Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Разделение и дейтерия

    На примере разделения дейтерия на орто-нара-модификации выяснено, что избирательная адсорбция имеет место лишь при заполнении монослоя, а в области полимолекулярного покрытия вероятности адсорбции орто-пара-модификаций данного изотопа равны. Для 20,4° К экспериментально установлено, что в интервале 0 = 0,9—1 дифференциальный коэффициент разделения дейтерия на орто-нара-модификации состав- [c.63]


Таблица 11.2 Коэффициенты разделения дейтерия при дистилляции воды Таблица 11.2 <a href="/info/5416">Коэффициенты разделения</a> дейтерия при дистилляции воды
    На рпс. ХИ1.7 и ХИ1.8 представлены хроматограммы, полученные методом термического вытеснения. В качестве еще одного примера следует упомянуть препаративное вытеснительное. газохроматографическое разделение дейтерия и водорода на палладированном асбесте [25]. В этом случае газ-носитель не применяется. Дейтерий опережает водород и может быть получен с высокой степенью чистоты. Препаративная вытеснительная хроматография была применена уже в 1942 г. [26] для разделения наряду с прочим бензола и циклогексана на силикагеле газом-носителем служила смесь водяного пара с азотом. [c.379]

    Можно предполагать наличие определенной связи коэффициентов разделения водорода и трития от природы катодных металлов. Хотя литературные данные, относящиеся к атому вопросу, являются весьма скудными все же известно, что коэффициент разделения трития от водорода на палладии имеет более высокое значение, чем коэффициент разделения дейтерия от водорода [13]. [c.126]

    Описано несколько опытов по разделению амальгам гидрида и дейтерида. Установлено, что в этом случае обмен изотопами между газовой и жидкой фазами идет медленно. Например, при нагревании водорода с амальгамой, содержащей 25% дейтерида и 75% гидрида урана, концентрация дейтерия в газе составляла всего 2,7% через 15 мин. и 10,3% через 2 часа. Обратный обмен, т. е. замещение водорода в гидриде дейтерием из газовой фазы, протекал еще медленнее. Этот медленный обмен препятствует использованию колонки с амальгамой для эффективного разделения дейтерия и водорода. [c.175]

    Основные выводы, сделанные в разд. 3,3 и 3,4 при анализе проницаемости и селективности непористых полимерных мембран, корректны и для металлических мембран. Следует лишь отметить высокие значения селективности при извлечении водорода из смеси с другими газами, кроме дейтерия. Фактор разделения бинарной смеси Нг—Ог на металлических мембранах колеблется в пределах 1,38—1,65 [8]. [c.117]

    На основании полученных ранее экспериментальных данных было высказано мнение, что реакция алкилирования бензола олефинами протекает по электрофильной схеме замещения с промежуточным образованием карбокатионов. Изменение условий экспериментов, природы катализаторов, структуры и длины цепи алкилирующего олефина влияет на соотнощение скоростей реакций алкилирования и изомеризации и тем самым определяет изомерный состав целевых продуктов. В данном разделе будут рассмотрены пути перераспределения изотопной метки О между компонентами реакции алкилирования в зависимости от условий. Для уточнения механизма взаимодействия ароматических углеводородов с олефинами проведено алкилирование дейтеро-обогащенного бензола этиленом, пропиленом, бутеном-1 и буте-ном-2 (табл. 4.2). Полученные алкилбензолы после разделения на препаративном хроматографе анализировали методами ИК-, масс- и ПМР-спектроскопии. [c.89]


    По мере обогащения раствора тяжелой водой кажущийся коэффициент разделения начинает уменьшаться вследствие увеличения количества дейтерия, уносимого водородом, насыщенным водяным паром. Поэтому газ, получаемый на последних ступенях электролиза, сжигают и образующуюся воду возвращают на первые ступени электролиза. [c.128]

    Возможно ли разделение водорода и дейтерия методом зонной плавки -Каков вероятный эффект разделения у нуклидов тяжелых элементов  [c.588]

