Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производные кислот скорости реакций

    Хлорангидриды не дают производных по карбонильной группе, так как хлор, как более электроотрицательный заместитель, чем группы ОН или МН (схема, см. стр. 438), отщепляется с водородом этих групп, и в результате получается производное кислоты. Скорость реакции карбонильных соединений зависит в сильной степени не только от заряженности углерода карбонильной группы, но и от стерических факторов, затрудняющих доступ к нему реагента. Скорость реакции зависит также и от нуклеофильности действующего реагента [15]. [c.441]


    При взаимодействии синильной кислоты с нитрилами а,р-нена-сыщенных кислот получаются производные янтарной кислоты. Скорость реакции зависит от характера заместителей, находящихся у двойной связи. С акрилонитрилом реакция идет очень легко — образуется динитрил янтарной кислоты  [c.51]

    Получение производных — важный этап в анализе органических соединений. Каждому представителю данного класса соединений соответствует производное с определенной температурой плавления (например, температура плавления амида уксусной кислоты 82° С, амида пропионовой кислоты 79° С, амида масляной кислоты П5°С). В ряде руководств по анализу органических соединений приводятся таблицы температур плавления производных наиболее употребляемых органических веществ. По температуре плавления производного можно сделать заключение о строении соответствующего ему вещества, если оно было ранее описано. Выбор реактива для получения производного определяется доступностью и устойчивостью реактива, простотой, удобством, скоростью реакции, выходом и четкой температурой плавления производного важно также, чтобы температуры плавления производных изомеров или соседних гомологов резко отличались друг от друга. [c.227]

    Скорость этой реакции как функция времени может быть легко измерена титрованием образующейся бромистоводородной кислоты. Скорость образования НВг оказывается пропорциональной лишь концентрации бромистого производного  [c.126]

    Противоположное влияние на скорость реакции оказывают за местители в карбоновой кислоте. Зд еь константа р имеет положи тельное значение чем сильнее выражен электронный пробел на углероде карбоксильной группы, тем более активна кислота или ее производное как ацилирующий агент. В соответствии с этим может быть представлен следующий ряд ацилирующих агентов по их сравнительной реакционной способности  [c.244]

    Рассчитайте константу скорости реакции образования формильных производных з-нитро 4-хлоранилина, З-бром-4-нитроанилина, 3,4-дихлоранилина и 3-диметиламино-5-хлоранилина при их взаимодействии с муравьиной кислотой в 67 % пиридине при 100 С. [c.247]

    При дальнейших исследованиях реакций нитрования различных производных бензола в присутствии Н25 0 4 найдено, что наблюдаемое повышение скорости реакции при переходе от моногидрата к серной кислоте уд. в. 1,839 зависит от природы нитруемого вещества. [c.162]


    На скорость реакции с диазометаном влияет- прежде всего подвижность водорода (кислотность) соединения, которое подвергается метилированию поэтому с диазометаном легче всего реагируют кислоты, труднее—фенолы и енолы, а спирты практически не реагируют совсем. Производные спиртов, содержащие в молекуле несколько электроотрицательных заместителей, как, например, трихлорэтиловый спирт, а также тар-троновая и "мезовинная кислоты и их сложные эфиры, реагируют с диазометаном, но не в эфирном растворе, а в среде углеводородов, например в гептане и циклогексане . [c.338]

    Меньшая растворимость изовалерианового альдегида в воде несколько снижает скорость дальнейшего его окисления в изо-валериановую кислоту, но более высокая температура кипения альдегида (92°) затрудняет достаточно быстрое его удаление из реакционной смеси. Поэтому в продуктах реакции наряду с альдегидом и некоторым количеством непрореагировавшего спирта присутствуют также изовалериановая кислота и ее сложный эфир с изоамиловым спиртом. Для удаления кислоты продукт реакции обрабатывают содой, а для отделения альдегида от других примесей его переводя в кристаллическое бисульфитное производное [c.93]

