Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Моносахариды защита групп

    Бензиловые эфиры получаются обычно действием на моносахарид,. хлористого бензила в инертном растворителе в присутствии твердой щелочи. Так же, как и при получении метиловых эфиров, в реакцию вступают все свободные гидроксилы углеводов, и методы избирательного бензилирования в настоящее время отсутствуют. Для частичного бензи-лирования моносахарида необходимо временно защитить часть гидроксилов группировками, устойчивыми к действию щелочных агентов, лучше всего ацетальной группой (см. ниже). [c.63]


    В отличие от простых эфиров, ацетаты сахаров в условиях гидролиза легко омыляются с регенерацией исходного моносахарида. Это обстоятельство имеет большое вначение, так как позволяет использовать реакцию ацетилирования для временной защиты гидроксильных групп. Снятие ацетильных групп может быть достигнуто как кислым, так и щелочным гидролизом, однако чаще используют второй вариант. Наиболее часто применяется гидролиз водным аммиаком или метанольным раствором метилата натрия. [c.66]

    В последние годы в качестве исходных веществ в синтетической химии углеводов все большее значение приобретают бензоаты моносахаридов. Они употребляются для тех же целей, что и ацетаты, т. е. для временной защиты гидроксильных групп моносахаридов, но имеют то преимущество, что обычно легче получаются в кристаллическом виде и потому удобнее для работы. Бензоаты получаются при обработке моносахарида в условиях реакции Шоттен-Баумана, т. е. хлористым бензоилом в водной едкой щелочи. Более удобным методом, который в настоящее время обычно и применяется, является обработка моносахарида хлористым бензоилом в пиридине или хинолине. [c.67]

    Избирательное окисление спиртовых гидроксильных групп. Избирательное окисление гидроксильных групп в моносахаридах и их производных осуществляется действием кислорода в присутствии платиновых катализаторов . При каталитическом окислении моносахаридов, как И при действии других окислителей, в первую очередь подвергается окислению полуацетальная группа. Для защиты этой группы моносахарид превращают в гликозид или какое-либо другое производное, в котором аномерный центр закрыт. Соединения, содержащие свободные аминогруппы, полностью дезактивируют платиновые катализаторы в реакции окисления поэтому аминогруппу в аминосахарах также необходимо защищать, например введением карбобензоксигруппы. [c.84]

    Изложенный материал наглядно указывает на чрезвычайное разнообразие структуры внеклеточных гетерополисахаридов микроорганизмов. Помимо большого разнообразия общей архитектоники молекулы и типов связей для полисахаридов этой группы характерно присутствие ряда необычных моносахаридов, не встречающихся в других природных объектах. Такое разнообразие специфических структур внеклеточных полисахаридов микроорганизмов несомненно связано с их специфической биологической функцией — взаимодействием между клетками микроорганизмов и защитой их от внешних воздействий (подробнее см. гл. 22). Внеклеточные гетерополисахариды других микроорганизмов изучены, в общем, значительно хуже, чем полисахариды пневмококков. В большинстве случаев, наши знания о строении внеклеточных гетерополисахаридов ограничены ЛИШЬ знанием их моносахаридного состава. [c.551]


    Развитие синтетической химии углеводов в значительной степени связано с разработкой методов избирательной защиты гидроксильных групп. Использование временной блокировки функциональных групп является универсальным приемом органического синтеза, но в химии сахаров эта проблема имеет исключительное значение. Однако для углеводов эта задача особенно сложна и в настоящее время далеко не во всех случаях получает удовлетворительное рещение. Необходимо иметь ассортимент защитных групп двух типов. С одной стороны, речь идет о группах, которые могут блокировать любую гидроксильную функцию, причем набор таких защитных группировок, различающихся по стабильности, должен обеспечивать возможность удаления их в самых разнообразных условиях С другой стороны, необходим набор высокоспецифичных реагентов, способных избирательно защищать одну или несколько гидроксильных групп, причем направление реакции должно однозначно определяться строением и конформацией молекулы моносахарида и применяемым реагентом. [c.630]

