Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионный обмен использование комплексов металлов

    В заключение укажем, что для получения полных данных о структуре координационных соединений следует пользоваться совокупностью методов. Так, точные данные о структуре оксалатных комплексов металлов получены [55] путем использования многих физико-химических методов, включая электропроводность, полярографию, ионный обмен, адсорбционную спектроскопию, измерение магнитной восприимчивости, рентгеноструктурный анализ и др. [c.29]


    При использовании хелатных сорбентов механизм сорбции обусловлен комплексообразованием, а применение анионитов для концентрирования примесей металлов было бы невозможным бе образования последними анионных комплексов. При простом ионном обмене обычно удобнее перевести элемент матрицы в отличную от примесей ионную форму. В работе [61] разработана методика определения большого числа примесей в соединениях титана, тантала и ниобия во фторидной системе. В этой системе элементы матрицы находятся в анионной форме в виде комплексов МРе ")", в то время как примеси остаются в виде катионов и могут быть сорбированы катионитом. На примере этой системы видно преимущество ионообменного концентрирования, позволяющего выделить примеси в динамических условиях при невысоких коэффициентах распределения. Так, хотя для Ре и Сг 10, на колонках диаметром 3 мм и высотой 40 см достигалась полнота сорбции этих примесей. Несмотря на сравнительно большой используемый объем ионита и элюента результат холостого опыта составлял Ы0 % для железа и (2—4)-10- для остальных определяемых примесей, что удовлетворяло условиям поставленной задачи. [c.56]

    Комплексообразующие реагенты, которые образуют отрицательно заряженные или незаряженные комплексы, полезны также и в катионном обмене. Избирательная сорбция, а такл е селективное или быстрое элюирование ионов металлов достигается при использовании этих комплексообразующих реагентов. Положительно заряженные комплексы металлов также используют в катионном обмене. [c.112]

    Гель-хроматография, как представляется на первый взгляд, должна быть идеальным методом отделения полимеров и определения их характеристик. Однако большинство известных сорбентов, применяемых в гель-хроматографии, для решения зтой задачи не подходят. На поверхности гелей сефадекса имеются вицинальные гидроксильные группы, которые в нейтральной среде легко образуют комплексы с ионами большинства металлов (типичным соединением этого типа является глицерат железа Британской фармакопеи). Поэтому при применении в больших концентрациях эти ионы дают хвосты , а при малых концентрациях полностью адсорбируются. На поверхности пористых стекол и пористого силикагеля (и их производных) обычно располагается значительное число силанольных групп, которые также энергично взаимодействуют с мономерными и полимерными ионами металлов. Тем не менее методом гель-хроматографии удается разделить гидролизуемые полимерные соединения некоторых металлов, например рутения [12], родия (III) i[13], и растворимые ферроцианиды [14—16]. Характер перемещения небольших мономерных ио ов внутри сорбента, применяемого для гель-хроматографии, в значительной степени определяется ионным обменом с остаточными карбоксильными группами (благодаря которым происходит вытеснение ионов) и гидрофобной адсорбцией, особенно сильной на сефадексе LH-20, при использовании которого, кроме того, может наблюдаться эффект высаливания [17]. [c.328]


    Аналитически полезное выделение плутония можно осуществить методом ионного обмена. Для этого можно применять катионообменники, используя соляную кислоту для последовательного вымывания металлов в виде хлоридных комплексов, или анионообменную смолу для адсорбции анионных хлоридных и нитратных комплексов с последующим их восстановлением и вымыванием. Так, адсорбированный на анионообменной колонке-из 12 М НС1 Pu(IV) при пропускании смеси 12 М НС1 — 0,25 М HI восстанавливается до Pu(III) и вымывается из колонки [30]. Аналитическая химия плутония значительно осложняется разнообразием элементов, получающихся в результате процессов деления ядер. Для выделения Ри из таких систем был использован-анионный обмен [31]. [c.347]

    Для решения любой частной проблемы важно подобрать подходящий ионообменник, так как в противном случае легко могут быть получены ошибочные результаты. Обычно применяются ионообменники на органической основе. Иониты, содержащие фенольные группы, обладают восстановительными свойствами и, следовательно, во многих случаях, например при работе с ионами серебра или ванадия, применяться не могут. Смолы феноло-формальдегидного типа неустойчивы по отношению к окислителям. Карбоксильные группы или аминогруппы е некоторых условиях могут служить лигандами для ионов определенных металлов, благодаря чему последние прочно связываются смолами. Далее функциональные группы ионита могут обмениваться на группы, связанные с ионами металла в комплексе в результате возникают дополнительные осложнения. При использовании монофункциональных сильнокислых или сильноосновных ионитов такие трудности обычно не появляются. Кроме того, такие смолы в широком интервале pH обладают постоянной обменной емкостью, которая зависит от заряда обмениваемых ионов и ионной силы раствора. [c.339]

