Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Едкий натр II группы

    Все моющие вещества, применяемые для химико-механической очистки емкостей, подразделяются на три группы — водные растворы щелочей (обычно едкого натра), органические растворители (главным образом хлорированные углеводороды) и синтетические поверхностно-активные вещества. [c.102]

    Большая группа веществ оказывает прижигающее и раздражающее действие на кожные покровы. К ним относятся кислоты — серная, азотная, соляная, муравьиная, уксусная, едкие щелочи — едкий натр и едкое кали, а также некоторые окислы, ангидриды, бихроматы, фенолы и прочие агрессивные вещества. [c.94]


    Катализаторы. Катализаторами процесса являются хелатные соединения металлов VI группы в растворе едкого натра. [c.193]

    По окончании ввода олефинов реакционную массу выдерживают 1 ч при 130° С. Затем алкилат промывают водой для удаления БСК н оставшегося фенола и добавляют 1,5—2% 40%-ного раствора едкого натра. После перемешивания от алкилата под атмосферным давлением отгоняют воду и продукты, выкипающие до 200° С. Полученные безводные алкилфенолы оксиэтилируют при 130° С и 2 ат, присоединяя 30—40 моль окиси этилена на 1 моль алкилфенола или 80—85% от веса готового продукта. Процесс контролируют по расходу окиси этилена, иодометрически определяя содержание оксиэтиленовых групп в отобранных пробах. [c.145]

    Разделение органической массы углей, которая представляет собой сложную смесь самых различных соединений, на отдельные группы веществ, каждая из которых обладает общими свойствами в отношении действия органических растворителей, щелочей, минеральных кислот и других химических реактивов, называется групповым анализом. Предложено много методов группового анализа различных видов твердого топлива. Наиболее целесообразными для группового анализа торфа являются следующие обработки а) последовательное экстрагирование битумов в аппарате Сокслета эфиром и бензолом б) обработка водой при 60 °С с целью выделения простых сахаров в) обработка кипящей водой с целью гидролиза пектиновых веществ г) обработка на водяной бане 2%-ной соляной кислотой с целью гидролиза гемицеллюлозы д) обработка 2%-ным едким натром на водяной бане для экстракции гуминовых кислот е) обработка 80%-ной серной кислотой с целью гидролиза целлюлозы и ее определение по количеству образовавшейся глюкозы, причем остаток принимается за лигнин. [c.161]

    Превращение карбоновой кислоты в предельный углеводород может быть осуществлено также по методу Дюма однако в этом случае образующийся углеводород содержит на один атом углерода меньше, чем исходная кислота. Метод заключается в перегонке щелочных или щелочноземельных солей карбоновых кислот с едким натром, натронной известью или гидратом окиси бария. При этом карбоксильная группа кислоты выделяется в виде карбоната  [c.32]

    В пробирку наливают 0,5 мл 3%-ного раствора сульфата меди и 1 мл 10 о-ного раствора едкого натра. Выпадает голубой осадок гидроокиси меди (И). Если при добавлении 0,1 г исследуемого вещества осадок растворяется, а раствор окрашивается в ярко-синий цвет, то вещество содержит две или больше рядом расположенные гидроксильные группы. [c.124]


    Отделение гидроксидов катионов четвертой группы. К раствору 1 прибавляют избыток 6 н. раствора едкого натра и 3%-ный раствор перекиси водорода. [c.111]

    Отделение катионов III группы от катионов IV и V групп. К раствору 8, после удаления спирта, прибавляют несколько капель перекиси водорода и избыточное количество 2 н. раствора едкого натра, нагревают в течение 3—5 мин и тщательно перемешивают стеклянной палочкой. Избыточное количество перекиси водорода удаляют кипячением. Осадок отделяют центрифугированием. [c.116]

    Выделение ионов третьей группы. К Ю—15 каплям исследуемого раствора приливают двойной объем 6 н. раствора едкого натра и 2—3 мл 3%-ного раствора перекиси водорода. Полученную смесь нагревают, избыток перекиси водорода удаляют кипячением  [c.134]

    Осаждение катионов четвертой группы в виде гидроксидов. Раствор 2 обрабатывают при нагревании избытком 6 и. раствора едкого натра и перекиси водорода. В осадок выпадают гидроксиды катионов четвертой аналитической группы  [c.142]

    Для проведения реакции оксиэтилирования окись этилена пропускают через нагретый до приблизительно 170° высокомолекулярный снирт в присутствии этилата натрия или едкого натра как катализатора. В нромышленности оксиэтилпрование ведут жидкой окисью этилена под давлением около 3,5 ат и при температуре 165°. В зависимости от соотношения между окисью этилена и спиртом полигликолевые эфиры содержат больше или меньше оксиэтильпых групп. [c.193]

