром пространств масштабов Это - всевозможные аэрозоли, суспензии, газовзвеси, эмульсии, барботажные слои, композитные и пористые материалы, слои катализаторов и т п Неоднородности (структурные уровни) в таких системах существенно различаются по порядку величины Напр, в реакторе с неподвижным слоем катализатора можно выделить по крайней мере три характерных пространств масштаба высота слоя Н, радиус зерна г, радиус пор р [c.633]


Смотреть страницы где упоминается термин Суспензии реальная: [c.80]    [c.56]    [c.240]    [c.209]    [c.242]   
Процессы и аппараты химической технологии Издание 3 (1966) -- [ c.751 ]




ПОИСК





Смотрите так же термины и статьи:

Суспензии



© 2024 chem21.info Реклама на сайте