Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изомеризация углеводородов роль олефинов

    Исключительно велика роль Б. А. Казанского в исследовании каталитического гидрогенолиза цикланов с образованием парафиновых углеводородов. Им и его учениками получены принципиально новые данные почти для всех цикланов, содержащих от 3 до 15 атомов углерода в кольце. Исследуя гидрогенолиз трехчленных циклов в присутствии различных металлических катализаторов, Б. А. Казанский, М. Ю. Лукина, С. В. Зотова и другие выявили ряд важных закономерностей, показав, в частности, что в условиях гидрогенолиза могут протекать не одна, а несколько реакций собственно гидрогенолиз цикла, предварительная изомеризация цикла в олефин и, наконец, гидрирование образовавшегося олефина. Полученные результаты разъяснили многочисленные противоречия, имевшиеся по этому вопросу в литературе. [c.8]


    В реакции изомеризации парафиновых углеводородов наиболее медленной стадией является перегруппировка промежуточных соединений на кислотных центрах носителя, поэтому при синтезе катализатора необходимо придать носителю сильные кислотные свойства. Роль металла сводится к осуществлению первичного акта дегидрирования молекулы парафинового углеводорода с образованием олефина и протекания реакции гидрирования промежуточных соединений, что обеспечивает стабильность каталитической системы. Немаловажным моментом в синтезе катализатора изомеризации является подбор правильного соотношения между концентрацией металла и кислотностью носителя - это определяет не только активность, но и селективность его действия и стабильность в процессе изомеризации. [c.42]

    Вышеприведенные исследования показывают, что изомеризация олефинов происходит более легко и более часто, чем изомеризация парафинов. Изомеризация олефинов в присутствии различных катализаторов— обычное явление при каталитическом крекинге. При термическом процессе изомеризация происходит при высоких температурах и в значительной степени сопровождается другими реакциями крекинга. Принимая во внимание большую нестабильность олефинов при высоких температурах, благодаря которой происходят различные реакции полимеризации, разложения и т. д., полагают, что изомеризация олефинов не может играть важной роли при термическом крекинге. С другой стороны, при каталитических процессах изомеризация олефинов может происходить в большой степени и может быть использована для получения бензинов, богатых разветвленными алифатическими углеводородами. [c.53]

    Фактическая же концентрация олефинов в опытах по изомеризации насыщенных углеводородов бывает еще более низкой в результате применения четырехкратного избытка водорода. Конечно, при столь низкой концентрации олефинов (десятые доли процента) уже не протекают реакции полимеризации и перераспределения водорода, т. е. отсутствует весь тот комплекс превращений непредельных углеводородов, который обычно характерен для процессов каталитического крекинга и который является одной из основных причин отложения кокса на алюмосиликатных катализаторах. Именно благодаря этому поверхность катализатора остается длительное время чистой, что способствует сохранению его активности. С другой стороны, как уже было отмечено, при контакте парафиновых углеводородов с полифункциональным катализатором, даже при повышенных давлениях, все же образуется известное количество олефиновых углеводородов, которые, по-видимому, и претерпевают такие же изомерные превращения, как обычные олефины в присутствии кислотных катализаторов. Поэтому другая не менее важная роль водорода (а также и давления), по нашему мнению, заключается в увеличении скоростей реакций гидрирование дегидрирование, благодаря чему практически каждая молекула исходного парафинового углеводорода могла бы быть подвергнута соответствующему превращению. Есть основание полагать, что лимитирующим по скорости превращением в ряде случаев является дегидрирование гидрирование, в то время как непосредственно изомеризация, т. е. изменение углеродного скелета углеводородов, протекает, благодаря ионному характеру, достаточно быстро. [c.102]


