Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы связи в молекулах, природа

    На некотором малом расстоянии от поверхности полимера, где на раствор влияет силовое поле мембраны, слой, находящийся в термодинамически менее выгодном состоянии, стремится к достижению устойчивого состояния, т. е. к полной или же к максимально возможной компенсации межмолекулярных сил. В данном случае это достигается в результате преимущественной сорбции молекул неполярных веществ на полимере. Следовательно, слой связанной жидкости и в этом случае также состоит как из молекул воды, так и из молекул растворенного вещества. Однако в этом слое, в отличие от связанного слоя водных растворов полярных веществ, компоненты сильно отличаются по подвижности, что обусловлено их свойствами, размером, молекулярным строением, а также природой межмолекулярных сил связи с полимером. При этом менее подвижными становятся молекулы неполярных веществ. [c.220]


    Ковалентная связь — самый распространенный тип химической связи. Межатомная связь абсолютного большинства неорганических и органических соединений ковалентна. По механизму образования ковалентных связей нет никакой разницы между неорганическим соединением аммиаком КНз и органическим соединением метаном СН4. Для неорганических соединений типа кислот, оснований и солей наблюдаются межатомные связи с несколько бо.льш ей долей ионности, т.е. более полярные ковалентные связи по сравнению с органическими соединениями. Следовательно, по фундаментальной характеристике молекул — природе межатомной химической связи — нет принципиальной разницы между неорганической и органической химией. Отличие состоит в том, что в твердых органических веществах действуют слабые межмолекулярные силы, а в типичных неорганических кристаллах отсутствуют молекулы и доминирует ковалентная связь между атомами. [c.66]

    Рост зародышей карбонизации является вторичным процессом и может быть обусловлен только силой сцепления твердых частиц. Эта сила имеет электрическую природу, характеризующую взаимную связь молекул. [c.54]

    Поглощение света некоторыми веществами резко изменяется после их адсорбции. Это явление имеет, несомненно, некоторую связь с природой сил взаимодействия молекул этих веществ с поверхностью, и поэтому можно предположить, что оно указывает на процесс хемосорбции, В дальнейшем обсуждении мы приведем некоторые возражения против этой точки зрения. [c.21]

    Ранее уже упоминалось, что нет принципиального различия между природой межатомной химической связи и природой устойчивости самих атомов. Силы , которые удерживают систему— атом гелия (ядро и два электрона), те же, что и в молекуле водорода Нг (два ядра, два электрона) или в молекулярном ионе водорода Нг+ (два ядра, один электрон). Рассмотрим образование химической связи на примере Н2+-иона и молекулы Нг, так как на этих примерах удобнее всего познакомиться с методами квантовой механики. [c.75]

    Установление зависимости между поверхностным давлением и площадью, занимаемой молекулой, позволяет не только найти связь между природой поверхностно-активного вещества и характером образующейся пленки, но и выяснить влияние температуры на строение пленки. Опыт показал, что по мере повышения температуры сначала в пленке-преодолеваются молекулярные силы между углеводородными радикалами и пленка может стать растянутой, затем пленка превращается в газообразную. [c.134]


    Существует три типа сил Лондона — Ван-дер-Ваальса 1) взаимодействие дипольных моментов 2) поляризующее действие постоянного диполя одной молекулы на другую и 3) силы квантовомеханической природы. Эти силы связаны с тем, что в атомах вследствие движения электронов возникают дипольные моменты, совершающие в пространстве колебания частота этих колебаний составляет 10 — 10 Гц. Колеблющийся диполь одного атома поляризует другой атом, в результате возникает взаимное притяжение. [c.416]