    Открытие и разделение изотопов. Попытка разделения изотопов химическими приемами, как и нужно было ожидать, для большинства смесей не дала эффективных результатов, так как химические свойства их тождественны. Однако разделение изотопов химическими приемами возможно при условии резкого отличия их по массам. Применяется этот метод, главным образом, для концентрирования тяжелого изотопа водорода — дейтерия. [c.40]

    Метод применяют главным образом для разделения изотопов водорода. Значение коэффициента разделения (а) очень велико и составляет для дейтерия 5— 10, для трития 14.  [c.78]

    При одноразовом электролизе можно достигнуть изотопного разделения, отвечающего коэффициенту разделения данного процесса. Поэтому с целью максимального разделения ведут многоступенчатый электролиз по принципу противотока. Так, например, при электролитическом концентрировании дейтерия водород, выделяющийся при электролизе второй и всех последующих ступеней, сжигают и образующуюся воду, обогащенную дейтерием по сравнению с природной, возвращают в цикл. [c.46]

    Коэффициент разделения при электролитическом методе концентрирования дейтерия исключительно высок в зависимости от материала электрода и природы электролита он изменяется от 3 до 8 в отдельных случаях были зафиксированы величины а, достигающие 12. Вот почему промышленные методы получения тяжеловодородной ( тяжелой ) воды в основном основаны на электрохимических методах. [c.46]

    Рассмотрение способов разделения и концентрирования стабильных изотопов позволяет сделать некоторые обобщения. На эффективность разделения, прежде всего, влияет величина коэффициента разделения, который может быть разным при разделении различными методами изотопов одного элемента. Для разделения изотопов легких элементов наиболее эффективны методы фракционной перегонки и изотопного обмена для срединных и тяжелых элементов наибольший эффект дают методы газовой диффузии и центрифугирования, зависящие не от отношения, а от разности масс разделяемых изотопных разновидностей молекул. Для концентрирования весьма важного в промышленном отношении дейтерия наиболее эффективным оказывается электролиз воды. [c.47]

    Полное разделение изотопов кислорода является весьма трудной задачей. Во всяком случае, разделение это достигается с гораздо большим трудом, чем разделение изотопов водорода — соответственно уменьшению изотопного эффекта. Вот почему физические константы соединений О изучены гораздо хуже, чем соединений дейтерия, и получены [c.49]

    Практически единственным способом, с помощью которого можно получить прямые доказательства наличия или отсутствия обмена между различными соединениями одного элемента, является применение изотопов . Так, смешивая СНдСООН и ОгО, можно получить прямое подтверждение обратимого перехода водорода между уксусной кислотой и водой в результате того, что после разделения смеси на исходные компоненты дейтерий оказывается равномерно распределенным между кислотой и водой, т. е. происходит процесс [c.130]

    В этой установке очищенный поток воды вступает в среднюю часть колонны изотопного обмена, в которой находится смесь гидрофобного катализатора и гидрофильной насадки. Стекающая по колонне вода обогащается тритием и дейтерием в соответствии с реакцией (6.7.2) и поступает в электролизёр, где почти полностью разлагается на кислород и водород. Небольшая часть неразложившейся воды отводится в виде тритиевого и дейтериевого концентрата и может быть использована для переработки в чистый тритий (например, методом изотопного обмена водорода с гидридом твёрдой фазы, см. раздел 5.8). Водород, выходящий из электролизёра, поступает в колонну изотопного обмена, где он движется противотоком к воде и поступает в узел окисления. Образовавшаяся в УОП вода практически не содержит трития (содержание трития меньше 10 Ки/л) и поступает во вторую колонну, в которой идёт разделение дейтерия и протия. Конечным результатом этого процесса является получение 020 с содержанием дейтерия более 99,9% (моль) и протиевой воды, содержание дейтерия в которой меньше природного (поток Р, рис. 6.7.1). [c.253]