    Общеупотребительные реактивы имеются в любой лаборатории, к ним относится сравнительно небольшая группа химических веществ кислоты (соляная, азотная и серная), щелочи (раствор аммиака, едкие натр и кали), окиси кальция и бария, ряд солей . преимущественно неорганических, индикаторы (фенолфталеин, метиловый оранжевый и др.), а также некоторые органические рас-- творигели (этиловый, или винный, спирт, диэтиловый, или серный,, эфир, и т. п.). [c.23]

    В группу химических методов входят обработка бензинов теми или иными реагентами (серной кислотой, хлоридом алюминия, хлоридом цинка, едким натром, известью, плумбитом натрия, гипохлоритом л т. д.), термическая полимеризация, термическое обессеривание, прямое окислеиие кислородом воздуха и т. п. При полимеризации или обессериваппи (очистка бокситами), а также в других процессах очистки бензина могут и1 иользоваться катализаторы, в связи с чем появились методг.1, которые иел1..1Я охватить классификацией, исходя из понимания очистки как процесса, связанного обязательно с удалением из состава бензина веществ, ухудшающих его качество. [c.72]

    Прямогонные фракции нефтей, такие как керосин, дизельное топливо, а также бензин каталитического крекинга часто содержат меркаптановую серу, концентрация которой превышает норму ГОСТ. При этом содержание общей серы в этих фракциях укладывается в нормы. В этих случаях экономию капит альных и эксплутационных затрат даёт использование простой и дешевой технологии каталитической окислительной демеркаптанизации взамен гидроочистки. Окислительная демеркаптанизация топлив, особенно бензиновых фракций, может быть реализована с применением гомогенного или гетерогенного катализатора. Гомогенный вариант реализуется путём смешения меркаптансодержащего сырья с воднощелочным раствором, содержащим катализатор, в присутствии кислорода. Очевидно, что в реакцию с едким натром вступают только низкомолекулярные меркаптаны, образуя меркаптиды, а высокомолекулярные лишь ориентируются своей сульфогидрильной группой (-8Н) в щелочную фазу, не переходя в неё и оставаясь на границе раздела фаз. Для наглядного представления механизма реакций окисления высокомолекулярных тиолов в двухфазной системе и окислительной деструкции фталоцианина, рассмотрим схему, представленную на рис. 3.4. [c.63]

    Полного ацеталирования поливинилового спирта Полученную суспензию ПВБ передавливают в достигнуть не удается, поэтому технические поливи- промыватель 7, в котором ее промывают обессолен-нилацетали содержат кроме ацетатных и ацеталь- ной водой при модуле ванны 1 8. Отработанные ных групп 15—20 мол. % гидроксильных групп. промывные воды не должны содержать соляной Производство поливинилацеталей осуществляет- кислоты. Отсос маточного раствора осуществляется ся различными методами. Эти методы можно раз- при помощи специальных фильтров, вмонтирован-делить на две группы пых в конусное днище аппарата 7 или опускаемых совместное омыление поливинилацетата и аце- в этот аппарат во время отсоса, талирования поливинилового спирта без выделения Далее ПВБ промывают 0,02%-ным водным распоследнего (однованные методы) твором едкого натра (стабилизация), поступающим раздельное получение поливинилового спирта и из емкости 8, при 55°С. Модуль ванны 1 8, про-его ацеталирование (двухванные методы). должительность промывки 2 ч. [c.41]

    На базе производных циклогексана и циклопентана получают фосфорорганические ПАВ циклоалканового ряда, содержащие в молекуле амидо- и дитиофосфорные группы [30]. ПАВ —продукты конденсации нефтяных кислот с этаноламином, взаимодействия получаемых оксиамидов нефтяных кислот с пентасульфидом фосфора и нейтрализации дитиофосфорных кислот едким натром. Оксиамиды получают при взаимодействии нефтяных кислот с избытком аминоспирта при 150—180 °С в течение 4 ч. Оксиамиды обрабатывают в течение 5 ч пентасульфидом фосфора при соотношении реагирующих веществ 4 1 и 100—120°С. Использование ПАВ, как добавки в скважины и трубопроводы при добыче и транспортировании парафиннстых нефтей снижает отложение твердых парафинов на 86—95 %. [c.329]


