Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кадмий определение в свинце

    Определение примесей выполняется в присутствии избытка хлористого цинка, играющего роль фона поэтому для полярографирования стандартных растворов необходимо приготовить в качестве фона раствор хлористого цинка, лишенный примесей. Для этого 100 г металлического цинка растворяют при слабом нагревании в 500 мл разбавленной (1 2) соляной кислоты полученный раствор охлаждают, разбавляют до 600—700 мл водой и перемешивают. Такой раствор может содержать незначительные примеси солей кадмия и свинца, если взятый металлический цинк был недостаточно чист. Эти примеси мешают полярографированию н поэтому должны быть удалены. Для этого в полученный раствор хлористого цинка всыпают 10—15 г цинковой пыли и тщательно перемешивают 10—15 мин. При этом металлический цинк вытесн [ет из раствора кадмий и свинец  [c.225]


    Полярография — один из важнейших электрохимических методов анализа и исследования. Предложен Я. Гейровским в 1922 г. Измеряют предельный ток, величина которого пропорциональна концентрации определяемого вещества. Величину предельного тока находят по кривой зависимости силы тока от приложенного напряжения (такая кривая называется полярограммой). Для получения поляро-граммы нужно, чтобы поверхность катода была значительно меньше поверхности анода. П. применяется для количественного определения ряда ионов (кадмий, цинк, свинец и др.), некоторых органических веществ. [c.107]

    При определении в аммиачной среде в присутствии винной кислоты и фторида калия титан, ниобий, тантал, вольфрам, алюминий, лантан анализу не мешают. При определении в кислой среде анализу не мешают алюминий, магний, цинк, кадмий, кобальт, свинец, РЗЭ при отношении их количеств к количеству молибдена не более 1 1. Ионы железа (III), циркония и гафния, образующие устойчивые комплексонаты в кислой среде, определению содержания молибдена мешают. [c.175]

    Используемые для промотирования металлы можно разделить на две группы. К первой относятся рений и иридий, известные как катализаторы гидро-дегидрогенизации и гидрогенолиза. Другая, более обширная группа модификаторов включает кадмий, олово, свинец, медь, германий и др., которые в определенных незначительных количествах улучшают каталитические [c.863]

    Ферроцианид индия 1п4[Ре(СК)б]з обладает очень малой растворимостью поэтому определение индия в виде ферроцианида очень привлекательно, тем более, что выполняется оно чрезвычайно просто, особенно при работе с платиновым электродом или по методу с двумя индикаторными электродами. К сожалению, однако, определению индия этим методом мешают элементы, также осаждающиеся ферроцианидом (цинк, кадмий, медь, свинец и др.). [c.214]

    Определению мешают кадмий, медь свинец, цинк, растворенные, коллоидные и нерастворимые органические вещества [c.295]

    Существенным измерение количества кулонов, прошедших в процессе электролиза через раствор нет необходимости взвешивать электрод и можно определить ионы металлов, которые на платиновом электроде либо не образуют удобных для взвешивания осадков, либо не восстанавливаются до элементного состояния, С помощью ртутного катода осуществлен ряд разделений и определений. Свинец(II) можно отделить от кадмия (II) выделением первого на ртутном электроде, потенциал которого контролируется при —0,50 В относительно Нас. КЭ в 0,5 F растворе хлорида калия. В кислом тартратном растворе медь(П) и висмут(1П) можно разделить и определить методом кулонометрии при контролируемом потенциале с ртутным катодом. Анализ смеси на никель(II) и кобальт(II) заключается в селективном выделении никеля в ртуть из водного раствора пиридина при pH = 6,5 и потенциале электрода —0,95 В относительно Нас. КЭ. массу восстановленного никеля (II) вычисляют по количеству электричества, прошедшему через ячейку при данном процессе, затем поддерживают потенциал катода равным —1,20 В для восстановления кобальта(II). Уран(VI) можно определить восстановлением до урана (IV) на ртутном катоде при контролируемом потенциале в 1 F растворе соляной кислоты. [c.429]


    Мешающие вещества. Висмут, кадмий, медь, свинец, ртуть, никель, кобальт, серебро, золото, олово(И), если присутствуют в не слишком больших количествах (меньше 5 мг/л), при этом значении pH связываются в тиосульфатные комплексы и не мешают определению цинка. Если содержание этих элементов превышает указанное, то пробу рекомендуется разбавить так, чтобы концентрация мешающего элемента стала ниже 5 мг/л. Лишь тогда, когда отношение концентраций мешающий элемент цинк превышает 5 0,05, приходится вводить в анализируемый раствор еще небольшое количество цианида калия. [c.161]