    Ряд авторов [856, 883,913, 929—930] изучали распределение дейтерия в двухфазной системе вода — триэтиламин. Хучисон и Лайн [856], проводившие опыты при 25° С с водой, содержавшей около 0,4 ат. % D, нашли, что вода водного слоя была обогащена дейтерием относительно воды аминного слоя, причем коэффициент разделения составлял около 1,038. В. П. Скрипов и Н. Я, Русинов [913], применявшие воду с 10 ат. %D, а также Линдерстром-Ланг [929], использовавший воду с содержанием 20 ат. % D, для температур между 20 и 45° нашли коэффициент разделения дейтерия около 1,01. В работе [930], проведенной с 98% D O при 15—25° С, не было найдено никакого эффекта распределения дейтерия. [c.274]


    Интересно отметить, что коэфициенты разделения дейтеро-водород-ной смеси на разных металлах распадаются примерно на те же две группы, что и для перенапряжения. На металлах с низким перенапряжением, как, например, платина, никель и серебро, коэфициент разделения составляет около 6, в то время как на электродах с большим перенапряжением, например на свинце (в кислом растворе), ртути и олове, эти значения лежат около 3 [ ]. Последняя цифра близка к ожидаемому значению коэфициента разделения для случая, когда на катоде устанавливается расновесие [c.563]

    Синтетические цеолиты применяются в газовой хроматографии при разделении и анализе низкокипящих газов, плохо разделяемых на других сорбентах, как, папример, активированный уголь, силикагель и алюмогель. Японские исследователи Окоши, Фуита и Кван [1] при помощи цеолитов типа 5А провели работу по разделению дейтерия (Вг), водорода (Нг) и дейтоводорода (НВ) при температуре жидкого азота. Другие исследователи [2, 3] при помощи того же цеолита разделили газовые смеси, содержащие азот, кисло род и углекислый газ, а также азот, кислород, окись углерода и метан. В качестве газа-носителя использовали водород или гелий. [c.65]

    Дополнение2 (к стр. 226). Влияние на кинетику изотопного обмена изотопного эффекта и условия, при которых обмен точно подчиняется уравнению первого порядка, рассмотрены в [255, 34, 35, 44]. Кинетика обменных реакций со сложным механизмом или протекающих в гетерогенных или динамических условиях рассмотрена в [36, 37, 38, 190, 191]. Упрощенный способ нахождения времени полупериода обмена см. [39], Расчет коэффициента разделения дейтерия и числа обменоспособных и обменявшихся атомов водорода при равноценности ра.з-личных атомов водорода и отклонении величины а от 1 см. в [195]. [c.407]

    Для разделения изотопов водорода кроме микропористых можно применять сплошные металлические [100, 101] (палладий и его сплавы) или полимерные (силиконовый каучук, полиэти-лентерефталат, тетрафторэтилен, ацетат целлюлозы и т. д.) мембраны [99, 102, 103]. При этом проницаемость протия через подобные мембраны выше, чем дейтерия и трития. По сравнению с микропористыми и палладиевыми мембранами селективность полимерных непористых мембран ниже, но, учитывая, что они намного дешевле и не требуют применения высоких температур (а значит более выгодны с точки зрения затрат энергии), можно ожидать их широкого применения для разделения изотопов водорода. [c.315]

    Установки разделения изотопов водорода. В топливном цикле разрабатываемого в СССР и за рубежом дейтерий-тритиевого реактора для осуществления управляемой термоядерной реакции необходимо выделение из газов плазмы и возврат в цикл не успевших прореагировать дейтерия и трития. Процесс выделения состоит из двух основных стадий выделения Не и других примесей и разделения изотопов водорода с получением смеси дейтерия и трития. Метод газового разделения с использованием многоступенчатой каскадной установки с мембранными модулями на основе палладия и его сплавов, по мнению авторов [100, 101], наиболее перспективен. [c.317]

    При обогащении стабильных изотопов методом ректификации в качестве сырья используют, главным образом, газы лишь дейтерий и 0 получают из воды. Соотношения давлений паров для подобных смесей изотопов указаны в табл. 35. Разделение всех смесей, за исключением соединения бора ВС1з, требует, разумеется, значительных затрат на охлаждение. Кроме того, для достижения обычной степени разделения смесей изотопов за исключением изотопов гелия и водорода требуется более 500 теоретический ступеней разделения. Кун с сотр. [43], применив большое число теоретических ступеней разделения, определил относительную летучесть для соединений изотопов с температурами кипения 80 °С. [c.221]