    Метилирование фенола в водном растворе щелочи впервые исследовал Ульманн [370]. Гребе [371] показал, что при продолжительном нагревании реакционной смеси обе метильные группы могут вступить в реакцию алкилирования [372]. Наилучшие результаты достигаются в присутствии очень небольшого количества воды, например при прибавлении диметилсульфата к раствору фенола в едком натре при 45—60°. При указанной температуре заканчивается первая стадия реакции [369, 373]. Вторая метильная группа вступает в реакцию при нагревании реакционной смеси при 100—105° в течение часа. При таком способе можно получить анизол с выходом 95%. [c.66]

    Единственной замещенной галоидобензолсульфокислотой с неалкильной замещающей группой, восстановленной цинком и едким натром, является, повидимому, 4-бромфенетол-2-сульфо-кислота [1030]. [c.156]

    Алкилбензолсульфокислоты. Присутствие одной или нескольких алкильных групп в бензольном ядре изменяет реакцию ароматических сульфокислот с щелочами в двух отношениях во-первых, возрастает количество побочных продуктов, так как алкильные группы в некоторых случаях окисляются до карбоксила, и, во-вторых, растворимость солей сульфокислот в щелочах может сделаться такой малой, что это будет препятствовать ходу реакции. Из имеющихся данных следует, что едкое кали, растворяющее даже соль п-цетилбензолсульфокислоты, является лучшим растворителем для щелочных солей сульфокислот, чем едкий натр. [c.231]

    В качестве инициаторов жидкофазного окисления и-цимола рекомендуются гидроперекиси г-цнмола [185, 235, 236], дитретич-ного бутила [120], перекись бензоила [237, 238], эфиры 3-кето-карбоновых кислот [111], нафтенат магния [196], стеарат натрия, ацетат марганца и NaOH [235], сода [239] и другие [162]. Очень легко протекает окисление п-цимола в присутствии 2%-ной гидроперекиси п-цимола и добавок стеарата натрия, ацетата марганца и едкого натра. В присутствии ацетата марганца (0,5 %) за 25 час. при 100° С гидроперекись получается с выходом 28%-При окислении и-цимола в присутствии 1% NaOH (25%-ного водного раствора) с периодическим введением 1% озона и добавки ВаОг за 10 час. концентрация гидроперекиси в растворе достигает 19% [196]. При окислении г-цимола сухим воздухом в нрисутствии перекиси бензоила в течение 20 час. при 85—110° С концент рация гидроперекиси составляет 20%, а при 110° С достигает максимальной в 28%, после чего начинает понижаться [237]. Во всех этих случаях получаются продукты, образовавшиеся окислением как изопропильной, так и метильной группы. [c.268]

    Такие алкилфенолы имеют ряд особенностей, они, например, не реагируют с едкими щелочами [58] и металлическим натрием. Слабую химическую активность этих соединений обычно объясняют тем, что группа ОН экранирована изобутильными радикалами, и поэтому имеется пространственное затруднение для протекания каких-либо реакций с группой ОН. Однако более детальное изучение этого вопроса показывает, что такое объяснение явно недостаточно, так как тот же экранированный алкилами фенол легко реагирует с реактивом Гриньяра, молекула которого имеет большие размеры, чем молекула едкого натра. Любопытно, что и с металлическим натрием экранированный фенол не реагирует только в том случае, когда реакция ведется в растворе петролей-ного эфира, и достаточно легко реагирует, если вести реакцию в жидком аммиаке. В последнем случае образуется амид натрия NH2Na —сильное основание, который и реагирует с экранированной группой ОН. [c.305]

    Были предложены различные объяснения механизма образования высших спиртов основная трудность заключается в том, чтобы объяснить, почему получающиеся первичные спирты имеют разветвленную, а не нормальную цепь углеродных атомов. Грейвс [15] выдвинул положение, согласно которому щелочной окисный катализатор вызывает конденсацию спиртов по типу реакции Гербе. Реакция Гербе состоит во взаимодействии спиртов R Hj HaOH с соответствующим алкоголятом натрия при 250° под повышенным давлением. При этом выделяется едкий натр (водород отщепляется от углерода, соседнего с группой — HjOH) и образуется первичный спирт с разветвленной цепью  [c.57]