    Реакции образования простых эфиров используют в химии моносахаридов для изучения строения и для защиты определенных гидроксильных групп, причем для тех и других целей обычно используют различные простые эфиры. [c.138]

    Производные по спиртовым группам используются для характеристики моносахаридов и в синтезах олиго- и полисахаридов для временной защиты гидроксильных групп. Наиболее важные производные моносахаридов по спиртовым группам приведены в табл. 1. Обычно в молекуле (моносахарида имеется один первичный гидроксил и несколько [c.24]

    Синтез олигосахаридов из моносахаридов связан с решением двух задач избирательной защиты гидроксильных групп и создания гликозидной связи. [c.50]

    Из всего перечисленного наибольшие затруднения вы-зывает избирательное введение. Здесь нет каких-то раз-работанных правил, следуя которым можно механически выбрать необходимую последовательность превращений и типы заш,итных групп. Тем не менее есть ряд хорошо разработанных реакций, ведущих к образованию защит, и ряд принципов обеспечения их региоспецифичности. Так что сейчас грамотный синтетик может составить реальный план синтеза, ведуш его к избирательному освобождению любой функциональной груццы в любом моносахариде. Но, подчеркнем еще раз, это не механическое применение готовых правил, а творческий процесс, тре-буюш ий тщательного учета задач конкретного синтеза и выбора оптимальной схемы из ряда возможных. Позтому не будем пытаться дать, так сказать, алгоритм для избирательной защиты функций, а опишем лишь некоторые элементарные приемы, применяемые в химии углеводов для зтой цели. [c.123]

    По этим причинам возможность образования циклических ацеталей или кеталей подчиняется жесткому кон-1ролю со стороны всей структуры, стереохимии и конформации субстрата.В результате реакции, ведущие к таким алкилиденовым производным, протекают весьма избирательно и затрагивают не все, а лишь вполне определенные гидроксильные группы моносахарида или его частично защищенного производного. Таким образом, введение алки-лиденовых группировок позволяет резко нарушить монотонность функциональных групп исходных соединений и создает основу для весьма разнообразных способов избирательной защиты спиртовых гидроксилов. [c.126]

    Во всех современных методах гликозидного синтеза применяют гликозилирующие агенты, в которых все спиртовые гидроксилы защищены. Этим достигается сразу два результата. Во-первых, исключается самоконденса-ция — гликозилирование собственных гидроксильных групп. Во-вторых, защита спиртовых гидроксилов закрепляет циклическую систему производного моносахарида, исключает изомеризацию гликозильного остатка (типа мутаротации) и обеспечивает образование гликозида с определенным, заданным заранее размером цикла. Чаще всего для этой цели используют сложноэфирную защиту, например, ацетаты, легко удаляемые мягким щелочным сольволизом (гидролизом или метанолизом), который не затрагивает обычные гликозидные связи. Для этой же цели применяют бензильную защиту — простые бензиловые эфиры расщепляются каталитическим гидрогенолизом, к которому гликозидные связи инертны. [c.131]

    По хим. св-вам А. подобны др. моносахаридам. Нек-рое своеобразие обусловлено одноврем. присутствием амино-и ОН-групп и (или) др. группировок. Важнейшие превращения А.-избират. ацилирование группы КН2, этерификация ОН-групп, используемая, в частности, для их защиты в синтезах и структурном анализе углеводсодержащих биополимеров (метилирование), а также превращение N-aцилиpo-ванных А. в оксазолиновые производные, особенно в 2-замещенные глико-[2,1- ]-2-оксазолина, используемые как гликозилирующие агенты. [c.144]