    Дополнительные возможности при анализе металлов открывает использование для концентрирования примесей обменных экстракционных реакций, когда хелатообразующий реагент вводят не в виде свободной кислоты или ее водорастворимой соли, а в виде комплекса с другим элементом [771]. Например, экстракция некоторых примесей возможна при добавлении свободного реагента, взаимодействующего с основой (Mef ), в раствор, содержащий ее Б качестве макрокомпонента. Тогда, если весь реагент остается в органической фазе в виде взятого комплекса МегА , обменная реакция между комплексом макрокомпонента и ионом микрокомпонента в водной фазе Ме" имеет вид  [c.278]

    Синтетические поверхностно-активные соединения. — Мыла до сих пор являются наиболее широко применяемыми моющими веществами, однако их использование имеет определенные ограничения мыла неустойчивы в кислых растворах, многие соли жирных кислот нерастворимы в воде. В жесткой воде, которая содержит ионы кальция и магния, в результате обменной реакции образуются нерастворимые мыла. Этот процесс может быть предотвращен добавлением в воду больших количеств пирофосфата натрия, гексаметафосфата натрия или аналогичных соединений, действие которых состоит, по-видимому, в -образовании воднорастворимых комплексов с нежелательными ионами металлов. [c.599]

    Катионообменные формы синтетических фожазитов и морденита с катионами переходных металлов и редкоземельных элементов привлекают особое внимание в связи с перспективами их использования в различных каталитических процессах. Имеется значительное число публикаций, содержащих данные по обмену на катионы переходных металлов в цеолитах типа X и Y. Их краткий обзор сделан в [125]. Для таких катионов характерна неполнота обмена, но данные по максимальной степени обмена, приведенные в разных работах для одних и тех же катионов, существенно расходятся. Неполный обмен ионов Na+ на катионы переходных металлов в цеолитах Na-X и Na-Y не может быть связан только с стерическими ограничениями. Другой характерной особенностью ионов переходных металлов в цеолитах является их способность образовывать стабильные комплексы с различными неорганическими и органическими лигандами. В таких комплексных катионах валентные состояния металла могут быть различными, а кислород каркаса цеолита может входить или не входить в координационную сферу атома металла [126]. [c.68]

    Как показали проведенные испытания [919], ион кальция из комплекса с ДТПА состава Са5(11ра2 легче поступает в почвенный комплекс, чем из карбоната и нитрата кальция. Так, при внесении в почву комплексоната кальция содержание в подзолистой почве обменного Са + увеличивается в 2,5—3 раза по сравнению с внесением нитрата кальция, а тем более извести. При этом наблюдается более интенсивное поглощение Са + из комплексоната корневой системой растений. Таким образом, строение молекулы комплексона и соответствующего комплексоната металла на его основе оказывает существенное влияние на их свойства (устойчивость комплекса, его растворимость, склонность к процессам сорбции и т. д.) и тем самым на биологическую активность и эффективность использования в сельском хозяйстве. В свою очередь значительную роль играет вид сельскохозяйственной культуры, а также тип почвы и содержание в ней микроэлементов. [c.484]


    Желательно более широкое изучение обменных экстракционных реакций (стр. 170). Здесь заложена возможность экстракци-онно-фотометрических определений элементов, не образующих с данным реагентом окрашенных комплексов, а главное — возможность резкого увеличения избирательности экстракции. Известные обменные методы, связанные, например, с использованием диэтил-дитиокарбаминатз меди,—это малая часть возможного. В некоторых случаях целесообразно определять сумму элементов (например элементов-примесей), подобно тому, как это сделано в. работе [539]. Авторы определяли сумму тяжелых металлов при помощи обменных реакций между диэтилдитиокарбаминатами этих металлов, находящихся в хлороформе, и ионами меди. [c.189]

