Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисления-восстановления реакци скорость

    Влияние электрического потенциала и силы тока. Под действием электрического тока, проходящего через реакционную систему, на катоде и аноде протекают так называемые электрохимические "реакции — реакции окисления, восстановления, алкилирования и др., скорость которых зависит не только от концентрации, температуры и катализатора, но также и от потенциала электродов и силы тока. Ки- [c.530]


    В первой части книги рассматриваются вопросы формальной кинетики простых реакций (порядок реакции, константа скорости, кинетические уравнения различных порядков), математические характеристики сложных кинетических систем и экспериментальные характеристики простых и сложных кинетических систем. Вторая часть имеет вспомогательный характер — она посвящена статистическим методам, применяемым к системам из большого числа частиц при равновесии. В третьей — рассматриваются вопросы кинетики гомогенных реакций в газах (реакции мономолекулярные, бимолекулярные, тримолекулярные, сложные реакции в газовой фазе взрывные процессы и процессы горения). Четвертая, последняя, часть посвящена реакциям в конденсированной фазе (кислотно-основной катализ, реакции окисления-восстановления, радикальная полимеризация, гетерогенный катализ). [c.4]

    Скорость реакций окисления — восстановления [c.370]

    Механизмы окислительно-восстановительных реакций. Окислительно-восстановительные процессы на электродах являются гетерогенными реакциями. Реакция восстановления на катоде протекает через ряд элементарных процессов перенос ионов, находящихся в растворе, в прикатодное пространство, адсорбция их на поверхности электродов, перенос электронов, реакция замещения, следующая за переносом электронов, диффузия из приэлектродного пространства и т. д. Скорость окисления — восстановления определяется скоростями этих процессов, и поэтому выяснение механизмов этих реакций не всегда оказывается простым делом. [c.252]

    Следует иметь в виду, что однозначный вывод о механизме реакции на основании обнаружения среди ее продуктов комплекса М(НаО)5Х можно сделать только при том условии, что скорость реакции окисления-восстановления выше скорости реакции замеш,ения и что исключена возможность протекания реакции [c.199]

    В работе [69] получены интересные данные о соотношениях между скоростями процессов окисления углерода и восстановления двуокиси углерода при различных температурах и высоких скоростях подачи газового агента, обеспечивающих протекание восстановительной реакции в кинетической области. Отношение скорости реакции окисления углерода к скорости реакции восстановления СО2 составляет для температур 900, 1000, 1100 и 1200 С соответственно 187 71 28,5 и 14,4, т. е. с повышением ТТО скорости окисления углерода и восстановления СО2 сближаются. [c.134]


    СКОРОСТЬ и МЕХАНИЗМ РЕАКЦИЙ ОКИСЛЕНИЯ — ВОССТАНОВЛЕНИЯ [c.113]

    Стехиометрические уравнения реакций окисления — восстановления не отражают истинного механизма их протекания. Так, например, уравнение (6.6) показывает, что протекание реакции обусловлено столкновением шести реагирующих частиц, не считая ионов водорода (МпОГ + 5Fe +). Однако согласно кинетической теории активных соударений вероятность одновременного столкновения даже четырех частиц крайне мала, а пяти и более — близка к нулю. Обычно происходит столкновение двух или, реже, трех частиц, в результате чего образуется так называемый активированный комплекс и затем — продукты реакции. В ходе реакции происходит образование различных промежуточных соединений, радикалов и т. д., обладающих нередко довольно большой продолжительностью жизни. Химическая активность многих промежуточных соединений бывает выше, чем исходных веществ, что нередко является причиной различных побочных реакций. Стехиометрическая реакция типа (6.6) является суммой отдельных стадий, и скорость суммарной реакции будет определяться самой медленной стадией. [c.113]

    В качестве примера приведем результаты моделирования процесса (1), протекающего по стадийному механизму с попеременным окислением — восстановлением поверхности катализатора с константами скорости реакции, зависящими от степени восстановленности катализатора [33]. [c.62]