    Поскольку йодная кислота расщепляет любую связь между углеродными атомами, несущими гидроксильные группы, то моносахарид под действием HJ04 полностью распадается, чго и используется в аналитических целях (см. стр. 36). Поэтому для частичной деструкции молекулы моносахарида, т. е. для избирательного разрыва нужной углерод-углеродной связи в молекуле исходного моносахарида должна быть оставлена только пара свободных соседних гидроксилов, между которыми находится связь, подлежащая расщеплению, для чего некоторые гидроксильные группы должны быть защищены. В последующих разделах вопрос о получении производных моносахаридов по гидроксильным группам будет подробно рассмотрен, сейчас же можно только отметить, что в качестве такой защиты может быть использовано образование простых и сложных эфиров и особенно ацетальной защиты. Нужно сказать, что именно сложность введения избирательной защиты в молекулу моносахарида является главным ограничением при применении рассматриваемого метода. Однако, если защитить нужные гидроксильные группы удалось, дальнейшее окисление йодной кислотой идет весьма гладко, строго избирательно и с высоким выходом. В качестве примера можно привести синтез треозы из арабинозы. [c.29]


    Приведенный пример демонстрирует расщепление связи, соответствующей связи С(4) —С(5) в исходном моносахариде, которого принципиально невозможно достичь применением других, описанных выше методов. Комбинируя защиту ужных гидроксильных групп в выбранном специально моносахариде, этим методом можно по существу получить моносахарид с любой заданной конфигурацией. [c.29]

    Эфиры некоторых сульфокислот, особенно п-толуолсульфокислоты (тозилаты) и метансульфокислоты (мезилаты), представляют большой интерес. Они имеют значение почтп исключительно в синтетической химии сахаров, однако их использование в этом направлении непрерывно возрастает, и в настоящее время трудно найти более или менее сложный синтетический переход в ряду моносахаридов или их производных, который не включал бы на некоторых стадиях превращение эфиров сульфокислот. Введение тозильной или мезильной группы в отличие от получения сложных эфиров карбоновых кислот де.пается не для временной защиты гидроксильной группы, а для дальнейшего превращения в другую функцию. Поэтому наибольший интерес представляют производные углеводов, содержащие эти группировки у заданных фиксированных атомов в молекуле. [c.73]

    Нитраты получаются обычно непосредственным действием на углевод нитрующей смеси , т. е. концентрированных серной и азотной кислот их можно получать также действием одной азотной кислоты или окислов азота. В таких условиях этерифицируются все свободные гидроксильные группы, и получаются полные нитраты, которые и применяются в качестве взрывчатых веществ. При необходимости можно получить и неполные эфиры моносахаридов, если предварительно защитить соответствующие гидроксильные группы. Нитратная группа — 0N02 легко может быть замещена другими группировками и по своем.у поведению напоминает тозильную группировку. [c.76]

    Легкость образования изопропилиденовых производных и простота удаления изопропилиденовых группировок с регенерацией исходного моносахарида делает продукты конденсации. моносахаридов с ацетоном излюбленны.ми промежуточными веществами в синтетической химии сахаров, в тех случаях, когда требуется временная защита гидроксилЬ ных групп. [c.83]

    В химии углеводов наиболее широкое применение получили ацетаты, бензоаты и циклические эфиры угольной кислоты (карбонаты). Эти сложные эфиры используются главным образом как промежуточные соединения для временной защиты гидроксильных групп, а также при выделении и разделении моносахаридов и для идентификации отдельных сахаров. Сложноэфирная связь в эфирах карбоновых кислот в условиях гидролиза или алкоголиза легко расщепляется, что приводит к регенерации исходного моносахарида. Именно это свойство вместе с простотой получения обусловливает использование указанных сложных эфиpoвi карбоновых кислот для временной защиты гидроксила. Сложные эфирьв других карбоновых кислот не получили широкого применения. [c.133]