    Следует отметить, что в каждом из до сих пор написанных уравнений реакций и тех, которые еще будут приведены, все ионные компоненты обозначены так, как если бы в реакциях принимали участие простые ионы. Это, конечно, не соответствует действительности, так как все ионы в водном растворе в определенной степени гидратированы. Поэтому каждый ион можно рассматривать как окруженный определенным числом молекул воды, определяющимся силой связи и кратчайшим расстоянием, которое зависит от размера, заряда и электронной природы иона. Имея это в виду, интересно отметить, что стандартный потенциал для каждой реакции в рассмотренных полуячейках может быть изменен простой переменой окружения атома золота со степенью окисления +1, т. е. заменой молекул воды, которые окружают ион металла, другими молекулами или ионами. Мы можем проиллюстрировать это влияние окружения центрального атома на примере ионов Вг , N S , и N" в отношении стандартных потенциалов следующих полуячеек  [c.321]

    Какова природа сил связи в молекулах, образованных элементами, не слишком далеко расположенными друг от друга в периодической системе, или в таких молекулах, как Hj, I2, N2 вообще состоящих из одинаковых атомов  [c.153]

    Хотя молекулы в целом нейтральны, между ними проявляется межмолекулярное взаимодействие. Как и силы связи между атомами, межмолекулярные силы имеют электрическую природу. Они обусловлены полярностью и поляризуемостью молекул. Различают три типа межмолекулярного взаимодействия. [c.52]

    Начало одному из методов было положено работой В. Гейтлера и Ф. Лондона (1927). Они впервые объяснили природу сил в молекуле водорода. В 30-х годах эти идеи были развиты Слейтером и Полингом для многоатомных молекул. Их представления получили название — спиновая теория валентности, или метод электронных пар. Параллельно с указанным плодотворно развивается другой подход к объяснению ковалентной связи, получивший название метода молекулярных орбиталей (Гунд, Милликен, Хюккель, Леннард-Джонс, Коулсон). [c.87]

    Высокомолекулярные соединения — это вещества, молекулы которых образованы из многих сотен атомов, молекулярные веса их исчисляются десятками и сотнями тысяч углеродных единиц. По природе химических связей молекулы высокомолекулярных веществ идентичны обычным соединениям, между их атомами действуют обычные силы химического сродства. [c.375]

    Силы притяжения возникают на поверхности адсорбента благодаря тому, что силовое поле поверхностных атомов и молекул не уравновешено силами взаимодействия соседних частиц. По физической природе силы взаимодействия молекул поглощаемого вещества и адсорбента относятся в основном к дисперсионным, возникающим благодаря перемещению электронов в сближающихся молекулах. В ряде случаев адсорбции большое значение имеют электростатические и индукционные силы, а также водородные связи. [c.189]

    Теория химической связи должна дать ответ на вопросы почему атомы соединяются в молекулы Какими силами они в ней удерживаются Какова природа этих сил Почему молекулы имеют определенную форму Это центральные вопросы химии, так как свойства веществ, их реакционная способность зависят от состава, строения и типа химической связи между атомами. [c.73]

    В узлах молекулярной кристаллической решетки расположены молекулы, связанные между собой слабыми межмолекулярными связями. Характер межмолекуляр-ных сил и энергия взаимодействия молекул определяются их природой между неполярными молекулами действуют дисперсионные силы энергия взаимодействия между полярными молекулами складывается из дисперсионных, ориентационных и индукционных сил. Если молекулы содержат связи N—Н, О—Н и Р—Н, например NHз, НгО, НР, СНзОН, СНзСООН, то существенный вклад в энергию взаимодействия между такими молекулами вносит водородная связь. От природы молекул зависит и строение молекулярных кристаллов. Кристаллы, построенные из неполярных молекул, характеризуются высокими значениями координационных чисел, например у иода координационное число равно 12. Если между молекулами действуют водородные связи, как, например, у льда, координационное число может понижаться до 4. [c.81]

    Инфракрасный спектр позволяет узнать, какие функциональные группы содержат неизвестные сначала вещества. Малейшие нюансы в структуре молекулы, например природа позиционных или стереоизомеров, находят свое отражение в ИК-спектре, поэтому инфракрасная спектроскопия позволяет судить о силах связи, атомных расстояниях и валентных углах. Таким образом, ИК-спектр особенно пригоден для выяснения структуры соединений. Путем сравнения спектров неизвестного чистого компонента с предполагаемым чистым веществом можно однозначно идентифицировать данный компонент. [c.255]