    В Германии сырьем для этого процесса служила фракция синтетического дизельного топлива (гл. 3, стр. 63), кипящая в пределах 220—330°. Она состояла из парафиновых С — ig-углеводородов нормального строения с небольшой примесью олефинов. Эту фракцию гидрировали, с тем чтобы все олефины перевести в парафины, и затем смесь углеводородов обрабатывали при обычных температуре и давлении двуокисью серы и хлором, подвергая их одновременно действию ультрафиолетовых лучей. Чтобы подавить реакцию хлорирования, уменьшить образование дисульфохлоридов, а также чтобы получить продукты, в которых группа SOg l располагалась бы как можно ближе к концу углеродной цепи, процесс проводили при степени превращения не более 50—70%. Расход электроэнергии был очень низким — около 0,0022 кет на 1 кг продукта. Моносульфохлорид ( мер-золь ) отделяли от непрореагировавшего углеводорода, который возвращали обратно в процесс. Моносульфохлорид обрабатывали затем раствором едкого натра и получали натриевую соль алкилсульфокислоты ( мерзолят ), В производстве стиральных порошков мерзолят смешивали с силикатом натрия или с натрийкарбоксиметилцеллюлозой. [c.98]

    Пимелиновую кислоту НООССН2СН2СН2СН2СН2СООН получали из дивинила и акрилонитрила, которые по реакции диенового синтеза переводили вначале в тетрагидробензонитрил. При сплавлении с едким натром при 250—300° двойная связь в этом промежуточном продукте перемещается, после чего кольцо разрывается с одновременным гидролизом нитрильной группы [22]  [c.343]

    Определение С-м е т и л ь н ы х и ацетильных групп. Метильные группы, связанные с углеродом, окисляют специально очищенной хромовой смесью в уксусную кислоту, которую перегоняют с водяным паром в кварцевую колбу и затем нейтра шзуют 0,01 н. раствором едкого натра в присутствии фенолфталеина Если применять дистиллированную воду, то можно избежать необходимости оттитровы-вать СО2. К сожалению, эта реакция не со всеми соединениями протекает количественно, так что при оценке результатов следует соблюдать известную осторожность. [c.10]

    Промышленный синтез ализарина — сплавление антрахинонсульфокислоты с едким натром—почти одновременно разработан Гребе и Либерманом, Перкиным, а также Ризером. Раньше щелочное плавление проводилось без каких-либо добавок, и поэтому введение второй гидроксильной группы в молекулу ализарина происходило в результате окисления кислородом воздуха  [c.722]

    В связи с сернистыми красителями следует упомянуть также скатанол О , образующийся прн действии серы и едкого натра на фенол. Он представляет собой бесцветное соединение, которое в виде натриевой соли субстантивно выбирается хлопком и способно фиксировать основные краснтелн еще лучше, чем это делает таннин. Фиксация достигается за счет связывания кислых ОН-групп катапола с красителем в нерастворимую соль, в то время как другие ОН-группы закрепляются иа целлюлозе с помощью водородных мостиков. [c.743]

    Щелочное плавлен и е—процесс взаимодействия металлических солей ароматических сульфокислот со щелочами, приводящий к замещению сульфогруппы ЗОдН гидроксильной группой ОН. Исходным органическим сырьем в процессах щелочного плавления являются металлические (главным образом натриевые) соли сульфокислот (бензолсульфонат натрия, нафталин-сульфонат натрия, натриевые соли нафтиламинсульфокислот, антрахирюнсульфокислот и т. д.), применяемые в виде растворов, паст и сухих веществ. Неорганическим сырьем, участвующим в этих процессах, являются щелочи (едкий натр, едкое кали, окись кальция и др.), применяемые в виде растворов или расплавов. [c.319]

    Опыт. Несколько кристаллов фенола растворяют в , Ъ мл 15%-ного раствора едкого натра и наносят стеклянной палочкой несколько капель раствора на кусок фильтровальной бумаги. Рядом наносят несколько капель раствора п-диазобензолсульфоки-слоты так, чтобы образовавшиеся пятна соприкоснулись. По появлению окраски в месте соприкосновения растворов судят о наличии фенольной группы. [c.240]

    Эквивалентным весом карбоновой кислоты называют ту часть молекулярного веса, которая приходится на одну кислотную группу. Эту величину определяют обычно титрованием раствором едкого натра в присутствии индикатора или потенциометрически  [c.259]

    Растворяют в маленькой пробирке каплю исследуемого вещества в 1 мл эфира. Добавляют каплю сероуглерода и несколько крупинок едкого натра. Смесь, встряхивая, слегка нагревают на водяной бане. Прибавляют каплю 2%-ного раствора СпЗО . При наличии в веществе спиртовой группы выпадает коричневый осадок ксантогената меди. При отсутствии гидроксильных групп цвет осадка синий. [c.112]