    Ацетаты моносахаридов в условиях гидролиза легко омыляются с регенерацией исходного моносахарида. Это позволяет использовать ацетильную группу для временной защиты гидроксильной группы. Для удаления ацетильной группы наиболее часто употребляется метод Земпле-на — обработка метилатом натрия в метиловом спирте. Если реакция проводится в абсолютном метаноле, то можно применять каталитические количества метилата натрия, так как процесс сводится к переацетилирова-нию и протекает по следующей схеме [c.136]

    Эфиры угольной кислоты . В ряду сахаров угольная кислота дает два типа эфиров — ациклические и циклические карбонаты. Ациклические эфиры угольной кислоты типа НОСООК (где К —остаток сахара), которые обычно получаются действием хлоругольных эфиров на моносахариды, мало чем отличаются от обычных эфиров карбоновых кислот и применяются редко. В то же время циклические карбонаты, этерифицирующие две гидроксильные группы моносахарида, представляют значительный интерес для синтетической химии углеводов. Циклические эфиры угольной кислоты, как правило, имеют пятичленный цикл и замыкаю гея п1эедпочти-тгльно на г ис-сс-гликольных группировках, для временной защиты которых они и применяются. В отличие от рассмотренных выше ацетатов и и бензоатов при образовании карбонатного цикла возникает бицикличе-ская структура типа цис-петалаш или г ис-гидриндана, поэтому образование циклических карбонатов находится под строгим контролем стереохимии исходного моносахарида . Действительно, поскольку циклический эфир дают г ис-сс-гликольные группировки, в реакцию вступает таутомерная форма моносахарида, содержащая наибольшее число таких группировок, причем моносахарид нередко реагирует в фуранозной форме. [c.138]

    Циклические ацетали и кетали сахаров играюг важную роль в синтетической химии углеводов и широко используются для специфической защиты одновременно двух и более гидроксильных групп. Алкилиденовые производные образуются при взаимодействии моносахаридов или их производных с альдегидами или кетопамн в присутствии кислых катализаторов. При этом одна молекула карбонильного соединения конденсируется сразу с двумя гидроксильными группами моносахарида  [c.168]

    Обычно возможен синтез нескЬльких производных определенного моносахарида, содержащих один и тот же свободный гидроксил. При выборе наиболее подходящего производного необходимо руководствоваться не только соображениями удобства синтеза и пригодности применяемых защищающих групп. Не менее существенно, что реакционная способность гидроксильной группы в условиях гликозилирования весьма сильно зависит от способа защиты остальных гидроксилов, что определяет конформацию молекулы в целом, хотя закономерности такого влияния еще далеко не всегда ясны. [c.464]

    Из рассмотренного выше материала видно, что проблема синтеза олигосахаридов в настоящее время далека от полного разрешения. Обширные группы олигосахаридов, содержащих 1,2-г гс-гликозидиые связи, остатки кетоз, а также высшие олигосахариды практически недоступны для синтеза. Решение этой проблемы связано с разработкой эффективных методов гликозилирования, особенно методов синтеза 1,2-г гс-гликозидов. С другой стороны, необходимо развитие методов избирательной защиты гидроксильных групп сахаров, пригодных не только для моносахаридов, но и для олигосахаридов, в которых избирательное замещение атомов водорода гидроксильных групп современными методами осуществляется с большим трудом. [c.472]

    В отличие от ненаправленной конденсации моносахаридов со свободными гидроксилами методы направленного синтеза полисахаридов не разработаны, хотя решение этой задачи в настоящее время представляется наиболее актуальным. Очевидно, что для осуществления направленного синтеза полисахаридов необходимо провести поликонденсацию производного сахара с функциональной группой при гликозидном центре, способной стереоспецифично реагировать со спиртами с образованием гликозидных связей. Все спиртовые гидроксилы, кроме гидроксила, который должен участвовать в образовании межмономерной связи, необходимо защитить подходящими группами. Из числа работ такого типа необходимо отметить попытку поликонденсации 2,3,4-три-0-ацетил-а-0-глюкопира-нозилбромида в условиях реакции Кенигса—Кнорра, которая с низким выходом привела к набору олигосахаридов с -1- -6-гликозидными связями. Выход высших олигомергомологов был весьма низок, а долисахарид. вообще не был получен. [c.556]