    Крекинг и пиролиз углеводородов. Механизм каталитического крекинга углеводородов выяснен лишь в самых общих чертах, что объясняется прежде всего большой сложностью этого процесса, так как в нем имеют место разнообразные побочные реакции — изомеризация, полимеризация, циклизация, перераспределение водорода и др. Механизм процесса значительно усложняется при крекинге смесей углеводоро дов. С помощью меченых атомов при изучении механизма вторичных реакций крекинга было установлено [66—69] от сутствие изотопного обмена углерода между углеводорода ми. Метан в условиях крекинга обладает весьма малой реакционной способностью, отсутствует его прямое алкилирование непредельными продуктами, образующимися при крекинге, олефинам принадлежит преобладающая роль в образовании кокса на катализаторе и в реакциях полимеризации. [c.21]

    В ряде цитированных выше работ высказывались предположения о механизме акта изомеризации Р-олефина, предшествующего образованию при его полимеризации поли-а-олефина. Однако детальному исследованию механизм этого акта пока не подвергался. Тем не менее, нам представляется наиболее вероятной существенная роль в реакции изомеризации я-ал-лильных комплексов. Как известно, концепция тг-аллильных комплексов вообще оказалась плодотворной при выяснении многих принципиальных сторон стереоспецифической полимеризации непредельных углеводородов, в особенности диенов [22]. [c.8]

    Исследование каталитического гидрирования ненасыщенных углеводородов в жидкой фазе в присутствии металлов VHI группы начато Б. А. Казанским в 1938 г. [ЖОХ, 8, 1428 (1938)]. В ходе этой работы было установлено, что на скорость и селективность гидрирования оказывает влияние реакция перемещения двойной связи в олефинах (см. книгу Б. А. Казанский. Каталитические превращения углеводородов . М., Наука , 1968 г.). В этой части книги помещены статьи, посвященные механизму реакций гидрирования и изомеризации олефинов и роли различных форм водорода, сорбированного металлами VIH группы, в этих реакциях. [c.220]

    Стимулирующая роль олефинов в изомеризации парафиновых углеводородов вначале оставалась незамеченной, так как при использовании в этом процессе галогенидов металлов всегда в той или иной степени имел место крекинг и олефнны являлись обычным побочным продуктом, па который не обращалось, внимания. Лишь недавно было обнаружено, что чистый /г-бутан при температуре 100° (еще до начала его крекинга) хлористым алюминием по изомеризуется. Но достаточно ввести в эту систему 2,43% бутенов, как начинается изомеризация бутана. Реакция эта протекает нормально и в обычном объеме, т, е. образуя до 45% изобутана в равновесной смеси. [c.133]

    Поверхностные гидроксильные группы окиси алюминия ведут себя как очень слабые бренстедовские кислотные центры, в водной среде более слабые, чем гидроксильные группы на поверхности двуокиси кремния [51]. При адсорбции аммиака на у-окиси алюминия, прокаленной при 1070 К, ионы NH фактически не образуются [50]. Однако кислотные центры, по-видимому, участвуют в дегидратации третичных спиртов [52] — реакции, которая сопровождается перегруппировкой углеродного скелета, протекающей, как полагают, через стадию образования иона карбония. Пока не ясно, могут ли эти бренстедовские кислотные центры, обусловленные остаточной гидратацией поверхности, отдавать протон в реакциях изомеризации углеводородов по карбоииевому механизму. Финч и Кларк [53] пришли к выводу, что такую возможность полностью исключить нельзя. Из работы Мак-Айвера и др. [51, 188] определенно следует, что такие реакции, как изомеризация олефинов и крекинг углеводородов, могут протекать и на бренстедовских, и на льюисовских центрах эти исследователи установили, что с увеличением температуры дегидратации окиси алюминия выше 770 К роль льюисовских центров возрастает. Содержание гидроксильных групп может быть особенно низким при значительной концентрации галогена так, Финч и Кларк [53] сообщили, что содержание ОН-групп на поверхности окиси алюминия с 3—7% F после дегидратации при [c.59]