    В результате этих исследований были определены константы устойчивости для моноядерных комплексов ионов металлов с различными лигандами от монодентатных неорганических групп [13] до полидентатных амннополикарбоновых ионов и полиаминов [12]. Многие экспериментальные методы, применяемые с 1941 г., например потенциометрия, электропроводность, катализ, жидкостное распределение и метод растворимости, в основном те же, что и в начале столетия. Однако изобретение стеклянного электрода и использование изотопов в аналитической работе позволили применить более совершенные способы определения концентрации водородных ионов и распределения между двумя фазами. Некоторые из более поздних методов (например, спектроскопия) явились следствием развития инструментальной техники, в то время как другие (полярография и ионный обмен) используют явления, почти неизвестные первым химикам, изучавшим равновесие. Достигнуты значительные успехи в методике расчёта констант устойчивости из экспериментальных [c.28]

    В некоторых случаях можно разработать методы определения одного металла в присутствии других, используя различия в скоростях образования и диссоциации комплексов, т. е. используя кинетические, а не термодинамические свойства. Это может потребовать, чтобы аналитический метод или только отдельный процесс, например процесс разделения осаждением, экстракцией органическими растворителями или ионным обменом, был бы достаточно быстрым по сравнению с образованием координационных связей. Наиболее вероятно, что такой прием будет полезным в том случае, когда лиганды обладают сильными полями (как, например, цианид-ион и хелатообразующие амины) при условии, что комплексообразование осуществляется с переходом от высоко- к низкоспиновому состоянию, с другой стороны, вследствие большой степени ориентации вокруг иона металла полидентатных лигандов типа EDTA их использование часто сопровождается малыми скоростями реакций. (Например, диссоциация комплекса Ni—EDTA.) Если связь обладает заметным ковалентным характером, то ее образование и разрыв часто также являются медленными процессами. [c.380]

    Перспективным направлением, на наш взгляд, является использование класса комплексонов в качестве субстехиометрических реагентов. Комплексен и его производные образуют, как правило, воднорастворимые весьма устойчивые комплексные соединения с рядом элементов, что позволяет достичь высокой чувствительности определения этих элементов. Добавление реагентов в субстехиометрических количествах резко увеличивает избирательность их действия. В связи с этим растет интерес исследователей к данному классу реагентов. Для отделения образующихся комплексонатов определяемых металлов (нейтральных или отрицательно заряженных) от избытка ненрореагировавшего элемента при субстехиометрическом выделении используют ионный обмен, бумажную хроматографию, электрофорез, а также экстракцию более слабым хелатирующим агентом [160]. Последний прием осуществляют, вводя в систему избыточное (по отношению к определяемому элементу) количество второго хелатирующего агента, более слабого, чем комплексен, и способного экстрагироваться в органическую фазу. Результирующий эффект такого приема определяется конкурирующими реакциями элемента с комплексоном, взятым в субстехиометрическом количестве и образующим воднорастворимый комплекс, и экстрагентом, взятым в избытке. Оптимальные условия проведения такой реакции (pH, концентрация реагента и др.) были определены с помощью уравнения [c.119]

    Колонка с раствором днпикриламината аммония в нитробензоле в качестве неподвижной фазы использована для разделения щелочных металлов [75]. Экстракцию металлов в этой системе также можно рассматривать как экстракцию ионно-ассоциативных комплексов катиона металла с дипикриламинатным анионом. С помощью метода фронтальной хроматографии при использовании этой колонки удается концентрировать следовые количества цезия с одновременным отделением от больших количеств щелочных и щелочноземельных элементов. В этом случае экстракция металлов описывается равновесными обменными реакциями. Емкость колонки до проскока по отношению к цезию при его фронтальной хроматографии растворами других металлов полностью соответствует константам обменных реакций (между цезием и любым другим металлом), определенным в статических условиях. Для обоих методов значения констант обмена и емкости колонки изменяются в последовательности Сз>Ы>Ма. Отсюда следует, что механизм распределения один и тот же как в статической экстракции, так и в экстракционной хроматографии. [c.56]

    Скорость и полнота образования комплексов в К. и. с. сильно зависят от подвижности макромолекулярных сегментов полимерного каркаса ионита. С увеличением его жесткости появляются пространственные препятствия, мешающие образованию комплексов, обычво занимающих значительный объем, и снижается обменная емкость по сравнению с теоретически возможной. При этом значительно возрастает селективность ионитов благодаря ситовому эффекту, т. е. сортировке гидратированных ионов по размерам. Влияние этих факторов м. б. разноименным, как это имеет место для групповых сорбентов, селективных к тяжелым металлам. Так, уменьшение набухаемости, увеличивая пространственные затруднения образованию объемных комплексов, снижает степень использования обменной емкости К. и. с. по тяжелым металлам, но не препятствует сорбции малых одно- и двухвалентных катионов. Кроме того, снижение набухаемости значительно уменьшает коэфф. диффузии в фазе смолы и ухудшает динамич. характеристики К. и. с., что делает ее неприемлемой для практич. использования. [c.540]

