Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ на ионообменных смолах

    Методы определения химических и физических свойств ионообменных сорбентов. Подготовка ионитов к работе. Иониты синтезируются в аппаратуре, недостаточно защищенной от коррозионного воздействия реакционной среды. Поэтому в гранулы ионообменных смол попадают ионы металлов, в основном железа. Кроме того, смолы могут содержать некоторое количество исходных мономеров и других органических загрязняющих веществ. Прежде чем применять иониты для анализа или определять их химические и физические свойства, необходимо их подготовить к работе. Наиболее удобны иониты со средним диаметром зерен 0,25—0,50 мм. [c.164]


Рис. 84. Диаграмма типичного мокрого ситового анализа ионообменной смолы [305J. Рис. 84. <a href="/info/927721">Диаграмма типичного</a> <a href="/info/805961">мокрого ситового анализа</a> ионообменной смолы [305J.
    Для выделения, очистки и анализа алкалоидов, антибиотиков, витаминов применяются ионообменные смолы (иониты), уголь, окись алюминия, силикагель, бентонит и другие сорбенты. Распределительная хроматография на бумаге, чаще всего нисходящая, применяется в анализе аминокислот, алкалоидов, сульфаниламидных препаратов, антибиотиков и других органических соединений, а также смесей катионов и анионов. [c.516]

    После каждого анализа ионообменную смолу регенерируют, восстанавливая ее активную форму. Для регенерации ионообменников проводят обратную ионообменную реакцию, пропуская через катионит раствор кислоты, через анионит - раствор щелочи. Таким образом, ионообменные смолы служат много циклов. [c.347]

    V Настоящая "и две последующие главы посвящены математическому описанию и построению моделирующего алгоритма макрокинетики некоторых стадий производства ионообменных смол с использованием принципов системного анализа математического моделирования процессов химической технологии [1, 2]. В частности, исследуются а) процесс предварительного набухания, характеризующийся изменением реологических свойств полимерной системы (системы сополимер — растворитель ) б) процессы химического превращения сополимеров, осложненные изменяющимися условиями транспорта исходных веществ в зону реакции в) процесс отмывки (гидратации) ионита после сульфирования. [c.295]

    Широкое применение хроматографического метода в различных областях химии началось с 30-х годов этого столетия и было связано с развитием теории адсорбции и ионного обмена, а также с синтезом и применением новых эффективных неорганических и органических сорбентов, в том числе ионообменных смол. Одновременно совершенствовалась техника хроматографического анализа и разрабатывались новые принципы сорбционного разделения веществ. [c.6]


    Методика проверена на искусственных смесях. Бензин термического крекинга освобождали от АС, пропуская через ионообменные смолы до остатка, равного 0,0002 — 0,0003 вес. %. В очищенный бензин вводили дозированное количество азота в виде пиридина. Это соединение — одно из самых стойких в процессе разложения. Поэтому удовлетворительные результаты, полученные на смесях с пиридином, можно рассматривать как гарантию достаточной глубины разложения и других АС при анализе естественных смесей. [c.283]

    Различают два варианта проведения ионного обмена статический и динамический. В статическом методе анализируемый раствор смешивают с ионообменной смолой. Дают установиться равновесию и отфильтровывают ионит. Чтобы реакция прошла количественно, эти операции повторяют. Статический метод анализа применяют только в двух случаях а) для регенерации ионита при сильном разбухании смолы или выделении из нее газа б) для растворения малорастворимых осадков с помощью ионного обмена. При этом раствор не загрязняется избытком посторонних ионов  [c.249]