    Большую роль вТразработке термодинамики реакций углеводородов сыграли работы А. В. Фроста, Б. Л. Молдавского, А. А. Введенского и др., которым принадлежат обширные экспериментальные и теоретические исследования процессов изомеризации углеводородов, гидрирования и гидратации олефинов. циклизации парафинов и многих других, [c.423]

    В более развернутом виде свое научное творчество Борис Александро-, ВИЧ анализирует в обзорной лекции, написанной для Международного симпозиума, посвященного механизмам превращения углеводородов (Шио-фок, Венгрия, 1973 г.). Этой лекцией О механизме превращения углеводородов в присутствии некоторых гетерогенных катализаторов открывается первая часть этой книги. В лекции подводятся итоги определенного этапа творчества школы, возглавляемой Б. А. Казанским, она содержит обзор работ автора за последние 10—15 лет в области каталитических превращений углеводородов с малыми циклами в ней обсуждены механизмы ранее открытых Б. А. Казанским и сотрудниками реакций С - и Се-дегид-роциклизации алканов и алкилбензолов и, наконец, дана интерпретация роли адсорбированного водорода при гидрировании и изомеризации двойных связей в олефинах в присутствии металлов VIH группы. Обзорная лекция насыщена интересным фактическим материалом, в ней проанализирована взаимосвязь между строением углеводородов и их реакционной способностью в условиях катализа, показаны пути перехода углеводородов различных классов друг в друга. В других статьях этого раздела (обзор, написанный к 50-летней годовщине Октябрьской революции, и доклад на УИ1 Мировом нефтяном конгрессе, 1971 г.) обобщаются и анализируются дан[[ые по наиболее важным направлениям современного органического катализа. При этом обсуждаются основные закономерности и механизмы каталитических реакций дегидроциклизации парафинов с образованием ароматических (Сб-дегидроциклизация) и циклопентановых (Сб-дегидро-циклизация) углеводородов, гидрогенолиза цикланов с кольцом от трех-до пятнадцатичленного гидрирования, изомеризации и диспропорционирования олефинов, конфигурационной изомеризации стереоизомерных диалкилцикланов. [c.6]


    Дегидрирование до олефинов. Наряду с реакциями изомеризации большое внимание уделялось изучению дегидрирования низкомолекулярных парафинов. В ранних работах по каталитическому дегидрированию газообразных парафиновых углеводородов Гроссе и Ипатьев [14] указывали на то, что разрыв связи С—С энергетически более выгоден, чем разрыв связи С-Н. Кроме этого, процесс осложняется тем, что для достижения равновесия требуются высокие температуры (500—750° С). С увеличением молокуляр11ого веса углеводородов возрастает роль реакций циклизации. [c.166]

    Олефины в результате переноса водорода, полимеризации и циклизации дают сложные высоконенасыщенные продукты, образующие комплексные соединения с А1С1з — маслообразную фазу катализатора, содержащую 60—80% хлористого алюминия. Образование побочных продуктов сильно увеличивается с температурой реакции в результате увеличения роли раопада карбоний-ионов. Возрастание числа атомов углерода в молекуле н-парафина интенсифицирует распад, так как эндотермичность реакции снижается. Образование продуктов распада при изомеризации н-гептана и выше происходит при разложении карбоний-ионов, образующихся из исходного углеводорода стадия алкилирования не требуется и это сильно интенсифицирует раопад. [c.234]

    В последнее время появилось большое количество статей, посвященных гидрированию ненасыщенных углеводородов, катализируемому комплексами Pt(II) и РЙ(П) в присутствии активирующих добавок галогенидов металлов IV группы, в частности ЗпСЬ. Механизм активации водорода этими каталитическими системами, а также исчерпывающее описание роли сока-тализаторов даны в другом обзоре этого выпуска [1]. Для гидрирования применяли как простые системы, так и системы, включающие лиганды. Последние содержали фосфиты или третичные фосфины, арсины и стибины с добавкой галогенидов платины (или палладия) и олова. Общей особенностью обеих приведенных выше систем является их способность промотиро-вать изомеризацию концевых олефинов в олефины, содержащие двойную связь внутри цепи, а также перегруппировку несопряженных диенов с одной метиленовой группой между двумя двойными связями в соответствующие сопряженные диолефины. Напротив, позиционная изомеризация олефинов с двойной связью внутри цепи протекает в меньшей степени [86]. [c.138]