    Определение растворимости. Растворимость вещества в различных растворителях помогает сделать заключение о наличии в веществе тех или иных функциональных групп. Кроме того, определение растворимости позволяет подобрать подходящий растворитель для перекристаллизации вещества ( подобное растворяется в подобном ). Растворимость целесообразно исследовать в следующих растворителях вода 5%-ные растворы едкого натра, гидрокарбоиата натрия, соляной кислоты концентрированная серная кислота этиловый спирт бензол петролейный эфир уксусная кислота. В пробирку вносят каплю жидкого или 0,01 г твердого соединения и по каплям 0,2 мл растворителя. После каждой прибавленной порции растворителя смесь взбалтывают. Если соединение полностью растворимо, то его регистрируют как растворимое. Если вещество плохо растворяется или не растворяется при комнатной температуре, нагревают до кипения. В случае плохой растворимости в неорганических растворителях нерастворившееся вещество отделяют, а раствор нейтрализуют и наблюдают, не выделяется ли из него исходное соединение. Помутнение нейтрализуемого фильтрата указывает на свойства вещества кислые — если растворителем была щелочь или сода основные — кислый растворитель. При внесении вещества в раствор гидрокарбоната нужно обратить внимание, не выделяется ли двуокись углерода. [c.122]

    Электролиты. К этой группе химикалий относятся некоторые минеральные и органические кислоты (соляная, серная, уксусная), щелочи (едкий натр, известь) и соли (поваренная соль, хлористый кальций, железнк й купорос, хлорное железо, нафтенат алюминия и др.). Действие этих электролитов весьма различно. Одни из них, соединяясь с водой, нарушают стабильность эмульсии, другие способствуют разрушению плевки эмульгатора, третьи образуют нерастворимые осадки с солями, входящими в состав эмульсии. К реагентам этой группы принадлежит поваренная соль. Через концентрированный подогретый слой соли пропускают нефтяную эмульсию. Едкий натр и известь были одними из первых реагентов, применявшихся для разрушения эмульсионной пефти. [c.200]

    Особую группу составляют очень активные скелетные катализаторы, из которых чаще всего применяется так называемый никель Репся, который получают выщелачиванием никель-алюмиииевого сплава избытком горячего едкого натра. Таким путем удаляется почти весь алюминий и остается очень пористая губчатая (скелетная) масса никеля, которую из-за ее пирофорности нужно хранить под слоем инертной жидкости. Более перспективен катализатор, получаемый неполным выщелачиванием алюминия только с поверхностного слоя. В отлнчие от никеля Ренея он способен к регенерации путем повторного выщелачивания более глубоких слоев. [c.443]

    Выполнение реакции. 1—2 капли исследуемого раствора помещают на фильтровальную бумагу, смачивают 2 каплями 2 н. раствора едкого натра, прибавляют 2 капли раствора гексацианоферрата (И) калия и затем уксусной кислоты. В случае присутствия ионов А1 " появляется красное окрашивание, окаймляющее пятно, гголученмое от нерастворимых гексацианоферратов (И) катионов других групп. [c.49]

    Открытие Сг -ионов в присутствии катионов других аналитических групп. Каплю исследуемого раствора помещают на часовое стекло, прибавляют 2—3 капли 3%-ного раствора перекиси водорода и 2—3 капли 6 н. раствора едкого натра. Полученную смесь слегка нагревают, затем при помощи капиллярной трубочки переносят раствор вместе с осадком на фильтровальную бумагу так, чтобы осадок задерживался на бумаге в месте прикосновения к ней капилляра. СгОГ-ионы диффундируют к периферии пятна, вокруг осадка образуется кольцо, содержащее СГО4 -ионы. Кольцо смачивают уксуснокислым бензидином. При наличии СГО4 -ионов образуется синее пятно. [c.52]

    Получениг гидроксидов катионов третьей группы и их растворение в избыточном количестве едкой щелочи. 10—15 капель исследуемого раствора, который содержит катионы третьей аналитической группы, помещают в фарфоровую чашку, добавляют 3—5 капель перекиси водорода и затем при нагревании и перемешивании прибавляют 6 и. раствор едкого натра до полного растворения выпавших гидроксидов. [c.110]

    А1 % Сг " ). К третьей аналитической группе относят катионы, образующие при действии избытка едкого натра в присутствии перекиси водорода растворимые в воде анионы АзО , ЗЬОз , 5пОз", [c.133]


Смотреть страницы где упоминается термин Едкий натр II группы: [c.162]    [c.551]    [c.231]    [c.245]    [c.246]    [c.273]    [c.306]    [c.222]    [c.174]    [c.277]    [c.169]   
Основы аналитической химии Издание 2 (1965) -- [ c.205 ]




ПОИСК





Смотрите так же термины и статьи:

Едкий натр

Едкий ттр

Натрия группы



© 2025 chem21.info Реклама на сайте