    Хроматография — метод разделения и анализа смеси веществ, основанный на различной сорбции компонентов анализируемой смеси определенным сорбентом. Впервые X. предложена в 1903 г. русским ученым М. Цветом. Разделение ведут в колонках, наполненных силикагелем, оксидом алюминия, ионообменными смолами (ионитами) и др., или же на специальной бумаге. Вследствие различной сорби-руемости компонентов смеси (подвижная фаза) происходит их зональное распределение по слою сорбента (неподвижная фаза) — возникает хроматограмма, позволяющая выделить и проанализировать отдельные вещества (процесс подобен многоступенчатой ректификации). В зависимости от агрегатного состояния подвижной фазы различают газовую и жидкостную X. по механизмам разделения — ионообменную, осадочную, распределительную и молекулярную (адсорбционную) X. в зависимости от техники проведения разделения в X. различают колоночную (колонки сорбентов), бумажную (специальная фильтровальная бумага), капиллярную (используют узкие капилляры), тонкослойную X. (применяют тонкие слои сорбентов). Методами X. анализируют смеси неорганических и органических соединений, концентрируют следы элементов. В химической технологии X. применяют для очистки, разделения веществ. X. позволяет разделять и анализировать смеси веществ, очень близких по свойствам (напр,, лантаноиды, актиноиды, изотопы, аминокислоты, углеводороды и др.). [c.151]

    Ионообменная хроматография. С ее помощью можно отделять мешающие определению элементы или, наоборот, определяемые элементы при прохождении анализируемого раствора через ионообменную колонку. Если определяемый элемент затем выделить в небольшой объем растворителя, можно сконцентрировать следовые количества элемента до легко измеримых концентраций, и поэтому такой способ концентрирования приобретает все большее значение при анализе следовых количеств элементов. Четкость разделения элементов, сорбируемых ионообменной смолой, можно увеличить, применяя при элюировании комплексообразующие реагенты. Особенно эффективным вариантом метода является нспользование комплексообразующих ионообменных смол. Эти смолы содержат активные группы, способные к образованию специфичных комплексов с определяемыми ионами, которые задерживаются смолой. При этом происходит эффективное разделение. [c.421]

    С давних пор по традиции аналитической химии в учебных планах отводилось место вслед за курсом неорганической химии. Поэтому аналитическая химия являлась как бы естественным продолжением курса неорганической химии. Это обстоятельство накладывало особый отпечаток на учебную программу по аналитической химии, представлявшей собой теорию и практику так называемых классических (качественного, весового и объемного) методов анализа неорганических соединений. Все к этому привыкли, и раньше это оправдалось многими обстоятельствами. Подлинно же современную аналитическую химию нельзя изучать на основе только неорганической химии, поскольку на примерах реакций, известных из курса неорганической химии, невозможно изучать процессы, связанные с применением органических реагентов, индикаторов, экстрагентов, органических соосадителей, ионообменных смол, органических растворителей и т. п. [c.15]

    Органические ионообменные сорбенты представляют собой синтетически полученные высокомолекулярные органические соединения, содержащие ионообменные группы, либо продукты химической переработки лигнина или целлюлозы. В практике хроматографического анализа особенно широко применяются ионообменные смолы, химические и физические свойства которых можно модифицировать в процессе их синтеза. [c.155]


    Содержатся справочные сведения по физико-химическим и физическим методам анализа потенциометрии, кондуктометрии, амперометрии и полярографическому анализу, спектроскопии, фотоколориметрическому, нефелометрическому и турбодиметрическому анализам, пламенной фотометрии, флюоресцентному анализу, рефрактометрии, хроматографии на бумаге и ионообменных смолах. Приведены схемы анализа сложных веществ природного происхождения и искусственно полученных веществ (резины, пластмасс, различных нефтепродуктов), методы определения функциональных групп органических соединений, сведения по техническому анализу металлов и сплавов и др. [c.384]

    Реакционной А. наз. методы функционального анализа, основанные па определении воды, выделившейся илп поглощенной в результате хим. р-ции с участием анализируемого в-ва в неводной среде. Эти методы примен. для определения неорг. н орг. в-в, в т. ч. оксидов н гидроксидов металлов, спиртов, сложных эфиров, к-т, аминов, элементо-орг. соед. для изучения состояния воды в твердых в-вах (гидратах глинозема, цеолитах, ионообменных смолах и др.), кинетики реакций орг. соед., гидратации биополимеров для установления основности гетерополикислот и др. [c.16]