    Сходная ситуация существует при использовании кинетических методов, которые основаны на том, что при прохождении многих реакций окисления-восстановления возникают кинетические помехи, обусловливающие очень медленное протекание реакций. Реакции можно ускорить, вводя в качестве катализаторов различные группы элементов. При этом в определенных пределах увеличение скорости реакции пропорционально концентрации следовых количеств элементов — катализаторов, что можно использовать для их количественного определения. Добавляя подходящие комплексообразующие реагенты, часто можно добиться увеличения селективности. Но, несмотря на это, небольшая селективность является недостатком этого высокочувствительного и относительно редко применяемого метода. [c.418]

    Скорость реакций окисления-восстановления [c.136]

    Особенно резко изменяется скорость реакций окисления-восстановления при применении катализаторов и при возникновении индуцированных реакций. [c.137]

    Наряду с общими признаками реакций обоих типов име-тотся также и существенные отличия. Так, механизм окислительно-восстановительных реакций значительно сложнее, чем /реакций кислотно-основного взаимодействия. Это проявляется в том, что реакции кислотно-основного взаимодействия протекают очень быстро, в то время как реакции окисления — восстановления во многих случаях замедленны, что часто мешает проведению. анализа. Небольшая скорость ряда окислительно-восстановительных реакций обусловлена в основном тем, что электронные переходы часто сопровождаются частичным изменением или полным разрушением молекулярной структуры участвующих в реакции частиц. Поэтому окислительно-восстановительные реакции между катионами и анионами часто проходят через стадии обмена лигандов, что, например, имеет место при окислении иодид-ионов ионами железа (П1), которое обычно описывается простым уравнением  [c.158]

    Различие в скоростях протекания химических реакций очень велико константы скорости реакций первого порядка охватывают интервал примерно от Ю до Ю с", второго порядка — от 10 до 10" л/(моль-с). Это означает, что некоторые химические реакции протекают за ничтожные доли секунды (например, реакции взаимодействия сильных кислот с сильными основаниями), а некоторые реакции окисления — восстановления завершаются лишь за несколько часов или суток или за еще более длительный промежуток времени. [c.29]

    От каких факторов зависит скорость реакции окисления — восстановления  [c.88]

    Реакции третьего порядка. К ним относятся взаимодействия N0 с Hi, О2, I2, Вг2, а также процессы рекомбинации атомов или свободных радикалов в молекулы, реакции окисления — восстановления. При oA= oB= oD=fi для реакции А+В+О продукты получаем дифференциальное уравнение скорости = k(a — х) и после интегрирования [c.324]

    Применение реакции окисления — восстановления для кондуктометрических определений затруднено в случаях, когда реакции проходят в сильнокислой или сильнощелочной среде, поскольку такие растворы имеют высокую электропроводность, которая мало изменяется в процессе реакций. Однако если определения проводятся в умеренно кислых или щелочных растворах, и реакция протекает с участием водородных или гидроксильных ионов, то изменение их концентрации в процессе титрования способствует резкому изменению проводимости растворов. Некоторые реакции окисления — восстановления вообще неприменимы в кондуктометрическом титровании, так как в ряде случаев протекают с малой скоростью и время установления постоянной прово- [c.94]


    Порошки алюминия и нода смешали па асбестовой сетке. Реакция не начиналась до добавления в смесь капли воды. После этого смесь воспламенилась, обильно выделяя клубы фиолетового дыма и снопы искр. По окончании реакции на сетке оказалась соль белого цвета. Объясните описанные явления и ответ обоснуйте, используя теорию окисления — восстановления, понятие о скорости химических реакций, знания о свойствах нода и алюминия. Приведите уравнение реакций. [c.256]

    В основе данного метода лежат реакции окисления — восстановления (см. разд. 3.6). В качестве титрантов в методе могут быть применены растворы веществ, обладающих окислительными или восстановительными свойствами. По своим аналитическим характеристикам метод близок к кислотно-основному титрованию, хотя часто на проведение титрования затрачивается больше времени из-за сравнительно малых скоростей реакций. [c.175]