    Кислотнокатализируемая изомеризация г ис-бензальацетофенона (8, К = Н) и его производных (9, В = ОСН3 10, В = С1 И, В = N0 ) представлена рядом примеров, в которых влияние сопряженного заместителя на изомеризацию может быть подробно изучено. Для случая халкона предложен механизм [60], включающий протонизацию карбонильного кислородного атома, подобно малеиновой кислоте. Скорость реакции меняется не параллельно функции кислотности Нд серной или хлорной кислоты, и реакция протекает быстрее, чем дегидратация возможного промежуточного соединения, р-окси-р-фенилиропиофенона, так что скорость изомеризации определяется стадией присоединения воды к сопряженной кислоте 8 с образованием протонированного енола 12, который быстро теряет воду до кетонизации. Эта реакция протекает быстро в подкисленном водном диоксана и еще быстрее в диоксане, содержащем окись дейтерия и дейтеросерную кислоту при этом, однако, полученный продукт не содержит изотопов. Это указывает, что стадией, определяющей скорость реакции, является гидратация оксониевой соли кетона (схема 3). [c.215]

    Шмальц и Гейзелер [26] использовали этот метод для анализа смеси олефинов, которые реагируют с надбензойной кислотой. Скорость реакции они определяли титрованием бензойной кислоты иодистым калием. Если коротко излагать их работу, то они 1) находили х в момент времени 2) вычислили производную <7 в момент времени t, 3), находили графически д и в и 4) использовали уравнение (99) для определения [В](,. [c.139]

    Исследование механизма нитрозирования и-Х-замещенных фенолов (X = СНз, F, С1, N, NO2 ) в среде кислот умеренной и высокой концентрации [1, 1972] показало, что кинетические закономерности орто- и шрд-нитрозирования аналогичны и, следовательно, механизм реакций в обоих случаях одинаков. Продуктами нитрозирования являлись во всех случаях и-Х-замещенные о-нитрофенолы, так как образующиеся в реакции о-нитрозофенолы быстро окислялись в соответствующие о-нитрофенолы. По мнению авторов, величина р = —6,2, полученная из уравнения Гаммета для случая нитрозирования л-Х-фенолов, характерна для такого механизма нитрозирования ароматических соединений, в котором лимитирующей стадией является распад циклогексадиенонового промежуточного продукта А (схема 3). Следует, однако, заметить, что природа лимитирующей стадии меняется при проведении реакции нитрозирования фенола и /3-нафтола в слабокислых средах (рН>4,5) [1, 1973]. На основании того факта, что первичный кинетический изотопный эффект в реакции нитрозирования этих соединений значительно уменьшается по мере уменьшения кислотности среды, авторы предположили, что лимитирующей стадией становится образование циклогексадиеново-го продукта. Близкие кинетические закономерности бьши получены при изучении механизма нитрозирования резорцина и его 0-метильных производных [5]. Скорость реакции сложным образом зависит от кислотности среды, но при этом повторяется примерно тот же профиль, что и для фенола и /3-нафтола (см. выше). Наблюдаемая константа скорости второго порядка не зависит от pH среды в области pH 1—2,5, возрастает при рН<1 и pH>2,5. На основании этих результатов был сделан вывод о том, что лимитирующей стадией реакции при pH>2,5 является образование соединения А (схема 3), его некаталитический распад при К pH <2,5 (путь I) и кислотно-каталитический распад при рН<1 (путь П). [c.8]

    Эрссон [108] использовал этот метод для газохроматографического определения карбоновых кислот и фенолов. Метод включает экстракцию кислоты в форме ионной пары в метиленхлорид и получение производного с пентафторбензилбромидом. Скорость реакции увеличивается в зависимости от структуры противоиона и при увеличении его концентрации. Для повышения скорости реакции гораздо лучше использовать вместо тетрабутиламмониевых солей более липофильные соли тетра-н-пен-тиламмония. Имеется обзор, посвященный применению экстрактивного алкилирования для анализа фармацевтических препаратов [1052], а недавно описана микромодификация этого метода с твердофазной системой МФК и использованием в каче- стве щелочи карбоната натрия [1053]. [c.128]