    В качестве конкретного примера рассмотрим полярографическую методику определения в атмосферном воздухе населенных мест таких приоритетных загрязнителей, как свинец, олово, медь и кадмий. Определение основано на восстановлении [c.332]

    НИЙ. Методом стандартного раствора был определен свинец в питьевой воде в присутствии кадмия, цинка и олова. [c.159]

    Метод может быть применен для определения концентрации в растворе других металлов (кадмий, медь, свинец). [c.185]

    Строение различных сплавов неодинаково. Многие сплавы при рассматривании их в микроскоп оказываются смесями мелких кристаллов металлов, взятых для сплавления. Сюда относятся, например, сплавы олова и свинца. Некоторые металлы при сплавлении образуют определенные химические соединения, причем эти соединения растворяются в металле, находящемся в избытке. Сплавы, содержащие химические соединения металлов (интерметаллические соединения), известны для многих пар металлов (медь — олово, натрий — кадмий, натрий — свинец, золото — цинк и др.). [c.64]

    Определению железа роданидным методом мешают большие количества сульфатов, хлоридов, фосфатов, фторидов, ацетатов, тартратов, боратов, а также кобальт, никель, хром, висмут, молибден, вольфрам, медь, титан, кадмий, цинк, свинец, нио-бин, палладий, ртуть и др. Мешающее влияние анионов обусловлено конкурирующими реакциями в процессе комплексообразования [53]. По степени мешающего влияния анионы можно расположить в ряд Р">оксалаты>тартраты>цитраты>фос-фаты>ацетаты>504 >С1->.Н0з СЮ4- Мешающее влияние катионов связано с образованием перечисленными металлами роданидных комплексов, большинство из которых окрашено л хорошо экстрагируется. [c.99]

    И истмен SWR обычно применяют для увеличения чувствительности определения таких элементов, как селен, мышьяк, фосфор, цинк, кадмий и свинец, основные линии которых расположены в области спектра менее 2500 А. Для определения щелочных металлов, наиболее чувствительные линии которых находятся в красной области спектра, чаще всего применяют эмульсии 1-N. [c.164]

    Миграция и перенос элементов в первичной окружающей среде известны как процессы первоначального рассеивания. При этом элементы концентрируются в определенных геологических формациях, что приводит к образованию руд. С точки зрения геохимии элементы можно классифицировать на три группы сидерофильные элементы, которые концентрируются в железистых осадках и железо-никелевом ядре Земли (к ним относятся железо, никель, хром, кобальт и платиновые металлы) халькофильные элементы, концентрирующиеся в сульфидных осадках (сурьма, мышьяк, кадмий, медь, свинец, ртуть, серебро и цинк) и литофильные элементы (щелочные металлы, магний, кальций, хром и ванадий), имеющие сродство к силикатам. [c.372]

    Инверсионную вольтамперометрию можно использовать также, зля определения неорганических токсикантов в крови. Однако следует учитывать, что белковые компоненты крови являются поверхностно-активными веществами, адсорбция которых на электроде может сделать невозможным проведение анализа. Для преодоления данного препятствия применяют специальные электроды импрегнированный фафитовый и в виде тонкой пленки графита [72] Указанные электроды, особенно пленочный графитовый, позволяют определять свинец и кадмий в крови даже без специальной подготовки пробы В случае других природных матриц для определения общего содержания токсичных металлов желательно применение комбинированных методов, основанных на сочетании вольтамперометрии с методами выделения и концентрирования определяемых компонентов Этим вопросам в литературе уделяется заметное внимание 110,73,74]. Особый интерес вызьшает применение легкоплавких экстрагентов с последующим растворением экстракта в подходящем органическом растворителе [74]. Так, расплавленный нафталин эффективно извлекает из водных растворов тяжелые металлы в виде комплексов с гфо-изводными 8-меркаптохинолина При этом нижняя фаница определяемых концентраций для свинца и кадмия составляет Ю" мг/л [c.285]

    Сорбенты успешно использованы для селективного извлечения и последующего определения спектрофотометрическими методами редкоземельных элементов в бинарных смесях (по октадам и по тетрадам), а также в растворах, содержащих избыток сопутствующих металлов (никель, цинк, свинец, железо, кадмий, кобальт, уран, медь). [c.27]