    Благодаря большой разности атомных масс и больших различий в давлениях насыщенных паров изотопов получение дейтерия из газовой смеси Нз—Оз путем низкотемпературной ректификации теоретически представляется сравнительно простым. Селлерс и Аугуд [44 ] подробно и систематически изучили проблемы низкотемпературной ректификации систем НО—На, а также —Ыд. Разделение проводили в колпачковой колонне высотой 27 м. Позднее исследования низкотемпературной ректификации смеси Н—О были проведены Тиммерхаусом с сотр. [451. Для разделения использовали пилотную установку с колонной диаметром 150 мм, содержащую ситчатые тарелки, н определили ряд параметров для данной системы, важных с точки зрения разделения. Небольшую лабораторную колонну для ректификации смеси На—НО описал Вайссер [46]. [c.222]

    Интереснейшей и неоднократно исследовавшейся проблемой является оптическая активность соединений дейтерия. Достаточно ли существенно различие между легким и тяжелым водородом, чтобы сделать молекулы типа КК СНО асимметричными и тем самым вызвать оптическую активность Ответить на этот вопрос было нелегко, так как вследствие больщого сходства между водородом и дейтерием углы вращения могут быть лишь очень малы и разделение получаемых диастереоизо-мерных смесей может по тем же причинам представить значительные экспериментальные трудности. Первые опыты в этой области дали отрицательные результаты. Однако за последнее время точно доказано, что асимметрии одной группы КК СНО достаточно, чтобы вызвать оптическую активность. [c.1146]

    Дело в том, что молекулы имеют нулевую энергию, и энергия диссоциации должна отсчитываться от уровня этой нулевой энергии до принятой за нуль энергии разделенных атомов. Между тем, так как, согласно уравнению (XXI.6), нулевая энергия определяется через частоту, а частота зависит от массы, то уровни нулевой энергии должны быть различны. Таким образом, различие в энергиях диссоциаций молекул дейтерия и водорода должно определяться различием их нулевых энергий (см. гл. XIII). [c.437]

    Более высокое перенапряжение и более электроотрицательный стандартный потенциал, вместе со много раз меньшей концентрацией дейтерия по сравнению с протием, долх ны приводить к преимущественному разряду на катоде протия и накапливанию дейтерия в электролите. Однако значительного разделения изотопов водорода при электролизе не происходит. Это происходит потому, что между газовой и жидкой фазами протекает реакция изотоп-. ного обмена [c.351]

    Для разделения водорода и дейтерия, а также изотопов инертных газов — гелия, неона и аргона — до настоящего врелшни применяют метод низкотемпературной ректификации (см. главу. 5.31). Используя некоторое различие в упругостях паров сж1г-/кенных газов, посредством низкотемпературной ректификации можно получить значительное обогащение. В табл. 41 приведены [c.247]

    Электрохимические методы получения тяжелой воды основаны на фракционировании изотопов водорода в процессе электрохимического разряда водорода. В результате различия потенциалов выделения легкого (протия) и тяжелого (дейтерия) изотопов водорода, протий выделяется с большей скоростью, чем дейтерий. Это приводит к накоплению дейтерия в электролите (до определенного предела). Распределение дейтерия между газовой и жидкой фазой характеризуется коэффициентом разделения а [c.37]

    Вычислим погери Д при адиабатном разделении смесей кислород — азот О2—N2 и водород — водородо-дейтерий Но—НО. [c.241]

    Интересное применение вытеснительного метода описывают Глюкауф и Китт (1957). Онп проводили препаративное разделение смеси дейтерия и водорода на палладирован-ном асбесте в колонке длиной 44 см и диаметром 8 мм. Колонка, заполненная вначале гелием, на 40% своего объема насыщалась затем смесью, содержащей около 50% дейтерия. В смесп имелись молекулы Нг, Вг и НВ. После этого в колонку вводили чистый водород со скоростью 2,5 л/час. Поскольку изотермы сорбции водорода и дейтерия даже при очень высоких парциальных давлениях не являются вогнутыми, можно отказаться от применения газа-носителя. На рис. 9 представлена хроматограмма описанного опыта, которая показывает, что в процессе одного разделения может быть получено в чистом виде 0,2 л дейтерия. [c.436]

