Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Перенос электрона на растворитель

    Благодаря огромным изменениям энергий сольватации, которые сопровождают перенос заряда, следует ожидать, что наиболее благоприятными будут те пути, которые сведут к минимуму перегруппировки внутри растворителя. Эти предположения действительно реализуются в растворителях, в которых ионы в растворах могут действовать как эффективные катализаторы переноса заряда. (Теория чистого переноса электрона описана Маркусом [95].) [c.504]


    Однако было бы неправильным считать, что все сводится к взаимодействию заряженных частиц со средой, к действию электростатических сил. Так, может происходить частичный или полный перенос электронов от ионов к молекулам растворителя, приводящий к распределению заряда между ионом и его сольватной оболочкой. При больших концентрациях растворенного вещества,— а для растворителя с низкой диэлектрической проницаемостью и при сравнительно небольших его концентрациях,— в результате усиления влияния заряженных частиц друг на друга могут образоваться ионные пары и более сложные группировки, содержащие как ионы, так и молекулы. [c.168]

    Следовательно, направление, механизм и скорость электродной реакции определяются сочетанием электрохимических и химических стадий. В силу этого обстоятельства они зависят не только от факторов, влияющих на стадию переноса электрона (потенциал и материал электрода, природа растворителя, pH раствора), но также и от факторов, воздействующих на кинетику и механизм химических реакций. Иногда это те же самые факторы, оказывающие влияние на различные стадии посредством разных механизмов, иногда совсем иные. К последним относятся, например, явления сольватации и ионной ассоциации в растворе, а также величина концентрации реагирующего вещества. [c.190]

    Обычно на поляризационных кривых катодного восстановления ароматических карбонильных соединений наблюдаются две одноэлектронные волны (рис. 7.16), вторая из которых в протонных средах может маскироваться реакцией разряда растворителя или электролита фона. Процесс восстановления бензальдегида при потенциалах первой катодной волны включает последовательные стадии обратимого переноса электрона и димеризации образовавшихся анион-радикалов П1  [c.248]

    Были рассмотрены реакции различного типа, объясняемые переносом электронов в цикле. Легкость подобных объяснений воодушевляет и настораживает. Создается впечатление, что сам механизм носит до известной степени формальный характер. Но реальный химический процесс чаще всего связан с участием среды, с действием растворителей и т. п. Всего этого не отражает циклический электронный перенос. Даваемые им объяснения носят характер гипотез. [c.186]

    Перенос электрона от комплекса на растворитель. В водных растворах это приводит к появлению атомов П, являющихся продуктом реакции П+ с электроном. Атомы Н обнаруживаются после облучения замороженных кислых растворов, содержащих ионы [Ре(Н20)б] , [ o(H20)6] +, оксалатных растворов o +  [c.377]


    Лучшего регулирования молекулярной массы полимера удается достичь при использовании каталитического комплекса щелочной металл — нафталин в среде полярного растворителя (тетрагидрофуран). Этот вид инициирования анионной полимеризации получил название полимеризации с переносом электрона. Схема процесса  [c.43]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]

    Выше мы упоминали о влиянии среды на протекание электрохимических реакций. Среда может влиять, во-первых, непосредственно на перенос заряда и, во-вторых, на химические реакции, протекающие до или после переноса электронов. Заметим, что под средой понимают не только растворитель, но и фоновый электролит и примеси, особенно остаточную воду, всегда присутствующую в органических растворителях. [c.470]

    Наряду с влиянием pH и ионной силы раствора механизм электродных процессов зависит и от природы растворителя.- Неводные растворители в вольтамперометрии органических соединений используются не только для повышения их растворимости, но и для устранения ряда факторов, осложняющих электродный щ)оцесс. Для этого, как правило, применяют апротонные полярные растворители ДМФА, ДМСО, ацетонитрил, тетрагидрофуран, ацетон и некоторые другие. В таких средах практически полностью подавляются реакции протонизации и ступени на вольтамперограммах соответствуют переносу электрона в более чистом виде . Кроме того, в неводных средах существенно уменьшается влияние адсорбционных эффектов, порой осложняющих форму поляризационных кривых. [c.474]

    Чем толще пленка, тем она прочнее. Однако с увеличением толщины полимерного покрытия может наблюдаться неполное участие редокс-центров в переносе заряда. В общем случае на перенос электронов влияет структура полимера, расположение электроактивных фрагментов в полимерной цепи, их окружение, подвижность противоионов, pH раствора. Свойства пленки зависят также от природы растворителя и фонового электролита. Наилучшие свойства имеют пленки, нерастворимые в воде, но набухающие в ней. Однако сильно набухающие полимеры могут частично растворяться в воде. Чтобы этого не произошло, применяют перекрестное связывание молекул с помощью бифункциональных реагентов, например глутарового альдегида. При этом молекулы модификатора связываются и с полимером, и с поверхностью электрода, и друг с другом. Такой способ применяют в тех случаях, когда требуется долговечность ХМЭ и его прочность. [c.484]