    Лучшие результаты колориметрического определения получаются при использовании ряда органических реактивов, из которых наибольшее применение имеет дитизон. Этот реактив образует окрашенные соединения не только с ионами свинца, но реагирует также с ионами многих других металлов, например ртути, серебра, меди, цинка, кадмия и т. д. Однако с различными ионами дитизон реагирует при разных условиях, в частности, большое значение имеет величина pH среды. При подборе соответствующей кислотности раствора можно определить свинец в присутствии некоторых из перечисленных ионов другие необходимо предварительно отделить. [c.260]

    Определение проводят методом добавок. Фоном служит раствор соли цинка, полученный при растворении навески цинка в кислоте. Свинец и кадмий восстанавливаются раньше цинка, поэтому, несмотря на то что содержание цинка гораздо больше, он не мешает определению. [c.173]

    В табл. 21 приведены значения коэффициента с по данным различных авторов. Из таблицы следует, что эти значения лежат в пределах от 0,3 до 1,7 в. Как нетрудно заметить, высокое значение а типично для определенной группы металлов (свинец, ртуть, цинк, кадмий, олово). [c.299]

    Специфичность реакции можно повысить путем маскировки сопутствующих ионов. Маскировка заключается в связывании мешающих ионов в достаточно прочные комплексы добавлением в раствор соответствующих веществ. Например, медь и свинец можно маскировать, переведя их в тартраты в таком растворе можно обнаружить те ионы, которые не образуют тартратные комплексы. Маскировка мешающих ионов часто используется и имеет большое практическое значение. Например, если в ходе анализа катионов 4-й группы к раствору, содержащему медь, кадмий, висмут, свинец, прибавить глицерин, с которым все катионы, кроме кадмия, образуют прочные комплексы, не осаждаемые щелочами, а затем подействовать гидроокисью натрия, то кадмий оседает в виде гидроокиси, а остальные катионы останутся в растЕоре и могут быть затем обнаружены. Ион Ре " мешает обнаружению Со + в виде синего роданидного комплекса, так как образует темно-красный комплекс ( 81, 82), что мешает определению кобальта. Если же железо предварительно перевести во фторидный комплекс 1РеРйР или [РеРа]-, добавляя фторид натрия, то оно не помешает определению кобальта, так как комплекс железа с фторид-ионами значительно устойчивее, чем железороданидный комплекс. Кадмий можно осадить в виде желтого сульфида в присутствии меди (И), связывая медь в цианидный комплекс [Си (СЫ) , более прочный, чем цианид-ный комплекс кадмия. /Снест для комплекса кадмия 1,4-10" , а для комплекса меди (I) 5-10 , т. е. значительно меньше. [c.100]

    При определении индия в специальных свинцовых сплавах для ПОДШИПНИКОВ, которые могут содержать кадмий, отделяют свинец осаждением в форме РЬ304 и затем полярографируют на фоне этилендиамина и гидроокиси калия или фосфата. Волне индия предшествует небольшая волна свинца, зависящая от растворимости РЬ304. [c.187]

    Вместо оксихинолина можно применять антипирин . В этом случае пользуются током окисления иодид-иона при +0,44 в (Нас. КЭ) и титрование Ъедут на фоне 2,5 М серной кислоты. Эта методика пригодна для определения висмута в сплавах, содержащих кадмий и свинец, мышьяк и сурьму, а также в фармацевтических препаратах, поскольку титрованию не мешают различные органические соединения. [c.187]

    Сущность метода и ход анализа. 1. Цинк, железо, медь, кобальт, никель, кадмий и свинец [47—49]. Метод основан на экстракционном варианте атомноабсорбционного определения группы тяжелых металлов. Объем исследуемой пробы 2,0 л. Цинк определяют непосредственно в анализируемой пробе. Для этого аликвотную часть исследуемой пробы морской воды упаривают досуха в танталовой чашке, а остаток распыляют в пламени атомно-абсорбционного спектрофотометра. Чувствительность — 2-10 мкг, ошибка определения 0,15 мкг/л. Оставшуюся часть исследуемой пробы подкисляют соляной кислотой до рН= 2,5, прибавляют 5%-ный раствор пирролидиндитиокарбамината аммония в метилизо-бути.ич. к ме и смесь встряхивают в течение 5 мин. Органическую фазу после отде-легт тл ряпеляют на две части первую распыляют в турбулентном воздушно- [c.566]