    Учет электростатических и осмотических сил, возникающих при этом, приводит к экспоненциальной зависимости энергии отталкивания Е двух частиц от расстояния между ними Н (рис. 99, кривая /). Кроме сил отталкивания при сближении частиц действуют силы притяжения, имеющие природу сил Ван-дер-Вааль-са. Наиболее универсальным типом этих сил являются лондо-новские силы, возникновение которых связано с частично син-хронизованн )1М движением электронов во взаимодействующих молекулах. Энергия взаимодействия всех молекул приводит к [c.239]

    Но тут, наконец, вступают в игру чисто полимерные факторы. Настоящий молекулярный или ионный кристалл можно ликвидировать термодинамически, вспомнив о внутренней-природе узлов, т. е. ликвидировав ковалентные силы в молекулах или гетерополярные связи. Для простых кристаллов такой способ их плавления или сублимации достаточно редок или неудобен [39], но в полимерных суперкристаллах он оказывается едва ли не единственно возможным. [c.85]

    Величина положительного заряда иона металла служит важной характеристикой промотируемых или катализируемых металлами реакций [13]. Для многих процессов эффективность катализа непосредственно коррелирует с изменением заряда катиона. Так, как этот заряд распространяется на весь комплекс, а не только сосредоточен непосредственно на ионе металла, электростатическая природа координированных лигандов играет не менее важную роль, чем заряд иона металла. В некоторых рассмотренных выше реакциях активность многозарядного иона металла падала до нуля при комплексообразовании с анионными лигандами. Кроме того, плотность заряда может оказаться более важным фактором, чем общий заряд. Сила взаимодействия между двумя зарядами или диполями обратно пропорциональна квадрату расстояния между ними. Для достижения максимального. каталитического эффекта ион металла должен быть непосредственно связан с молекулой субстрата, а точнее — с разрываемой связью молекулы. Таким образом, важнейшую роль приобретает стереоспецифическая координация иона металла. В случае ионов переходных металлов на электростатическую природу иона оказывает также влияние экранирование заряда ядра иона металла его -электронами и полем лигандов. [c.233]

    Инфракрасная спектроскопия приобретает все большее значение в исследованиях химии поверхности, адсорбции и гетерогенного катализа как один из источников наиболее прямой и надежной информации о структуре поверхностных соединений и природе адсорбционных сил. Основная особенность этого метода, который впервые был распространен на исследование поверхностных явлений Терениным [1], состоит в том, что он дает возможность обнаруживать и изучать отдельные функциональные группы и химические связи молекул на поверхности твердого тела. Для исследования физической адсорбции, не сопровождающейся перестройкой и образованием новых валентных связей в молекулах, особое значение имеет высокая чувствительность внутримолекулярных колебаний к воздействию окружающей среды, что позволяет не только идентифицировать те или иные химические структуры, но и судить о деформациях, которым подвергается молекула при контакте с поверхностью адсорбента. [c.116]

    Оствальда, которые, как предполагалось, зависят только от положения соответствующих лигандов. Теперь приведем некоторые соображения по поводу того, что в действительности определяет соответствующие р-множители в различных случаях. Для многоосновных кислот взаимодействие кислотных групп, расположенных одна от другой значительно дальше, по своей природе является почти исключительно электростатическим, так что здесь 3-множители определяются главным образом зарядом отдельных кислотных групп и расстоянием между ними. Аналогично электростатический эффект наблюдается в комплексных акво-кислотах или в системах комплексов, где лигандами служат отрицательно заряженные анионы. Но здесь появляется дополнительный остаточный эффект, которым нельзя пренебречь. Этот остаточный эффект, который один определяет лиганд-эффект в системах с нейтральными молекулами, до некоторой степени, возможно, вызван отталкиванием диполей, индуцированных в лигандах центральным ионом (или постоянных диполей, ориентированных в поле центрального иона). Но, по мнению автора, вообще невероятно, чтобы это взаимодействие составляло значительную, не говоря об основной, часть остаточного эффекта. Более вероятно предположить, что остаточный эффект во всех системах комплексов прежде всего обусловлен влиянием лигандов на энергию связи с центральной группой. Это толкование также лучше согласуется с обычным представлением о том, что силы связи действуют главным образом между центральной группой и лигандами. Кроме того, это единственное непосредственное объяснение того факта, что остаточный эффект часто является отрицательной величиной в системах комплексов. [c.51]