    Сульфирование гидрохинона и его производных. Сульфирование гидрохинона серной кислотой и олеумом при температуре не выше 50° приводит к моносульфокислоте [364]. Кинетика этой реакции изучена д.яя различных концентраций серной кислоты [365] в температурном интервале 50—100°. Действием моногидрата серной кислоты НоЗО -НоО можно ввести одну сульфогруппу для введения второй необходима безводная кислота и температура выше 100°. В интервале концентраций кислоты от 7 до 14 молей логарифм скорости реакции пронорцпонален концентрации. [c.58]

    Скорость реакции ненасыщенного полимера с серой возрастает с повышением температуры (рис. 81), но даже при 140—1.50 эта реакция является весьма длительным [фоцессом. Для повышения скор(х ти вулкани зации требуется введение ускорителей, которыми могут служить окислы металлов (цинка, магния, свинца) и органические вещества — амины с константой диссоциации более 10 производные дитиокарбоновых кислот, ксантогенаты [c.245]

    Натта [216] сообщает, что при энергичном неремешивании газов с жидкостью высокомолекулярные олефины уже при давлениях 10—20 ат реагируют с достаточной скоростью, так как в случае реакции олефинов высокого молекулярного веса скорость реакции менее зависит от давления газа, чем от скорости диффузии газов из газовой фазы в жидкость и жидкости к твердой фазе катализатора (описаны опыты с октадециленом и с высшими ненасыщенными жирными кислотами и их производными). [c.327]

    При дальнейшем изучении нитрования различных ароматических соединений азотной кислотой в органических растворителях Ингольд с сотрудниками 171, 721 показали, что нитрование фенолов, ароматических аминов и их лкилированных производных отличается от нитрования других ароматических соединений. Это отличие проявляется в различном влиянии азотистой кислоты на скорость нитрования. Как мы видели, нитрование в органических растворителях, достаточно ре -акционноспособных к электрофильньш замещениям ароматических соединений (бензола, толуола и др.)> протекает по кинетике нулевого порядка, причем добавление азотистой кислоты несколько снижает скорость реакции. Выражение для скорости в этом случав имеет следующий вид  [c.193]

    Иначе действует азотистая кислота при нитровании фенолов, ароматических аминов и их алкилированных производных. Прибавление азотистой кислоты в этом случае увеличивает скорость реакции, причем порядок реакции иа нулевого етано-витси вторым [c.194]

    Природа сложного эфира. Из изученных эфиров наиболее реакциокноспособны те, которые являются производными хлор-ацетонитрида или б ром малонового эфира. Различие в скоростях реакции метилового эфира и цианметилового эфира еесьма значительно метиловый эфир гиппуровой кислоты прн взаимодействий с бензиламииом через 11 дней образует амид с выходом только 16%, л-огда как в тех же условиях цианметиловый эфир через 30 мин дает амид с пыходом -82% [ЗОЙ], [c.251]

    Окисление натриевой солью метаиодной кислоты отличается от окисления йодной кислотой только скоростью реакции [6]. Эту соль, в разбавленном водном растворе которой р11 составляет около 4,0, применяют вместо йодной кислоты для окислсния тех производных а-гликолей, которые особенно легко гидролизуются в кислой среде [53,108]. Применение ЫаЮ целесообразно н п тех случаях, когда Количество образующейся при окислепии муравьиной ки Слоты [44,90] определяют по увеличению кислотности РеакциозЕного раствора. Окисление проводилось также с йодным раствором N39112108 нри pH 4,2 в присутствий [c.381]