    Особым видом ионообменной хроматографии, применяемым для анализа органических и неорганических ионов, не поглощающих в УФ-области, является ионная хроматография [16]. В этом методе ионообменное разделение ионов сочетают с кондукто-метрическим определением их. Поскольку высокочувствительное кондуктометрическое определение возможно только при невысокой фоновой электропроводности потока жидкости, поступающей в детектор, фоновый электролит подвижной фазы предварительно удаляют пропусканием его через ионообменные смолы. [c.37]

    Большинство отечественных и зарубежных специалистов, оценивая технические показатели и стоимость разработанных в настоящее время процессов доочистки, приходят к выводу, что наиболее эффективными и экономически целесообразными методами являются фильтрование, обработка стоков реагентами, сорбция на активном уг.че и ионообменных смолах [2—8]. Другие технологические приемы доочистки в силу различных причин пока еще недостаточно широко внедряются в промышленных масштабах. Вот почему при описании технологических схем доочистки биологически очищенных сточных вод в этой главе основное внимание уделено анализу работы и опыту эксплуатации действующих промышленных установок, в которых использованы принципы фильтрования, реагентной обработки и сорбции или различные сочетания этих технологических приемов. [c.237]

    Необходимость в количественной обработке раствора пробы можно исключить, если для определения меченого производного применять метод обратного изотопного разбавления. Для этого после превращения анализируемого амина в замещенный сульфамид в раствор добавляют известное количество нерадиоактивного производного, много большее количества меченого производного, присутствующего в растворе. Для этого берут минимальное количество нерадиоактивного производного, достаточное для последующего проведения операций очистки. Затем, применяя ионообменные смолы [79] или экстракцию [81], из раствора удаляют избыток реагента, не обращая внимания на небольшие потери анализируемого соединения. После этого образовавшееся производное очищают путем перекристаллизации до получения постоянного значения удельной радиоактивности [81]. Однако более строгим критерием чистоты соединения в данном растворителе является совпадение значений удельной радиоактивности фильтрата и полученного продукта [83]. Хроматографического разделения в таком анализе не требуется, и удельные радиоактивности образовавшегося производного и радиореагента измеряют, используя стандартный метод. Содержание амииа в пробе в этом случае вычисляют по формуле [c.309]

    То, что в одном цикле анализа методом ГХ можно определить сразу несколько соединений, несколько усложняет дело, поскольку исследователю может потребоваться провести анализ соединений с различными функциональными группами. Так, например, для увеличения специфичности определения спиртов в форме ацетатов может потребоваться, чтобы компоненты смеси были нейтральными (а не кислыми или основными). Для этого придется исключить присутствие аминов и фенолов, которые в противном случае также дадут производные. Если амины и фенолы присутствуют в пробе, то исследователь может удалить их путем экстракции кислотой и основанием или с помощью ионообменных смол. Подобные разделения часто требуются перед получением производных с тем, чтобы исключить появление мешающих веществ. [c.428]

    Такой металл, как алюминий, представляет- особый интерес, поскольку его присутствие показывает, что поверхность образца может быть модифицирована за счет присутствия на ней алюмосиликатных групп, которые оказывают воздействие на поведение коллоидных частиц. Алюминий на поверхности кремнезема может быть определен экстракцией высушенного кремнезема хлористым водородом с последующим анализом экстракта. Карбонаты и органические вещества оказываются важными в том смысле, что карбонат действует как дополнительный электролит, и может потребоваться коррекция при титровании основания, а органические вещества (обычно получаемые экстракцией низкомолекулярного полимера из ионообменной смолы) могут оказывать воздействие на поведение кремнезема в неко- [c.467]