    Образование ацеталей часто используют для защиты альдегидной или кетоиной группы в различ.иых реакциях, н прнмер реакциях галогеиирования, окисления, с участием металлорганических соединений. В то же время в виде ацетале Огут быть заи[,ищсны г ыс-расноложенные гидроксильные группы, что важно в химии моносахаридов. [c.474]

    Меркаптолиз полисахаридов имеет то преимущество, что многие выделяющиеся при гидролизе моносахариды, неустойчивые в кислой среде, в условиях меркаптолиза стабилизуются путем защиты их потенциальных карбонильных функций тиоаце-тальными группами. [c.305]

    Используются и другие защитные группы, напр1И.мер хлорацетиль- ая для защиты гидроксила у Се [47], фенилкарбамоильная для защиты аминогруппы [48]. Дальнейшее развитие метода требует разработки методов получения избирательно защищенных моносахаридов и количественного образования гликозидной связи. [c.55]

    Нуклеотиды обычно синтезируют направленным фссфорилированием нуклеозидов. Некоторые из нуклеотидов получают конденсацией азотистого основания с фосфатом моносахарида. Основные трудности, возникающие при фосфорилировании, связаны с выбором мягкого фосфорилирующего. агента, не вызывающего изменений лабильной молекулы нуклеозида, а также с необходимостью избирательно защиты гидроксильных групп. Последнее условие объясняется малым различием в реакционной способности гидроксильных групп углеводной части молекулы. Несмотря на большую реакционную способность первичной гидроксильной группы она не может избирательно фосфорилироваться в присутствии незащищенных 2 - и З -гидроксилов рибофуранозы. Получение нуклеозид-2 - или З -фосфатов представляет еще более сложную проблему в связи с чрезвычайно большим сходством в химическом поведении 2 - и З -гидроксиль-пых групп. [c.368]

    В живых организмах протекают различные химические реакции среди которых следует вьщелить окислительно-восстанови-тельные, продуктами этих реакций являются свободные радикалы. Для защиты от разрушительного действия свободных радикалов организмы используют компоненты антиоксидантной защиты в составе которых пероксидаза. Фермент способен катализировать оксидазные, оксигеназные и пероксидазные реакции. Сложное строение пероксидазы полипептидная цепь, гемин, кальций и поверхностные моносахариды, последние защищают апобелок от разрушительного действия свободных радикалов. При этом моносахариды располагаются вдалеке от активного центра и не влияют на каталитические свойства пероксидазы, но способны ориентировать фермент в мембранных структурах клетки и ее органелл. Как представитель гемсодержащих белков, пероксидаза способна катализировать реакции с участием перекиси водорода, восстанавливая последнюю до воды и при этом окисляя различные неорганические и органические соединения. Продуктами ферментативной реакции могут быть свободные радикалы или фермент-субстратный радикальный комплекс, эффективно окисляющий даже медленно окисляемые в индивидуальных реакциях субстраты. Для выполнения разнообразных каталитических функций на поверхности холофермента располагается протяженная субстратсвязывающая площадка, представленная двумя участками, где могут связываться субстраты гидрофобной и гидрофильной природы. Причем в месте локализации гидрофобных субстратов проявляется карбоксильная группа, модификация которой замедляет протекание каталитического процесса. рК этой группы может колебаться в пределах 4,5—5,5. [c.208]


Смотреть страницы где упоминается термин Моносахариды защита групп: [c.181]    [c.219]    [c.64]    [c.123]    [c.327]    [c.219]    [c.90]    [c.777]    [c.271]    [c.52]   
Химия биологически активных природных соединений (1976) -- [ c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Моносахариды



© 2025 chem21.info Реклама на сайте