    Стадией, определяющей скорость реакции Гофмана, является, повидимому, отщепление иона галоида от галопдамидиого аниона. К этому выводу приводит количественное изучение влияния м- и л-заместителей на скорость перегруппировки производных бензамида [9]. Так, например, заместители У, способствующие отталкиванию электронов от карбонильной группы (иапример, метил и метоксил, которые уменьн1ают силу соответствуюн их замещенных бензойных кислот), благоприятствуют перегруппировке  [c.257]

    Особенность каталитического эффекта лиганда при определении рассматриваемых ионов проявляется в смещении волн в сторону более положительных потенциалов и увеличении их крутизны (рис. 12.6). Основной причиной такого поведения ионов металлов являются реакции комплексообразования, протекающие как на поверхности электрода, так и в объеме раствора. При этом г ат в действительности является квазидиффузионным, т.е. скорость реакции комплексообразования благодаря высокой концентрации лиганда существенно выше скорости диффузии. В качестве лигандов-катализаторов используются пиридин, у-пиколин, роданид- и ио-дид-ионы, тиокарбами По влиягаем последнего практически совпадающие волны Со Ре и разделяются на три волны. Для определения Т1 пригодна салициловая кислота и ее производные. Полифенолы являются катализаторами для определения Ое и [c.457]

    На примере взаимодействия алкильных [13] и арильных [17, 18] производных фумаровой кислоты с фенил- и дифенилдиазометаном, показано образование смн-и антм-изомеров пиразолинов 8a-g. В работах [14, 19] была выявлена зависимость скорости реакции присоединения ДС от степени замещения кратной связи в ряду производных акриловой кислоты. На основе изучения кинетики было установлено, что эфиры акриловой кислоты 1, как диполярофилы, в реакциях циклоприсоединения значительно более активны (на 3-4 порядка), чем соответствующие алкил- и фенилзамещенные алкены. Также было показано, что транс-изомеры акриловой кислоты проявляют повышенную реакционную способность по сравнению с цис-изомерами [14]. [c.8]

    Какова структура активных центров Благодаря кристаллографическим исследованиям мы можем неиосредственно увидеть , как устроено все большее и большее их число. Однако рентгеноструктурный анализ обычно не позволяет получить четкого представления о конформацион-ных изменениях, обеспечиваюш их индуцированное соответствие. Кроме того, кристаллографические исследования с высоким разрешением проведены лишь для относительно небольшого числа ферментов. Поэтому для выяснения структуры активного центра энзимологи продолжают широко использовать традиционные химические методы картирования , измеряя константы связывания ингибиторов, структуру которых последовательно изменяют, и исследуя, как влияют изменения структуры субстратов на связывание и скорость реакции. Хорошим примером исследования такого рода может служить работа Мейстера (Meister) и его сотрудников, исследовавших глутаминсинтетазу из мозга овцы. Субстратами фермента являются как D- и L-глутаминовая кислоты, так и а-аминоадипиновая кислота. В то же время из десяти монометильных производных D- и L-глутаминовой кислот субстратами глутаминсинте-тазы могут служить только три. Если допустить, что субстраты связываются в полностью вытянутой конформации, то все атомы водорода, замена которых не приводит к исчезновению активности, лежат с одной стороны остова молекулы (за плоскостью рисунка на следующих двух схемах)  [c.43]