    Ионообменные смолы имеют ограниченное применение в хроматографическом анализе белков. При взаимодействии со смолами высокомолекулярные лабильные белки легко подвергаются денатурации и необратимо связываются сними. Более того, емкость смол по отношению к белкам сравнительно низка, а чистота разделенных фракций не вполне удовлетворительна. Поэтому ионообменные смолы используются в белковой химии в основном для очистки глобулярных белков, имеющих относительно низкий молекулярный вес. [c.21]

    Используя метод ПГХ — МС, удалось охарактеризовать 179 животных клеев, акриловых, целлюлозных, зноксидных, полиэфирных, резиновых, полистирольных, поливинилацетатных и карбамидноформальдегидных клеев [56]. ПГХ была использована для анализа наполненных и ненаполненных образцов. Метод ПГХ успешно применен для анализа ионообменных смол, но-верхностно-активных веществ, полиэтилена [24]. [c.100]

    В последние годы ассортимент реагентов для ионного обмена—их называют теперь ионитами — значительно расширился. Некоторые из ионитов (сульфированные угли и соответствующие ионообменные смолы), называемые катионитами, обладают способностью обменивать содержащиеся в растворе катионы на ионы водорода. Другие (например, продукты конденсации фенилендиаминп с формальдегидом), называемые анионитами, обменивают различные анионы на ионы гидроксила. Последовательное применение ионитов этих двух видов позволяет достигать практически полной деминерализации воды без дистилляции (сами иониты легко регенерируются катиониты — промывгой раствором кислоты, аниониты — растворами щелочи или соды). Иониты применяются также в хроматографическом анализе для разделения близких между собой ионов. [c.373]

    О. Самуэльсон. Применение ионного обмена в аналитической химии. Издатинлит, 1955, (296 стр.). В книге изложены методы хроматографического анализа, основанные в значительной части на собственных исследованиях автора и его сотрудников. Приведен краткий исторический обзор применения неорганических и органических ионитов, описаны основные свойства ионообменных смол, рассмотрены теории ионного обмена и техника его применения в аналитической химии. Описаны примеры разделения и открытия ионов различных металлов, анионов, углеводородов, алкалоидов, ан гибио-тиков, витаминов и ряда других органических веществ. Описано применение метода для исследования растворов комплексных соединений. [c.489]

    Из приближенной теории следует, что адсорбционное торможение тангенциальных движений растет пропорционально квадрату адсорбируемости органического вещества и, следовательно, в гомологическом ряду — пропорционально квадрату коэффициента Траубе. Высокая чувствительность максимумов 2-го рода к адсорбции ПАОВ послужила основой для разработки адсорбционного полярографического анализа, который используется при определении суммарного количества органических загрязнений в воде (см. 1.2) и в растворах солей, а также при изучении миграции ПАОВ в водные растворы из различных полимерных материалов, ионообменных смол и др. Калибровка осуществляется по какому-либо известному ПАОВ (см. рис. 4.14, б). Адсорбционный полярографический анализ позволяет определить наличие примесей ПАОВ в водном растворе при концентрации порядка 10- М в пересчете на [(С4Нд)4Ы1Вг. [c.233]

    Высокая чувствительность максимумов второго рода к адсорбции ПАОВ послужила основой для разработки адсорбционного полярографического анализа, который используется при определении суммарного количества ПАОВ в воде и растворах солей, а также при миграции ПАОВ в водные растворы из различных полимерных материалов, ионообменных смол и резин. Градуировка осуществляется по какому-либо известному ПАОВ, например бромистому тетрабутиламмонию (ТБАВг). Адсорбционный полярографический анализ позволяет определить наличие примесей [c.145]

    А. Г. Коблянский [79] показал возможность обнаружения поглощенных ионитами катионов при помощи микро-кристаллоскопического анализа. Взаимодействие между ионообменной смолой и раствором Приводит к образованию осадка, если вытесняемые из ионита катионы дают с находящимися в растворе анионами труднорастворимое соединение. Так, при регенерации серной кислотой катионита, насыщенного ионами кальция, в слое ионообменника отлагаются кристаллы гипса [c.141]