    Атомно-абсорбциснными методами с повышенной чувствительностью определяют серебро, магний, кадмий, таллий, свинец, марганец, железо, кобальт, никель, родий и, кро-ме того, трудноопределяемые эмиссионными методами золото, ртуть, молибден, палладий, платину, цинк, сурьму, висмут, олово. Чувствительность определений элементов пламеннофотометрическими методами представлена в табл. 1. [c.310]

    Диоксид кремния особо реакционноспособен в интервале температур 575—870 °С, соответствующем переходу а-формы кварца в -форму. Этот интервал как раз характерен для пиролитического сожжения, поэтому с кварцем взаимодействуют многие гетероэлементы, наприхмер бор, кадмий, марганец, свинец, таллий, фосфор, некоторые щелочные металлы и др. [155, 156, 158, 176]. Образующиеся при этом силикаты или молекулярные соединения типа МО)у (Si02) , как правило, менее гигроскопичны и летучи, чем оксиды гетероэлементов, и их гравиметрическое определение выполняют с достаточно малыми погрешностями. Совпадение параллельных результатов обычно достигается в пределах 0,3—0,4% (абс.). [c.62]

    В нашей лаборатории проводились исследования для определения влияния материала катода на электрохимическое восстановление органических соединений. В кислом и щелочном растворах испытывали следующие катоды кадмий, цинк, свинец, ртз ть, олово, висмут, медь, никель, кобальт и железо. Алюминий испытывали лищь в кислом растворе, а хром, вольфрам, молибден и [c.11]

    Ютделение кадмия от больших количеств цинка и одновременное его определение может быть проведено с большой точностью методом внутреннего электролиза Для этой цели можно применять простейший прибор без диафрагмы (стр. 157). Кадмий выделяют из раствора, содержащего в объеме 250 мл 1,65 мл 80%-ной уксусной кислоты и 5,9 г ацетата натрия. pH такого раствора равен 5,2 (колебания в величине pH допустимы в пределах 4,6—5,6). Анодом служит пластинка цинка. Электролиз ведут 30—40 мин. при 70—80°. Выделившийся осадок промывают водой, подкисленной уксусной кислотой и содержащей небольшое количество электролита—сульфата аммония. В промывной воде указанного состава электроды, соединенные друг с другом, оставляют на 20—30 мин. при 70— 80° (если в момент погружения электродов некоторое количество кадмия перейдет в раствор, то в течение этого времени оно снова выделится на катоде). Потом промывают 95%-ным этиловым спиртом (но не разбавленным спиртом) Вместе с кадмием выделяется медь, содержание которой можно потом определить колориметрическим методом после растворения выделившегося на катоде осадка. Определению кадмия мешают свинец, сурьма, мышьяк, висмут, которые можно легко отделить предварительно. Доп. ред.  [c.272]

    Описываемая методика базируется на чисто эмпирической основе. Она приводится здесь, так как весьма вероятно, что она найдет более широкое применение. Сначала из раствора титана в разбавленной (1 1) соляной кислоте, содержащего хлорид олова(И), извлекается молибден раствором дитиола в амилацетате. Затем следует извлечение вольфрама из более концентрированного раствора соляной кислоты, которая нагревается для ускорения реакции. Результаты определения 25—100 у вольфрама в присутствии таких же количеств молибдена оказались удовлетворительными. Серебро, ртуть, мышьяк, медь, кадмий, олово, свинец и висмут образуют окрашенные дитиолаты, но в соляной кислоте (1 1) реагируют только ртуть и мышьяк. Соединения ртути нерастворимы в амилацетате, а интенсивность окраски мышьяка в экстракте составляет лишь около одной тысячной интенсивности окраски, обусловленной вольфрамом. [c.803]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Каждая из этих стадий завершается определением содержания металла как в лабильной, так и в инертной форме (после оценки общего содержания) с помощью ИВА (всего восемь определений). Данный подход был использован для анализа природных вод на содержание ряда неорганических токсикантов, в том числе свинца и кадмия Установлено, что в незафязненных природных водах свинец существует преимущественно в ионной форме. Высокие содержания свинца зарегисфированы в неорганических коллоидных частицах, взвешенных в воде. В отличие от свинца кадмий в природных водах существует в основном в лабильной форме, надежно определяемой с помощью ИВА [c.283]