    В реакциях окисления-восстановления скорость процесса определяется природой взаимодействующих частиц и прежде всего механизмом переноса электрона. Быстро проходят те реакции, в которых окисленная и восстановленная формы отличаются только числом электронов. Прн этом если в каждой из окислительно-восстановительных пар переносится одинаковое число электронов, то реакцию называют комплементарной [c.91]

    Каталитические методы анализа основаны преимущественно на реакциях окисления — восстановления. Известно много медленных реакций этого типа, которые можно ускорить, вводя в раствор катализаторы— чаще всего ионы переходных металлов. Скорость реакции при некоторых условиях пропорциональна концентрации катализатора, что используют для количественного определения последнего. [c.372]

    Изменение концентрации ионов водорода в реак- йях окисления — восстановления влияет не только на окислительный потенциал системы, в соответствии с уравнением Нернста, но также нередко на скорость реакции. Так, окислительные потенциалы систем и Ь/21- не изменяются в зависимости от рЦ, однако скорость реакции [c.444]

    Каталитические методы анализа — вариант кинетических методов. Они основаны на измерении скорости химической реакции, протекающей в растворе при действии катализатора нередко катализатор является определяемым веществом. Известно много медленных реакций, скорость которых в определенных условиях увеличивается пропорционально концентрации введенного катализатора. Это дает возможность определить количество катализатора по концентрации продуктов реакции, образующихся за определенный промежуток времени. Для таких определений пригодны медленные реакции различных типов, однако наиболее распространены каталитические методы с использованием реакций окисления — восстановления. [c.446]

    О скорости реакции можно судить также по величине тока восстановления или окисления а, который пропорционален скорости изменения количества окисленной (восстановленной) формы вещества  [c.133]

    Образование кислорода в процессе фотосинтеза имело важные последствия. Сначала кислород (Оз) быстро потреблялся в процессе окисления восстановленных веществ и минералов. Однако наступил момент, когда скорость поступления превысила потребление и Оз начал постепенно накапливаться в атмосфере. Первичная биосфера под смертельной угрозой своего собственного отравляющего побочного продукта (О2) была вынуждена приспосабливаться к таким изменениям. Она осуществляла это посредством развития новых типов биогеохимического метаболизма, которые поддерживают разнообразие жизни на современной Земле. Постепенно возникла атмосфера современного состава (см. табл. 2.1). К тому же кислород в стратосфере (см, гл. 2) претерпел фотохимические реакции, приведшие к образованию озона (О3), защищающего Землю от ультрафиолетового излучения. Этот экран позволил высшим организмам колонизовать сушу континентов. [c.23]

    Для этой реакции предложены 2 механизма (внутримолекулярное окисление — восстановление и ендпольный механизм) Хайн [42] полагает, что реакция может протекать по каждому из этих механизмов со сравнимыми скоростями, и что степень протекания lio каждому механизму зависит от природы основания-катализатора, температуры, структуры реагентов и т. д. [c.19]

    Покажем принцип метода на одном примере. Реакция окисления — восстановления NAD++ субстрат-> NADH + Н++ продукт может быть сопряжена с иммобилизованными ферментами. В такой модельной системе субстрат подается насосом в камеру, содержащую связанный с декстраном NAD+ и две NAD+-зависимые дегидрогеназы. С противоположной стороны продукт реакции удаляется с той же скоростью методом ультрафильтрации. Таким образом, процесс может быть непрерывным. [c.260]

    С другой стороны, малая скорость некоторых реакций окисления-восстановления играет иногда положительную роль. Потенциал раствора перманганата в кислой среде более высокий, чем потенциал воды в преЕ ра-шении О "— /. Оз. Однако это превращение идет чрезвычайно медленно, и только поэтому раствор перманганата устойчив в кислых растворах. Существование перекиси водорода воглюжко только потому, что она очень медленно окисляется-восстанавливается до кислорода и воды. [c.373]