    Реакция дикетена и анилина с образованием анилида ацетоуксусной кислоты была открыта Уилсмором и Чиком [260, 261]. На этой реакции основан промышленный способ получения различных анилидов ацетоуксусной кислоты, применяемых в качестве промежуточных продуктов в синтезе красителей. Во МН0ГИХ случаях, даже с ароматическими аминами, конденсация протекает достаточно быстро в водной среде, в которой растворен или суспендирован амин. Подробно эта конденсация описана в работе Бёзе [26]. При изучении кинетики реакции была установлена в общих чертах зависимость скорости реакции от константы диссоциации амина [174]. В случае очень слабых оснований, например дифениламина, л<-нитроанилина или карбазола, в качестве катализаторов применяются третичные амины. При реакции с аминами с константой диссоциации, меньше 9-10" Лейси и Конноли [168] предложили использовать такой катализатор, как триметиламин в качестве инертного растворителя они рекомендовали толуол. Перекалив и сотр. [195, 198] в качестве катализатора реакций этого типа применяли пиридин они получили N-ацильные производные индола [ср. 121] и фталимидина. [c.239]

    Впоследствии указанный метод с применением ацетата двухвалентной меди в пиридине был использован Эглинтоном и Голб-райтом [117, 165] для препаративных целей. В этих условиях производное одновалентной меди не осаждается, а образующаяся кислота связывается пиридином. Уэсткотт и Баксендейл нашли, что скорость первоначальной реакции пропорциональна концентрации R S СН и Си + и обратно пропорциональна [H+J, но суммарная скорость реакции определяется постоянной концентрацией Си+. Следовательно, длительность индукционного периода зависит от автокаталитических свойств Си+. Авторы пришли к выводу, что окислитель — это ион Си +, но как таковой он неэффективен в отсутствие Си+. Конечно, не исключено, что истинным катализатором может быть R s u или другой родственный ему комплекс. Следует отметить, что окисление сульфатом меди в водном растворе можно сойоставить с кажущимся аналогичным окислением в жидком аммиаке. Наст [173] [c.260]

    Для эфиров ортокремниевой кислоты и их производных наиболее характерны реакции гидролиза и алкоголиза. Способность к гидролизу и его скорость зависят от строения эфира и условий реакции. Гидролиз обпегщется при введении в систему эфир — вода общего растворителя, в частности, этилового или изопропилового спирта. Гидролиз каталитически ускоряется в присутствии минеральных кислот (соляной НС1, ортофосфорной Н3РО4, азотной НЫОз), уксусной кислоты, сильных [c.28]

    Берсон и др. [52] предложили эмпирический парамеггр полярности растворителей Q, в основу которого положено заметное (хотя и сравнительно небольшое) влияние растворителей на скорость некоторых реакций [4-f 2] циклоприсоединения (реакций Дильса — Альдера). Эти исследователи обнаружили зависимость отношения выхода эн<Зо-аддукта к выходу э/сзо-аддук-та в реакции Дильса — Альдера между циклопентадиеном и метилакрилатом от природы растворителя, используемого в качестве реакционной среды. Более полярные растворители благоприятствуют повышению выхода эн<Зо-аддукта [см. уравнение реакции (5.43) в разд. 5.3.3]. Позднее Прицков и др. [53] показали, что повышение поляр ности среды приводит не только к увеличению отношения [эн<Зо-аддукт]/[экзо-аддукт], но и к небольшому повышению абсолютной скорости реакции Дильса — Альдера между циклопентадиеном и производными акриловой кислоты. Природа этих эффектов обсуждена в разд. 5.3.3. Поскольку реакция (5.43) контролируется кинетическими факторами, то отношение [эн<Зо-аддукт]/[экзо-аддукт] эквивалентно отношению констант удельных скоростей соответствующих реакций, поэтому, согласно Берсону [52], параметр Q определяется следующим образом  [c.514]

    В принципе, расщепление линий резонанса на ядрах а-водородных атомов или атомов водорода заместителей в а-положении можно использовать для определения относительных количеств первичных, вторичных и третичных аминов. В некоторых отношениях такой непосредственный анализ более удобен, чем обычный анализ с применением реакций ацетилирования или диазотирования. Методом ЯМР нетрудно измерять скорость реакции первичного амина с бензальдегидом, однако также легко измерять и скорость ацетилирования. В этом же анализе с превращением в производные трифторуксусной кислоты можно использовать метод, описанный Ба-биеком, Варрантом и Викерсом [69]. Метод ЯМР имеет то преимущество, что в нем пе требуется превращения в производные и достаточно приготовления соли применяемой кислоты непосредственно в анализируемом растворе. [c.304]