    Разработан также метод определения инертных форм металлов в воде (711. Их разделяют на три фракции, каждая из которых характеризуется скоростью диссоциации ионов металла, удерживаемых ионообменной колонкой умеренно лабильные, с низкой скоростью диссоциации и инертные Заметим, что анодную ИВА непосредственно можно использовать только для определения очень лабильных форм металлов. К ним, в частности, относится кадмий Свинец попадает в фуппу металлов, характеризующихся низкой скоростью диссотщации ионных образований, или инертных. На рис. 7.5 приведена схема для определения форм сущесгво-вания ионов металлов в природных водах с использованием нонообмен-ников [c.283]

    Одним из преимуществ гидроэлектрометаллургических методов является то, что они часто позволяют более полно по сравнению с металлургическими переделами перерабатывать бедные и полиметаллические руды с раздельным получением всех полезных компонентов, а основного — в виде продукта высокой чистоты. Так, цинковые заводы одновременно с цинком выпускают кадмий, свинец, соли или концентраты меди и кобальта, ряд редких металлов и концентратов, а также серную кислоту медерафннировочные заводы — медь и шламы, содержащие благородные металлы. Стоимость попутно получаемых продуктов — важный фактор при определении рентабельности гидроэлектрометаллургического производства по сравнению с пирометаллургическим. [c.233]

    После осаждения на коллекторе осадок можно растворить в небольшом объеме кислоты или другого подходящего растворителя и количественно определить содержание микрокомпонента, концентрация которого увеличится во столько раз, во сколько первоначальный объем анализируемого раствора больше объема, полученного при растворении осадка. Практически увеличение концентрации микрокомпонента происходит на 2—3 порядка, а иногда и больше. Например, при определении малых содержаний -свинца в качестве коллектора применяют фосфат кальция. К анализируемому раствору добавляют соль кальция и осаждают фосфатом. Вместе с осаждением кальция происходит соосаждение свинца. Осадок фосфатов растворяют в кислоте и определяют свинец спектрофотометпически или полярографически. Следы многих металлов (Ni , Со d и др.) количественно соосаждаются с гидроксидом железа (И1), следы цинка — с сульфидом кадмия, титана — с гидроксидом алюминия и т. д. Осаждение с коллекто- [c.163]

    Суншость работы. Определение основано на экстракции хлороформом комплексного соединения кадмия с диэтилдитиокарба-минатом натрия и последующем вьщелении кадмия из тонкого слоя силикагеля. Элюентом служит смесь н-гексан-хлоро-форм-диэтиламин. Определению не мешают свинец, олово. Предел обнаружения - 0,01 мкг/л. Количественное определение проводят по градуировочному графику. [c.304]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]


Смотреть страницы где упоминается термин Кадмий определение в свинце: [c.221]    [c.299]    [c.491]    [c.450]    [c.286]    [c.245]   
Количественный анализ Издание 5 (1955) -- [ c.452 ]




ПОИСК





Смотрите так же термины и статьи:

Вайнштейн, Ю. И. Беляев, М. В. А х м а н о в а Методы спектрального определения кадмия, сурьмы, висмута, свинца и олова в вольфраме и молибдене

Кадмий определение

Молибден, определение примеси висмута, кадмия, меди, никеля, олова, свинца, сурьмы, титана, хрома

Молибден, определение примеси висмута, кадмия, меди, никеля, олова, свинца, сурьмы, титана, хрома цинка

Определение алюминия, кадмия, цинка, никеля и свинца

Определение железа, алюминия, кальция, магния, меди, марганца, J кобальта, кадмия, хрома, свинца, никеля, молибдена, ванадия в я активных углях и цинк-ацетатных катализаторах на их основе

Определение ионов свинца и кадмия в металлическом цинке методом добавок

Определение кадмия, мышьяка, кремния, железа, цинка, свинца, ртути и олова в индии

Определение кобальта, никеля, меди, цинка, кадмия и свинца

Определение меди, свинца, кадмия и цинка в воде из одной пробы методом переменно-токовой полярографии

Определение микроколичеств серебра, меди, свинца, и кадмия методом пиковой осадочной хроматографии на бумаге, импрегнированной диэтилдитиокарбаминатом железа

Определение прим сей меди, свинца, сурьмы, кадмия и висмута в четырехбромистых германии и кремнии Ю И. Вайнштейн, Я Гинзбург