    Влияние растворителя на кинетику реакции окисления спиртов диоксидом хлора не обнаружено. Предложен механизм реакции спиртов с диоксидом хлора, лимитирующей стадией которого является перенос электрона. [c.22]

    Электростатические и ковалентные составляющие других термодинамических характеристик рассчитывают по соотношениям Д//, - AS T-v) VI АН2 = AGj. Данные по термодинамике образования молекулярных комплексов иода с органическими растворителями и их составляющие, рассчитанные на основе изложенных взглядов, представлены в табл. 1.5. Очевидно, что для большинства систем абсолютные значения электростатических и ковалентных составляющих многократно превышают величины результирующих функций и, в отличие от них, более чувствительны к природе донора электронной пары. При этом высокой степени переноса электронной плотности (характеризуемой AG2), соответствует значительная величина электростатического вклада (до 80% AG2), определяемая степенью разделения зарядов в комплексе. Как правило, AG, и AGj направлены навстречу друг другу, и изменение энергии Гиббса реакции в результате отражает незначительную часть энергетики взаимодействия. На основе величин электростатических и ковалентных составляющих нетрудно выявить молекулярные комплексы иода, для которых перенос электронной плотности связан с разделением заряда, и те, где разделение заряда незначительно. К первому типу относятся комплексы с эфирами, спиртами, аминами, амидами, сульфоксидами. Ко второму - с бензолом, толуолом, ксилолом и их производными. В сочетании с другими характеристиками такой подход позволяет глубже понять природу связи в молекулярных комплексах. Вместе с тем при анализе необходимо учитывать также и структурные особенности реагентов и комплекса. К числу таких объектов можно отнести макроциклические соединения. [c.19]


    В конденсированных фазах, в том числе в растворах, механизм переноса электрона сложнее и непосредственно перенос электрона неосуществим, так как сольватные оболочки ионов и молекулы растворителя препятствуют перекрыванию орбиталей атомов, участвующих в обмене электронами. Реакции включают не только отдачу и присоединение электрона, но и взаимодействие частиц, а в некоторых случаях перенос атома или группы атомов. Механизм редокс-реакций в растворах включает сначала предварительную перестройку взаимодействующих частиц с образованием переходного состояния (см. гл 4), а затем уже перенос электрона. На образование переходного состояния затрачивается энергия. [c.190]

    Полистирилнатрий получали в тетрагидрофуране по реакции переноса электрона. Растворитель отгоняли в вакууме и вводили чистый бензол, затем полимер высушивали с помощью замораживания и растворяли в бензоле. Тем не менее анализ показал присутствие одной молекулы тетрагидрофурана на каждую живущую макромолекулу. Следовательно, кинетическое изучение вьшолнялось для моно-эфирата --5 , Ыа+, а не для чистой несвязанной соли. Другие соли [c.428]

    Учитывая, что теплоты гидратации для большинства процессов, связанных с передачей заряда, порядка сотен килокалорий, нетрудно видеть, что перенос электрона на большое расстояние невозможен. Действительно, во время реакции необходимо очень тесное сближение ионов, так как в противном случае для переноса заряда потребуется преодоление большого сольватациопного барьера. Возможно, более тесное сближение ионных частпц сводит к минимуму сольватационной барьер и ограничивает перераспределение растворителя в основном первой и второй оболочкой вокруг ионов. [c.504]

    Перенос электрона между радикалом и диамагнитной частицей также может происходить с такой скоростью, которая вызывает уширение спектральных линий. Одной из первых была исследована система, в которой происходил обмен электроном между нафталином и его анион-радикалом. Если растворителем служил ТГФ, константа скорости второго порядка переноса электрона составляет 610 л/мольс [25а]. Эта величина в сто раз меньше, чем для процесса, контролируемого диффузией. Полагают, что снижение скорости обусловлено тем, что наряду с переносом электрона происходит перенос положительного нротивоио-на ионной пары анион-радикала. [c.49]