    На первой стадии алкилирования молекула олефина подвергается изомеризации эта реакция происходит до полимеризации. Поверхностные соединения, идентифицированные по ИК-спектрам адсорбированных олефинов, в алкилировании участия не принимают. Скорее всего, эти адсорбированные вещества не промотируют, а, наоборот, подавляют реакцию алкилирования. Роль цеолитов как катализаторов алкилирования заключается, вероятно, в том, что они адсорбируют ароматические углеводороды и превращают их в реакционно-способные поверхностные соединения. В ИК-спектрах бензола, адсорбированного на цеолитах, наблюдается изменение положения и интенсивности полос поглощения, что объясняется сильным взаимо- -действием молекул этого адсорбата с поверхностью цеолитов. В результате подобного взаимодействия образуется кЬмплекс между адсорбированными ароматическими соединениями и адсорбционными центрами цеолита, который в дальнейшем может подвергаться алки-лированию под действием олефинов. [c.339]

    Изомеризация с кислыми галогенидами. Необходимость промоторов. При обычном приготовлении и применении хлористый и бромистый алюминий являются катализаторами для изомеризации насыщенных углеводородов однако было установлено, что эти соли неэффективны в отсутствии промоторов или инициаторов. Например, чистый бромистый алюминий не действует на к-бутан [134, 218] даже при температуре до 84° [99] и в отсутствии влаги он не действует на к-гексан [87], к-гентан [87], метилциклопентан [265], циклогексан [265] и щшлопентан (217]. Чистый безводный хлористый алюминий не действует на к-бутан [218], к-пентан [78, 219], н-гексан [110], к-гептан [110], 2,2-диметилбутан [129] и 2,2,4-триметилпентан [110] при умеренных температурах. Далее, к-бутан не изомеризуется катализатором фтористый бор — фтористый водород при 50° до тех пор, пока в нем не будут содержаться следы олефина. Поэтому можно заключить, что некоторые вещества, присутствующие иногда в качестве примесей, играют значительную роль при катализе кислотными галогенидами. [c.54]

    Вероятный механизм изомеризации насыщенных углеводородов в этих условиях предполагает промежуточное обра-зо.ваиие непредельных соединений, которые, собственно говоря, и претерпевают непосредственное изменение углеродного скелета. В образовании непредельных углеводородов большую роль играет динамическое равновесие алкана алкены-ЬНг (циклангг циклены+ Н2), причем условия опыта (давление водорода, присутствие в составе катализатора металлов VHI группы) способствуют ускорению этих реакций. Дальнейший механизм изомеризации аналогичен механизму изомеризации олефинов и циклоолефинов, предполагающему промежуточное кратковременное образование алкилциклопропановых углеводородов. В случае изомеризации парафиновых углеводородов, некоторую роль играют закономерности гидрирования алкилциклопропанов, протекающего, как известно, с разрывом связи С — С, образованной наиболее гидрогенизован-ными углеродными атомами циклопарафинового кольца. Этим, в частности, объясняется кинетическая устойчивость в этих условиях некоторых термодинамически неустойчивых углеводородов (2,2-диметилбутан, 2,3,3-триметилбутан). [c.213]