Определение примесей свинца, меди и цинка в солях кадмия реактивной степени чистоты (ч. д. а.) атомно-абсорбционным методом

Определение примесей свинца, меди и цинка в солях кадмия реактивной степени чистоты (ч. д. а.) атомпо-абсорбционным методом

Определение свинца в меди, никеле, кадмии, кобальте, цинке, молибдене, вольфраме, реактивных солях этих металлов, в сплавах— медных, никелевых, цинковых и др

Определение свинца в металлическом кадмии

Определение свинца и кадмия в металлическом цинке

Определение свинца и цинка (кадмия)

Определение свинца, кадмия и Меди

Определение свинца, кадмия и ртути

Определение свинца, кадмия, висмута, сурьмы и олова в молибдене методом осциллографической полярографии

Определение свинца, олова, меди и кадмия при совместном присутствии

Определение следов свинца и кадмия в металлическом цинке

Определение цинка, кадмия, алюминия, висмута, кобальта, марганца, олова, свинца, меди, магния, кремния, железа, мышьяка и сурьмы спектральным методом

Определение цинка, кадмия, меди, никеля и свинца по методу Флашки

Полярографическое определение кадмия и свинца в фосфатном сырье н продуктах на его основе. Н. К. Игнатова, М. Ю. Горностаева

Полярографическое определение меди, молибдена, свинца и кадмия в цинке с применением переменного тока

Полярографическое определение свинца, олова, висмута, сурьмы, галлия, кадмия и цинка в алюминии амальгамным способом с накоплением

Полярографическое определение цинка, кадмия и свинца в фосфоре амальгамным способом с накоплением

Полярографическое определение цинка, кадмия, свинца и меди в индии амальгамным способом с накоплением

Прямое определение железа, кадмия, кальция, кобальта, магния, марганца, меди, никеля, свинца, серебра, хрома и цинка

Спектральное и химико-спектральное определение алюминия, висмута, железа, индия, кадмия, кобальта, магния, марганца, меди, никеля, свинца и хрома в галлии и хлориде галлия

Спектральное определение алюминия, кадмия, цинка, сурьмы, железа, свинца, фосфора, марганца, магния и меди в карбиде кремния

Спектральное определение примесей висмута, кадмия, олова, свинца и сурьмы в окиси хрома и хромовом ангидриде

Спектральное определение свинца, олова, кадмия и висмута в церии и лантане

Спектральное определение серебра, висмута, цинка, таллия, никеля, свинца и олова в кадмии

Спектральное определение сурьмы, висмута, кадмия, свинца и олова в. металлическом рении

Спектральное определение таллия, висмута, олова, цинка, сурьмы, никеля, кобальта, меди, свинца и серебра в кадмии

Таллий Определение кадмия, мышьяка, кремния, цинка и свинца в таллии

Химико-спектральное определение алюминия, висмута, индия, кадмия, магния, марганца, меди, никеля, свинца и цинка в таллии

Химико-спектральное определение алюминия, висмута, кадмия, кобальта, магния, меди, никеля, свинца, серебра и цинка в металлическом индии

Химико-спектральное определение алюминия, висмута, кадмия, магния, марганца, меди, никеля, свинца и цинка в индии

Химико-спектральное определение алюминия, индия, кадмия, магния, марганца, меди, никеля, свинца, серебра и цинка в металлическом талии и хлориде таллия

Химико-спектральное определение алюминия, кадмия, магния, марганца, меди, никеля, свинца и цинка в фосфиде индия

Химико-спектральное определение алюминия, кадмия, магния, марганца, меди, никеля, свинца, цинка и серебра в висмуте

Химико-спектральное определение железа, кадмия, марганца, меди, никеля, свинца и цинка в фосфиде галлия

Химико-спектральное определение железа, меди, никеля, кадмия, свинца, цинка, висмута, серебра и кобальта в фосфоре

Химико-спектральное определение меди, кадмия, серебра, цинка, свинца и золота в алюминии

Химико-спектральное определение меди, кадмия, цинка, серебра, свинца и золота в арсениде галлия

Химико-спектральное определение меди, серебра, кадмия, магния, марганца, висмута, алюминия, титана, индия, кальция, свинца, хрома, кобальта, никеля и цинка в сурьме

Щелочной гидролиз этилового эфира цистеина (определение кадмия и свинца)



© 2025 chem21.info Реклама на сайте