    Соединения, содержащие тяжелые атомы, тушат триплетные состояния, но с существенно меньшей эффективностью, чем синглетные. Различают два эффекта тяжелых атомов внутренний эффект тяжелого атома (тяжелый атом, например атом галогена, находится в возбужденной молекуле) и внешний эффект тяжелого атома (тяжелый атом находится в соединении, добавленном в растворитель). Внутренний эффект тяжелого атома проявляется, например, в дезактивации триплетных молекул антрацена и его дихлор- и дибромпроизводных. При переходе от антрацена к 9,10-ди-хлорантрацену и 9,10-дибромантрацену увеличивается константа скорости дезактивации триплетных состояний от 1,1-10 до 2,3-с-. Внешний эффект тушения триплетных состояний существенно проявляется только при больших концентрациях тушителей и сильно зависит от донорно-акцепторных свойств триплетной молекулы и тушителя. Тушение тяжелыми атомами резко возрастает при образовании комплексов донорно-акцепторного типа между триплетной молекулой и молекулой, содержащей тяжелый атом. Возбужденные донорно-акцепторные комплексы могут распадаться па ион-радикалы в полярных средах. Так, при импульсном фотолизе водного раствора сульфоантрахиионов в присутствии KI наблюдается образование антрасемихинона с максимумом поглощения 520 нм, образующегося в результате реакции переноса электрона  [c.167]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Образование триплетных эксиплексов было обнаружено в полярном растворителе — ацетонитриле между радикалами акридина, азафенантреиа и катион-радикалами доноров электрона (дифенила, нафталина, нафтола). Такие эксиплексы образуются в результате реакции переноса электрона с донора на возбужденные катионы гетероароматических соединений. Спектры поглощения наблюдаемых триплетных эксиплексов являются суммой спектров свободных радикалов акцептора и катион-радикалов донора (рис. 65). Прочность данных триплетных эксиплексов в основном определяется не кулоновским, а обменным взаимодействием, поскольку они наблюдаются в полярной среде. [c.178]

    В отличие от газа, где столкнувшиеся частицы-реагенты изолированы от других молеул, в жидкости молекулы растворителя создают для реагентов новые условия и возможности в осуществлении элементарного акта. Если реакция идет с переносом электрона, то возникает возможность его туннелирования. Реакция с участием атома Н может идти с переносом протона или гидрид-иона. Возрастает вероятность и роль реакций с участием ионов и ионных пар из-за сильной сольватирующей способности полярного растворителя. [c.137]

    Особенность растворов электролитов обусловлена, во-первых, тем, что в них находятся заряженные частицы, во-вторых, что эти частицы имеют заряд разного знака. Основная составляющая взаимодейстний в таких растворах — это взаимодействие между ионами и молекулами растворителя. Ион оказывает значительное поляризующее влияние — индуцируемый им дипольный момент в моле кулах растворителя соизмерим с динольным моментом мо лекул даже такого полярного растворителя, каким яв ляется вода (поэтому введение в воду первых порций элек тролита вызывает особенно большое возмущающее действие) Однако было бы неправильным считать, что все сво дится к взаимодействию заряженных частиц со средой к действию электростатических сил. Так, может происхо дить частичный или полный перенос электронов от ионов к молекулам растворителя, приводящий к перераспределению заряда между ионом и его сольватной оболочкой. При больших концентрациях растворенного вещества, а для [c.175]

    Полученное уравнение — основное для окислительного потенциала систем, в которых наряду с переносом электронов протекают другие процессы, приводящие к образованию комплексных соединений. Оно выражает зависимость окислительного потенциала от состава раствора. В общем случае число переменных складывается из Шо концентраций комплексов окисленной формы, Шг концентраций восстановленной формы, включая концентрации аквакомплексов обеих форм, концентрации (активности) лиганда А , иона Н+, активности воды и исходных концентраций окисленной и восстановленной форм, равных их общей концентрации Со и Сг. Число этих переменных равно Шо + Шг + 5. Число независимых переменных меньше общего числа концентрационных переменных на число уравнений связи [(то + тг)-уравнений образования комплексов)] и равно 5. Поэтому окислительный потенциал является функцией 5 переменных, а именно Со, Сг, Н, [А] и анао- Активность воды в разбавленных растворах близка к 1 и, следовательно, число переменных уменьшается до 4. При изучении комплексообразования в смешанных растворителях и концентрированных водных растворах активность воды может заметно меняться. Тогда ее следует ввести в уравнение (Х.84). [c.623]

    В системе доказательств обязательного участия коэнзима в дыхательной цепи важную роль играют эксперименты по экстракции его из внутренней мембраны митохондрий различными органическими растворителями (циклогексаном, пентаном, ацетоном и др.). Такая обработка приводит к полному ингибированию переноса электронов от дегидрогеназ к молекулярному кислороду, но не сказывается на каталитической активности собственно дегидрогеназ, цитохромов и цитохромоксидазы. Реконструкция коэнзима Q в состав препарата СМЧ, специфически лишенных убихинона, приводит к полному восстановлению утраченных функций. [c.421]