    Известно, что водород и дейтерий растворяются в палладии в атомарном виде, так что устанавливается равновесие 2НВч= Нг + Вг. Поскольку дейтерий Вг вследствие большей скорости его движения постоянно удаляется, равновесие практически полностью смещено вправо. Следовательно, происходит не только разделение молекул Нг и Ва, но и дойтерпп, содержащийся в виде НВ, появляется в передней зоне в виде Вг. Молекулы НВ имеются только в области фронта, который в этом случае имеет относительно большую ширину вследствие малой разности в сорбп-руемости изотопов и большого коэффициента диффузии компонентов. [c.436]

    Практически все экспериментальные исследования термической диффу- зии до 1939 г. были посвящены выделению неорганических растворенных веществ из водных растворов или разделению смесей газов различного молекулярного веса [26, 34]. Операции разделения этого тина, но-видимому, протекают в соответствии с кинетической теорией [4], которая утверждает, что крупные и тяжелые молекулы уносятся от горячей стенки в большей мере, чем мелкие и легкие молекулы поэтому тяжелые молекулы должны копцептрироваться у холодной стенки. В литературе опубликован обзор [30] процессов разделения газообразных изотопов, протекающих в соответствии с этой теорией [4]. При работах с неорганическими водными растворами [23] удалось осуществить разделение изотопов цинка различной массы оказалось, что отношение цинк-64 цинк-68 в верху и в низу конвекционной колонны после термодиффузионного разделения равно соответ- ственно 3,2 и 2,7. Следовательно, тяжелый изотоп в этом случае концентрировался внизу. Одновременно было показано, что при разделении смесей тяжелой и обычной воды тяжелая вода (окись дейтерия DgO) также концентрируется в низу колонны. Опубликованы [22] результаты разделения смесей гексадейтерированного и обычного бензолов в жидкой фазе и в этом случае дейтерированный бензол концентрировался внизу. При этом разделение дейтерированного и обычного бензолов осуществлялось в 10 раз легче, чем разделение тяжелой и обычной воды. [c.29]

    К. X. применяют в осн. для разделения многокомпонепт-иых смесей или смесей соед. с близкими св-вами, в т. ч. геом. и оптич. изомеров, изотопов, молекул с разным изотопным составом (напр., СоНб и СаВ В — дейтерий). Часто К. X. использ. в сочетании с масс-спектрометрией (см. Хромато-масс-спектрометрия). [c.241]

    В случае разделения изотопов водорода процессы изотопного обмена с обращением потока не применяют, т. к. более экономичной оказывается двухтемпературная схема (рис. 3), в к-рой вместо перевода всей обогащенной смеси в др. фазу путем превращ. одного соед. в другое используют изотопный обмен между теми же соед. (напр., Н2О и НгЗ) при более высокой т-ре (меньшем а). В результате из покидающей холодную колонну фазы (Н2О) в поступающую фазу (НгЗ) переводится избыточное по сравнению с исходным кол-во накапливаемого изотопа. Обогащенная дейтерием вода выводится на границе холодной и горячей колонн. [c.200]

    При непрерывной подаче и откачке компонентов такие Л. X работают в непрерывном режиме. Решающим обстоятельством при их создании является разделение в пространстве процессов наработки химически активных центров и пол чения возбужденных частиц, генерирующих излучение Высокотемпературную камеру сгорания можно заменить низкотемпературной, если использовать цепную р-цию фтора с дейтерием. Атомарный фтор для инициирования цепного процесса нарабатывается при низкотемпературной р-ции NO" -Ь Fj -> F" -I- NOF, начинающейся сразу при смешении их потоков. Истечение газов из камеры инициирования в лазерную зону происходит с дозвуковой скоростью, хотя возможны и сверхзвуковые варианты этого Л. х. Генерирующая молекула-СО2, к-рая возбуждается путем передачи колебат. энергии от DF. Возбужденная молекула СО, релаксирует медленнее, чем DF, что обеспечивает большую хемолазерную длину цепи. Замена дейтерия на водород приводит к снижению генерируемой мощности, т.к. HF передает энергию Oj менее эффективно, чем DF.  [c.568]