    Метод кондуктометрического титрования основан на изменении электропроводности объема раствора во время протекания в нем химической реакции (пейтрализации, осал<дения, замещения, окисления— восстановления, комилексообразования). В результате реакции изменяется ионный состав раствора. Иоиы с одной абсолютной скоростью и эквивалентной электроироводностью заменяются или иа ионы с другими значениями этих характеристик, или в системе образуется плохо диссоциирующее, малорастворимое или комплексное соединение (особенно хелатное). Кондуктометри-ческое титрование применяют для объемного анализа водных и неводных растворов, физиологических и биологических жидкостей 114 [c.114]

    Скорость реакций окисления — восстановления часто невелика. Так, например, на реакцию окисления иодид-ионов дихроматом калия в кислой среде в 0,1 н. растворах затрачивается 2—3 мин. Скорость таких сложных процессов должна характеризоваться не суммарным уравнением реакции, а скоростями отдельных проме-жуточых стадий. Общая скорость реакции не может быть выше скорости самой медленной промежуточной стадии. Поэтому для окислительно-восстановительных процессов особенно важное значение имеет ускорение реакций. Оно может быть достигнуто по- [c.79]

    Титриметрические методы подразделяются на две большие группы. В первую группу входят методы, основанные на ионных реакциях нейтрализация, осаждение и комплексообразование. Во вторую группу входят окислительно-восстановительные методы, основанные на реакциях окисления — восстановления, которые связаны с переходом электронов от одной частицы к другой. Применяемые реакции должны удовлетворять ряду требований. Реакция должна проходить количественно по определенному уравнению без побочных реакций. Реакция должна протекать с достаточной скоростью, поэтому необходимо создавать оптимальные условия, обеспеч1шающие быстрое течение реакции концентрацию реагирующих веществ и среду, в которой протекает реакция, температуру и в ряде случаев катализатор. Установление точки эквивалентности должно производиться достаточно надежно. Во многих случаях для этого применяют специальный индикатор. [c.325]

    Кроме нестационарности скорости превращения может возникнуть нестационарность состояния катализатора. Помимо реакции собственно каталитического превращения возможно взаимодействие катализатора с реакционной средой, стадии которой, как правило, не являются стадиями реакции, например окисление -1юсстановление поверхности катализатора. В зависимости от степени окисленности меняются активность и селективность катализатора. И если эти процессы протекают медленнее, чем изменение концентраций и температуры у поверхности катализатора, то последний не будет находится в стационарном состоянии относительно реакционной среды, что скажется на показателях процесса. В этом случае математическое описание динамического режима, подобного (4.104), надо дополнить уравнениями изменения состояния катализатора (например, уравнениями окисления - восстановления поверхности) и учесть, что параметры химической модели реакции каталитического превращения зависят от состояния катализатора. Математический анализ - необходимость учета тех или иных составляющих процесса - также надо проводить как анализ уравнений с малыми параметрами. [c.242]

    Обладая высокой степенью избирательности, ферменты используются живыми организмами для осуществления с высокой скоростью огромного разнообразия химических реакций они сохраняют свою активность не только в микропространстве клетки, но и вне организма. Ферменты нашли широкое применение в таких отраслях промышленности, как хлебопечение, пивоварение, виноделие, чайное, кожевенное и меховое производства, сыроварение, кулинария (для обработки мяса) и т.д. В последние годы ферменты стали применять в тонкой химической индустрии для осуществления таких реакций органической химии, как окисление, восстановление, дезаминирование, декарбоксилирование, дегидратация, конденсация, а также для разделения и вьщеления изомеров аминокислот Ь-ряда (при химическом синтезе образуются рацемические смеси Ь- и О-изомеров), которые используют в промышленности, сельском хозяйстве, медицине. Овладение тонкими механизмами действия ферментов, несомненно, предоставит неограниченные возможности получения в огромньгх количествах и с большой скоростью полезных веществ в лабораторных условиях почти со 100% выходом. [c.163]