    Изомеризация. Одной из важных целей Щ лочного катализа является активация углерод-водородных связей простых олефиновых и парафиновых углеводородов. Для активации таких простых систем обычно приходилось прибегать к жестким условиям. Так, изомеризацию олефинов проводили с применением натрия, например, иатрийорганических соединений, получаемых непосредственно в реакционной зоне [186, 187], и действием алкилов натрия при температуре их разложения [188 . Однако эти системы гетерогенны и требуют повышенных температур. Использование окисно-алюминиевого носителя для натрия значительно повышает каталитическую активность [185, 188]. Возможности выбора гомогенных катализаторов для этих систем ограничены. Были проведены поисковые исследования применяли литий в этилендиамине [189, 190]. Недавно было обнаружено [191-1961, что в системе трет-буюксш калия — диметилсульфоксид изомеризацию олефиновых углеводородов можно проводить при температуре всего 55 °С. Простота и высокая активность такой системы позволили изучить кинетические и энергетические зависимости для этих реакций. В ходе исследований были выяснены роль и влияние структуры углевохоро-да, влияние основания и факторы, обусловливающие эффективность растворителя. [c.260]

    В настоящее время наибольший интерес представляют высококрезцнеземные цеолиты (ВК) семейства 23М благодаря уникальным структурным, адсорбционным и каталитическим свойствам [2, 41. Эти цеолиты отличаются высокой термической стабильностью, гидрофобностью, проявляют высо1 ую селективность в реакциях превращений углеводородов нормального строения и наиболее перспективны для переработки высокопарафинистых видов нефтяного сырья в процессах крекинга, селективного гидрокрекинга, алкилирования, изомеризации [4]. Особую роль ВК-цеолиты играют в ]развитии процессов получения моторных топлив, олефинов и ароматических углеводородов из ненефтяного сырья —метанола и синтез-газа [5]. В данном сообщении приводятся некоторые итоги исследований отечественных ВК-цеолитов и катализаторов на их основе. [c.3]

    Неоднократно отмечалась роль поверхностных ионов в окислительно-восстановительном катализе на полупроводниках. Так, в окислительных процессах активность окиснованадиевого катализатора связывают с существованием на поверхности иона V или активность окисномедных катализаторов — с ионами Си+ и Си +, висмут-молибде-новых — с ионом Мо . Активным центром окиснохромовых катализаторов реакций дегидрирования и дегидроциклизации углеводородов, вероятнее всего, являются ионы хрома Сг или Сг + природа катиона определяет каталитическую активность и других катализаторов этих реакций. В реакции дегидрирования спиртов на медьсодержащем цеолите непосредственное участие принимает ион меди Си2+. Изомеризация бутенов на окислах металлов идет через стадию хемосорбции буте-на на ионе металла с участием -орбиталей последнего. Предполагается, что активным центром катализаторов полимеризации олефинов являются ионы Сг +, Мо +, и т. д. Таким образом, и для полупроводникового катализа наиболее важным считается локализованное взаимодействие реагента с индивидуальным атомом поверхности, как это имеет место и в гомогенном катализе, что указывает на сходство в механизмах этих процессов. [c.13]

    Основной особенностью процесса перераспределения водорода является образование предельных углеводородов, характерных наличием третичного углеродного атома, что говорит за избирательное насыщение олефинов с третичной двойной связью. Такое специфическое воздействие на третичную двойную связь присуще лишь алюмосиликатам, так как из многочисленных работ Лебедева [7] следует, что в условиях обычного гидрирования молекулярным водородом сильнее насыщаются однозамещенные производные этилена. Избирательное насыщение олефинов с третичными двойными связями играет большую роль в накоплении углеводородов разветвленных форм в продуктах каталитического крекинга. Так, возникающие вследствие изомеризации олефины с третичными двойными связями немедленно насыщаются, исключаясь тем самым из процессов, проходящих на катализаторе. [c.333]


Смотреть страницы где упоминается термин Изомеризация углеводородов роль олефинов: [c.100]    [c.532]    [c.88]    [c.140]    [c.321]    [c.248]    [c.305]   
Изотопы в органической химии (1961) -- [ c.532 , c.533 ]




ПОИСК







© 2025 chem21.info Реклама на сайте