    Использование ионообменных мембран в анализе Ионообменной (ионитовой) мембраной называют пленку, полученную из ионообменной смолы. Находясь в растворе электролита, ионитовые мембраны избирательно пропускают ионы только одного знака заряда, а именно катионитовые мембраны пропускают только катионы, анионитовые — анионы. Это свойство ионитовых мембран используют для разделения катионов и анионов, а также для их отделения от неэлектролитов методом электродиализа. Центральную часть электродиализатора, в которой находится анализируемый раствор, отделяют от анодной части анионитной, а от катодной — катионитной мембраной. В процессе электродиализа к аноду мигрируют только анионы, так [c.205]

    Лучшим методом анализа аминокислотного состава белковых гидролизатов является хроматографическое фракционирование на колонках из крахмала (Мур и Штейн , 1948) или при помощи ионообменных смол (Мур и Штейн, 1951). Количественное определение на ионообменных смолах с применением автоматической схемы (1958) делает возможным за несколько часов провести полный анализ смеси аминокислот, со,цержащей лишь 10 —10 моль каждого компонента. [c.656]

    Если анализ необходимо вести при pH ниже 2 или выше 7,5, то должна быть применена соответствующая анионная или катионная смола, а в остальных случаях -силикатель с привитой ионообменной смолой. [c.38]

    В круглодонную колбу емкостью 2 л, снабженную обратным холодильником, термометром и мешалкой, загружают 1000 г (10,6 М) глицерина, 475 г (2,72 М) димергидрата хлорацетальдегида и 82 г ионообменной смолы КУ 1. Смесь нагревают 10—12 часов при температуре 80—90° см. примечание) и перемешивании. Реакцию заканчивают, когда концентрация хлорацетальдегида в реакционной массе по анализу [5] остается неизменной в течение часа. Реакционную массу в горячем состоянии отфильтровываютс отсасыванием через трехслойный фильтр из марли для отделения смолы и фильтрат разгоняют, собирая фракцию, кипящую при 125—13079 мм. [c.27]

    Определение следовых и примесных элементов в жидкостях можно проводить напрямую без пробоподготовки. Типичным примером служит определение серы в диапазоне концентраций 1-100 млн в нефтепродуктах. Для более низких концентраций требуется предварительное концентрирование. Ионы переходных металлов в воде могут быть собраны на ионообменной смоле, например Ке1ех-100. Затем смолу можно спрессовать в таблетку и анализировать обычным путем. РФС полного отражения позволяет проводить прямой анализ воды с пределами обнаружения на уровне млрд , просто помещая каплю на отражатель (рис. 8.3-16,6). [c.83]

    В частности, даны полные сведения, касающиеся физических и химических свойств изобутилена, методов синтеза и анализа мономера. Предпочтение отдается последним достижениям, связанным с использованием ионообменных смол - катионных катализаторов для реакций изобутиленового сырья со спиртами как первой стадии получения высокочистого мономера и одновременно основной реакции получения алкилтретбутиловых эфиров - экологически чистых антидетонационных добавок к топливам. Проанализированы и обсуждены данные по кинетике и термодинамике реакций, оптимизации процессов. Расширены сведения о нетрадиционном способе получения изобутилена - термокаталитической деструкцией изобутиленсодержащих и других углеводородных полимеров (олигомеров), где параллельно решается проблема утилизации нестандартных продуктов. Дополнены ранее известные данные по некоторым химическим свойствам и лабораторным методам синтеза изобутилена, обсуждены промышленные варианты процессов. [c.377]