    Ката лаза - фермент, разлагающий Н2О2, возникающую в ходе различных реакций окисления-восстановления с участием О2, с очень высокой скоростью (/ , = 10 л м с" ). Таким образом, каталаза пре- [c.292]

    Чрезвычайно высока скорость практически всех кислотно-основных реакций реакций между ионами и 0Н , взаимодействия ионов и ОН с кислотно-основными индикаторами и т. д. В отличие от реакций кислотно-основного взаимодействия скорость окислительно-восстановитель-ных реакций и реакций комплексообразования меняется в широких хфеделах (табл. 4.1). Различия в скоростях реакций комплексообразования и окисления—восстановления объясняются многообразием механизмов этих реакций, часто отличающихся многостадийностъю, образованием большого числа промежуточных продуктов, требующих перестройки координационной сферы ионов, разрыва и образования кшогих химических связей. [c.90]

    В пределах умеренной концентрации кислоты скорость реакции пропорциональна концентрации НСгО и квадрату концентрации иона водорода. Это согласуется с предположением, что НСгО сначала превращается в недиссоциированную Н3СГО4, которая этерифицирует спирт. Кислый сложный эфир спирта и хромовой кислоты претерпевает (при участии воды в качестве акцептора протона) внутреннее окисление — восстановление, изображенное на схеме стрелками, показывающими [c.132]

    НОСТЬ сольватировать реагенты или активированные комплек сы, а также молекулы в основном и возбужденном состояниях [1, 3]. В свою очередь сольватирующая способность растворителя зависит от всех специфических и неспецифических взаимодействий между молекулами растворителя и растворенного вещества, в том числе электростатических взаимодействий между ионами, ориентационных взаимодействий между биполярными молекулами, индукционными и дисперсионными взаимодействиями, образованием водородных связей, переносом заряда, а также сольвофобными взаимодействиями (см. гл. 2). При этом не учитываются только такие взаимодействия, которые приводят к определенным химическим изменениям молекул растворенного вещества, например к протонированию, окислению, восстановлению, комплексообразованию. Очевидно, что определяе мую таким образом полярность растворителя нельзя описать каким-либо одним физическим параметром, например диэлектрической проницаемостью. Действительно, очень часто не удается обнаружить какой-либо корреляции между диэлектрической проницаемостью [или той или иной ее функцией, например 1/бг, (вг—1)/(2ег+1)] и логарифмом скорости или константой равновесия зависящей от природы растворителя химической реакции. Вероятно, вообще не существует такого макроскопического физического параметра, с помощью которого можно было бы учесть все многочисленные взаимодействия между растворителем и растворенным веществом, осуществляющиеся на молекулярном уровне. До настоящего времени сложность взаимодействий между растворителем и растворенным веществом не позволяет найти достаточно общие математические выражения, с помощью которых можно было бы вычислить скорости или константы равновесия реакций в растворителях различной полярности. [c.487]


Смотреть страницы где упоминается термин Окисления-восстановления реакци скорость: [c.158]    [c.174]    [c.91]    [c.174]   
Количественный анализ Издание 5 (1955) -- [ c.329 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние различных факторов на скорость реакции окисления—восстановления

Восстановления реакции

Зависимость скорости реакций окисления—восстановления от различных факторов

Окисление восстановление скорость

Окисление—восстановление скорость реакций

Окисления-восстановления реакци

Окисления—восстановления метод скорость реакций

Реакции окисления

Реакция окисления восстановления

Скорость и механизм реакций окисления—восстановления

Скорость окисления

Скорость реакции и каталитические процессы в реакциях окисления — восстановления

ЯтЙндикаторы, применяемые в методах окисления—восстановле83, Скорость реакций окисления—восстановления

окисление—восстановление



© 2025 chem21.info Реклама на сайте