    Наряду с тем, что метод с применением меченого ЫЭМ дает хорошие результаты в анализе белков, он представляется многообещающим и в определении очень малых количеств несвязанных низкомолекулярных меркаптанов. В нейтральном или слегка кислом растворе с избытком МЭМ соответствующая реакция идет быстро. Так, например, в случае г-цистеина эта реакция является количественной и завершается в пределах 2 мин при pH раствора от 5,4 до 6,6 [25, 36]. Быстро образуются и аддукты тиогликолевой кислоты, меркаптоэтанола, а также 2-амино-4-меркаптомасляной кислоты [26]. В принципе, при анализе низкомолекулярных соединений не требуется количественного гидролиза аддуктов до 5-сук-цинильных производных, однако он может способствовать отделению аддуктов от избытка реагента хроматографическим методом. В результате реакции меркаптана с МЭМ образуется производное, характеризующееся центром (новым) асимметрии, и этот фактор следует принимать во внимание при выборе метода разделения. Скорости реакций зависят от pH раствора, и кроме того, в воде эти реакции идут быстрее, чем в этаноле [36]. Это позволяет предположить, что реакция образования аддукта является скорее ионной, а не свободнорадикальной. С ЫЭМ реагируют также сульфидные, сульфитные и тиосульфатные анионы [37]. [c.355]

    Затем, по мере того как раствор подвергался старению в течение 1—8 сут, из поликремневых кислот получали триметилсилильные производные сложного эфира, в которых группы SiOH исходных кислот превращались в группы SiOSi( H3)3. После удаления испарением и/или селективной экстракцией летучих олигомерных разновидностей производные поликремневых кислот с высокой молекулярной массой были проанализированы на содержание С, Н и Si, а их молекулярные i>ia bi были определены в бензоле с помощью чувствительного к давлению паров прибора — осмометра. Молекулярная масса поликремневой кислоты подсчитывалась на основании молекулярной массы сложного эфира и коррелировалась с величиной константы скорости реакции с молибденовой кислотой. В течение интервалов времени от 8 до 42 сут (точка гелеобразования) молекулярная масса оценивалась только на основании значений константы скорости молибдатной реакции. [c.354]

    Моделирование действия фермента уреазы позволило установить, что связывание производных мочевины с №(П) через карбонильный кислород приводит к активации в обычных условиях инертной карбонильной группы мочевины, подготавливая ее к нуклеофильной атаке растворителем. Скорость нефермента-Т1ИВН0Г0 гадролиза мочевины в водных растворах не зависит от pH в интервале от 2 до 12, но при pH ниже 2 и выше 12 наблюдаются соответственно падение и увеличение скорости реакции. При значениях pH 7, 13 и 14 было показано, ч то эта реакция протекает как элиминирование с образованием в качестве единственных продуктов аммиака и циановой кислоты (9.21). Все имеющиеся данные говорят в пользу того, что механизм процесса остается неизменным во всем интервале pH [уравнение (9.21)], причем падение скорости при pH ниже 2 объясняется протони- [c.240]


Смотреть страницы где упоминается термин Производные кислот скорости реакций: [c.193]    [c.446]    [c.10]    [c.181]    [c.622]    [c.282]    [c.15]    [c.134]    [c.406]    [c.332]    [c.118]    [c.139]    [c.12]    [c.124]   
Курс теоретических основ органической химии издание 2 (1962) -- [ c.437 , c.443 ]

Курс теоретических основ органической химии (1959) -- [ c.380 , c.387 ]




ПОИСК





Смотрите так же термины и статьи:

Кислоты, производные в реакции



© 2025 chem21.info Реклама на сайте