    КИПЯТЯТ С обратным холодильником в течеиие 24 час. на паровой бане. Минеральную кислоту удаляют в вакууме, причем последние следы ее удаляют, добавляя к остатку четыре порции воды по 60 мл. Оставшуюся хлористоводородную соль кислоты (примечание 4) растворяют в нескольких миллилитрах воды, и равные порции пропускают через 2 колонки (200 X 15 мм), содержащие 60 мл ионообменной смолы дауэкс-50 в Н-форме. Колонки промывают 300 мл воды и затем элюируют 300 мл 2 н. раствора гидроокиси аммония и промывают 800 мл воды. Элюаты и промывные воды объединяют и упаривают досуха, а остаток перекристаллизовывают из водного спирта. Маточные жидкости после получения второй порции валина упаривают досуха, а остаток возгоняют в вакууме, получая в результате третью порцию валина. Выход очищенного вещества 1,196 г, что в расчете на цианистый калий составляет 51,4 /о. Анализы, проведенные методами двухмерной бумажной хроматографии и радиоаутографии, свидетельствуют о том, что полученное вещество гомогенно (примечание 5). [c.200]

    В работе [50] описан метод быстрого определения меркаптогрупп в сыворотке, основанный на реакции этих групп с изотопом ilomДg+ введенным в ионообменную смолу в количестве 0,5 мкМ/мл. В анализе этим методом к 1 мл сыворотки добавляют 0,15 мл 1,5 н. ЫН40Н. Через 2 мин после этого смесь пропускают через колонку с ионообменной смолой, меченной изотопом llomДg+ Затем через эту колонку поочередно трижды пропускают по 1 мл [c.358]

    При проведении анализов с помощью ионного обмена раствор фильтруется через слой ионообменной смолы, помещенный в колонку. Первой стадией в обменном цикле является поглощение, в процессе которого способные к обмену ионы ионита замещаются ионами анализируемого раствора. Следующим этапом является удаление из колонки сорбировавшихся ионов (элюция). Е. Н. Гапон [44] указывает на два возможных вида элюции  [c.315]

    Найдено [1256], что сульфаты можно количественно перевести в серную кислоту с помощью ионообменных смол. Образовавшуюся H2SO4 оттитровывают щелочью [21, 236, 282]. Анализ различных вод на содержание 80 проводят по разности кислотностей элюа-тов двух проб, к одной из которых добавлено известное количество соли бария [443]. Метод применен для определения сульфатов в гипсе [1244], квасцах [181], сланцах [105], угле [1148], пирите [1417]. После пропускания анализируемой воды через анионит в [c.84]

    Ч1ротеииы с помощью кислотного, основного или ферментативного гидролиза могут расщепляться на простейшие составляющие — а-ами-нокарбоновые кислоты, обычно называемые просто а-аминокислотами. Ка.чественный анализ получающихся при этом смесей аминокислот связан с относительно большими трудностями. Э. Фишер (1901 г.) обрабатывал такие смеси спиртом и разделял образующиеся в результате смеси сложных эфиров а-аминокислот дробной перегонкой. В настоящее время эти соединения разделяют и идентифицируют методами газовой хроматографии. Использование ионообменной хроматографии позволяет разделить подобные смеси без предварительной этерификации. Существуют приборы, которые автоматически проводят качественный и количественный анализ смесей такого рода. При этом первоначально а-аминокислоты разделяются на ионообменных смолах, элюаты обрабатываются нингидрином, а образующиеся синие окрашенные вещества анализируются колориметрически, кривые поглощения записываются с помоп ью самописца. [c.647]

    Разнообразны примеры использования ионного обмена в анализе. О помощью ионообменных смол проводят количественное отделение электролитов от неэлектролитов (например, анализ молока на содер-жаняв в нем ионсв Са , Sr , анализ вин на содержание ионов [c.77]


Смотреть страницы где упоминается термин Анализ на ионообменных смолах: [c.341]    [c.2]    [c.9]    [c.9]    [c.54]    [c.385]    [c.172]    [c.8]    [c.273]    [c.57]   
Руководство по аналитической химии (1975) -- [ c.54 ]




ПОИСК





Смотрите так же термины и статьи:

Ионообменные смолы



© 2025 chem21.info Реклама на сайте