    Значительно менсе изучено влияние среды на константу скорости переноса заряда k° О влиянии двойного слоя н адсорб ции на кинетпк переноса заряда же говоритесь (см разд. 2.4.3) Значительная часть опубликованных до настоящего времени экспериментальных результатов свидетельствует о том, что /г относительно мало зависит от природы растворителя. Так, для системы d/ d + эти коистаиты различались ие более чем в 44 раза [99] Прн сравнении со значениями приве-денньши в табл 2.1, видно, что в данном сл>чае F в значительно большей степени определяется природой окислительно-восстаиовительиой системы, чем природой растворителя Это понятно, если вспомнить, что по определению, отражает перегруппировку сольватной оболочки во время переноса электрона Знергии активации, связанные с этими перегруппировками, существенно не изменяются при замене растворителя, но сильно зависят от участвующих частиц [c.85]

    Значения потенциалов, измеренных в протонных растворителях, отражают [23] ие только легкость переноса электрона в растворе, но и скорость сопряженных с ним реакций протоии-рования (разд 6.2.1). Вследствие этою потенциалы восстанов- [c.245]

    Однако в буферных растворах ТГФ полярографическое поведение тетрадена и антрацена в зависимости от pH соответствует одновременному переносу электрона и протона [56]. При высоких значениях pH электродный процесс описывается уравнениями (6 6) и (6.15), а при ншких — уравнением (6.16). К сожалению, получить буферные растворы в большинстве растворителей, используемых при электровосстановленыи, невозможно. [c.251]

    Получение информации о первичной стадии — стадии переноса электрона, например о стандартных потенциалах образования катион-радикалов, до последпего времени было в значительной мере затруднено из-за протекания быстрых реакций промежуточных частиц. Обратимое образование катион-радикалов обычно ие удается наблюдать из-за нх реакций с примесями в растворителе и (или) быстрого отщепления протона возникающая вследствие этого необратимость сопровождается в циклической вольтамперометрни смещением потенциала пика от потенциала обратимого окисления. В преодолении этих трудностей ныне достигнут значительный прогресс Использование кислой [c.398]

    Как следует из табл. 13.1 и 13.2, достижение предельно высоких анодных потенциалов, помимо использования тетрафтор-боратов н гексафторфосфатов, возможно при понижении температуры [59] нли при использовании таких растворителей, как трифторуксусная [60, 67, 68] и фторсульфоновая [57, 69—72] кислоты. Окисление углеводородов проводили также в ннгроме-тане, нитроэтане, пропиленкарбонате, сульфолане и дихлорме тане [73]. Наблюдавшиеся потенциалы в случае необратимого окисления постоянны, и их можио предсказать. Во многих случаях этн потенциалы хорошо коррелируют с потенциалами ионизации [56, 58, 74] и с константами о+ [63, 64] в последнее время потенциалы ио11нзации обычно измеряют методом фотоэлектронной спектроскопии. Общая тенденция изменения потенциалов окисления может быть выведена исходя нз структур углеводородов на основе механизма, включающего перенос электрона с последующим быстрым разрывом связей углерод—водород или углерод—углерод Для таких случаев на наблюдаемый потенциал влияет скорость последующей реакции. С этим связаны относительно низкие потенциалы окисления напряженных углеводородов, катион-радикалы которых, как можно ожидать, способны подвергаться фрагментации (см табл 13 4) Таким же образом можно объяснить низкий потенциал окисления циклогексадиена-1,4 (см. табл. 13.3) в этом случае быстрое отщепление протона катион-радикалом приводит к циклогексаднениль-ному радикалу. [c.409]

    Аналогично протекает электровосстановление меркаптохино-линатов Со(П), Ni(II), u(II), Fe(III), In(III), Ir(III), Rh(III), которые образуют на вольтамперограммах одну или несколько волн (или пиков) в зависимости от природы центрального иона. При этом перенос электрона также сопровождается частичной диссоциацией лигандов. Следует заметить, что характер электродных процессов практически не изменяется при замене растворителя, тогда как природа лигандов отражается на величинах Е а Е . [c.460]


Смотреть страницы где упоминается термин Перенос электрона на растворитель: [c.374]    [c.507]    [c.244]    [c.264]    [c.148]    [c.110]    [c.304]    [c.198]    [c.249]    [c.246]    [c.132]    [c.133]    [c.115]    [c.244]    [c.264]    [c.361]    [c.318]   
Ароматическое замещение по механизму Srn1 (1986) -- [ c.201 ]




ПОИСК







© 2025 chem21.info Реклама на сайте