    Развитие теории и практики ионного обмена привело к его широкому распространению в качестве ценного метода исследования комплексных соединений. Интерес к этой области применения ионного обмена возник в связи с тем, что в природном катионите — минерале перму-тите, находившемся в равновесии с раствором хлорида меди(И),— было обнаружено ош,утимое количество иопов хлора [1]. Этот результат был объяснен поглош,ением катионных комплексов СиС . Потребовалось, однако некоторое время, прежде чем ионообменные системы смогли стать источником информации о природе комплексных частиц, поглощаемых ионитом 21. Первые работы [3, 4], посвященные количественному изучению комплексообразования в водных растворах методом ионного обмена с использованием закона действия масс, относятся к концу сороковых годов. В этих работах исследовался катионный обмен в системах, в которых присутствовали комплексные частицы лишь одного сорта, причем эти частицы не сорбировались ионитом. Впоследствии оба ограничения были сняты, ж в настоящее время катионный обмен используется как для непосредственного исследования комплексообразования, так и для проверки результатов, полученных другими методами. Открытие поглощения металлов анионитами [5] указало на возможность применения анионного обмена для общей характеристики [6], а затем [7, 8] и для количественного исследования процессов комплексообразования в растворах. [c.368]

    В кинетически инертных комплексах скорость обмена лигандов крайне мала. Один из примеров практического применения лигандной сорбции с целью получения на природных полимерах инертных комплексов известен очень давно—это процесс крашения комплексообразующими красителями протравленных ионами металла (Сг +, волокон. Такие окраски из-за инертности комплексов отличаются большой прочностью [17]. В хроматографическом режиме обмен лигандов в кинетически инертных комплексах, естественно, невозможен. Однако на-м представляется исключительно интересным использование об М 0Н1а лигандов второй, внешней координационной сферы кинетически инертных комплексов. Как будет показано ниже, многие хроматографические процессы с участием кинетически инертных комплексов Со и Сг + могут быть интерпретированы как внешнесфер-ный лигандный обмен. Закономерности обмена лигандов внешней координационной сферы на сегодняшний день практически не изучены. Нам кажется, что в решении этой задачи ведущую роль может сыграть лигандообменная хроматография как метод исследования координационных соединений [c.9]

    Представлено теоретическое описание динамического поведения многокомпонентных ионообменных систем с учетом химических реакций комплексообразования компонентов в растворе оно основано на компьютерном решении динамических уравнений материального баланса - уравнений в частных производных и уравнений кинетического внутридиффузионного процесса. Описаны многокомпонентные ионообменные равновесия на основе современного теоретического подхода - теории образования поверхностных комплексов. В этой теории предположено, что фиксированные группы ионита и противоионы образуют комплексы, расположенные на различных слоях (слои Штерна) и соответственно на разных расстояниях вблизи поверхности слои образуют цепь последовательно соединенных конденсаторов. Отмечено, что принципиальным преимуществом такого подхода является то, что многокомпонентные равновесия могут быть предсказаны с использованием набора параметров, полученных для бинарных обменов. Проведен учет химических реакций комплексообразования, проходящих в растворе межзернового пространства ионнобменных колонок. Рассмотрен целый ряд вариантов трехкомпонентного обмена Н/А/В различных тяжелых металлов (А, В = Са, Сё, Си, N1). Проведено сопоставление результатов компьютерных численных расчетов многокомпонентных хроматограмм ионов Н/А/В с учетом и без учета химических реакций, полученных для различных систем обмена ионов тяжелых металлов. [c.70]


Смотреть страницы где упоминается термин Ионный обмен использование комплексов металлов: [c.68]    [c.124]    [c.543]    [c.261]   
Физические методы анализа следов элементов (1967) -- [ c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Комплексы ионов металлов,

Комплексы металлов комплексы металлов

Металло-азо-комплексы

Металлов комплексы

Обмен ионов

Обменный комплекс



© 2025 chem21.info Реклама на сайте