    Выбор подходящего растворителя для ЖХ-ЯМР очень важен, поскольку растворители, обычно используемые в экспериментах по ЯМР, либо дейтери-рованы и, следовательно (за исключением ВгО), слишком дороги, чтобы быть использованы для ВЭЖХ-разделения, либо они апротонные (СНС1з, фреоны) и поэтому не универсальны для использования в нормально-фазовом варианте. Использование протонированных растворителей требует подавления сигнала растворителя. Хотя в ЯМР для этого существует ряд методов, основанных на различиях в химических сдвигах (например, методы селективного насыщения, селективного возбуждения или композитный импульсный) или на различиях во временах релаксации (например, прогрессивное насыщение или спин-эховый метод), ни один из них полностью не подходит для ЖХ-ЯМР. Это подавление не столь важно при изократическом разделении, но весьма существенно при градиентном элюировании, когда частоты резонанса изменяются с изменением состава растворителя. В коммерчески доступных приборах проблема подавления растворителя решается при использовании адаптивных экстраполяционных методов, которые во время хроматографического анализа рассчитывают [c.634]

    Разделение изотопической смеси химически чистых элементов наиболее эффективно проводится в газовой фазе методом Клузиуса. Элемент в газообразном состоянии или в виде одного нз своих летучих соединений пропускается через ряд стеклянных трубок, стенки которых поддерживаются ири низкой температуре, а по оси каждой из них протянута нагреваемая током проволока. Объединенное действие конвекции и диффузии в конце концов приводит к разделению изотопов в этой весьма простой установке, известной под названием колонки Клузиуса. Однако для водорода, который обычно содержит одну часть изотопа Н на 6000 частей изотопа Н , используется метод электролиза подкисленной воды с применением никелевых электродов и тока высокой плотности. Обогащенный дейтерием водяной пар конденсируют и снова подвергают электролизу до тех пор, пока не получится тяжелая вода с постоянной плотностью. Затем ее разлагают на поверхности раскаленного рольфрама и, наконец, очищают медленной диффузией через палладий. [c.214]

    Основной стадией получения тяжелой воды является электролиз воды. При электролизе НаО и ОаО разлагаются с разными скоростями, в результате чего электролит обогащается тяжелой водой. Это происходит потому, что равновесные потенциалы при выделении дейтерия более электроотрицательны, чем для протия, а перенапряжение выше. В водороде, получаемом при электролизе, содержание дейтерия меньше, чем в исходной воде. Распределение дейтерия между газом и электролитом характеризуется коэффициентом разделения а. [c.26]


Смотреть страницы где упоминается термин Разделение и дейтерия: [c.64]    [c.64]    [c.235]    [c.220]    [c.41]    [c.141]    [c.559]    [c.8]   
Адсорбционная газовая и жидкостная хроматография (1979) -- [ c.158 ]




ПОИСК





Смотрите так же термины и статьи:

Дейтерий

Дейтерий разделение, коэфициент

Дейтерий разделение, различные метод

Разделение водорода выделение дейтерия

Разделение водорода выделение дейтерия одноколонном аппарате

Сущность изотопии. II. Магнитный анализ. 12. Масс-спектрограф. 13. Результаты масс-спектрографических исследований Спектральный метод. 15. Две шкалы атомных весов. 16. Законы изотопии. 17. Разделение изотопов. 18. Дейтерий (тяжелый водои тяжелая вода. 19. Получение тяжелой воды. 20. Реакции изотопного обмена. 21. Метод изотопных индикаторов Квантовая теория

Число элементов. 16. Изотопия радиоактивных элементов Атомные веса радиоактивных изотопов. 18. Радиоактивные индикаторы. 19. Изотопия нерадиоактивных элементов и магнитный анализ. 20. Разделение изотопов. 21. Дейтерий (тяжелый водород) и тяжелая вода. 22. Законы изотопии. 23. Остальные закономерности Квантовая теория



© 2024 chem21.info Реклама на сайте