    При рассмотрении адсорбции возникает вопрос, какие силы удерживают молекулы на поверхности твердого тела Это один из основных вопросов физики и химии, так как почти все физические и химические процессы природы связаны с проявлением взаимодействия между молекулами (молекулярные силы). [c.14]

    Как объясняется устойчивость твердых веществ, построенных из отдельных молекул Почему Вт2, 12 и все органические вещества не являются газами при комнатной температуре Какие силы удерживают молекулы углеводородов, входящих в состав бензина, в жидком состоянии Чем объяснить существование кристаллов сахара, если между его молекулами нет ни ковалентных, ни ионных связей Устойчивость молекулярных кристаллов становится понятной, если разобраться в природе слабых сил, называемых вандерваальсовым взаимодействием и водородными связями. [c.601]

    Структура и свойства связанного слоя определяются природой и свойствами каждого компонента в слое. Так, в случае разделения водных растворов полярных органических веществ структура связанного слоя, в отличие от структуры слоя, состоящего в основном из молекул воды, имеет дефектные участки. Это о бусловлено некомненсврован-ностью меж[молекулярных сил в участках раствора, где молекулы воды связаны с гидрофобными частями молекул растворенных веществ. Такая структура 1менее прочна, так, как водородные связи молекул оды, прилегающих к дефектным участкам, ослабляются из-за понижения донорной спо собности ОН-групп, поскольку неподеленная пара электронов этих молекул перестает служить одновременно акцептором протонов в водородной связи. [c.220]

    I верхности твердых и жидких тел называется адсорб-, цией. Хотя прочность связи молекул среды (адсорбата) с поверхностью твердого тела (адсорбентом) сильно изменяется от системы к системе, равно как и количество адсорбированного вещества, тем не менее все случаи сорбции можно разделить на два основных типа физическую адсорбцию и химическую (хемосорбцию). Между этими двумя типами адсорбции существует достаточно четкое различие. Физическая адсорбция вызывается силами межмолекулярного взаимодействия. Поэтому ее часто называют также вандерваальсовой адсорбцией. Химическая адсорбция сопровождается образованием на поверхности твердого тела поверхностных химических соединений. Природа хемосорбционной связи идентична природе аналогичных связей в химических соединениях, однако специфика поверхности может существенно влиять на характер связи и распределение электронов во взаимодействующих атомах. [c.27]

    Структура граничных слоев при прочих равных условиях обусловлена физико-химическими свойствами образующих ее веществ. По А. И. Китайгородскому, в межмолекулярных взаимодействиях основную роль играет форма молекул, иначе говоря, их локальные микрополя, а не результирующие силовые направления. Межмолекулярные силы в полимолекулярных граничных слоях в большинстве случаев имеют физическую природу. Среди межмолекулярных связей физической природы особый интерес представляют водородные связи, энергия которых сравнительно велика ( 10 ккал/моль). Этот вид связи составляет одну из неотъемлемых характеристик межмолекулярного взаимодействия молекул углеводородов. Такая связь наблюдается во всех агрегатных состояниях она определяет многочисленные виды ассоциаций молекул. [c.68]

    В зависимости от расстояния между молекулами природа сил их взаимодействия может быть различна, В этой связи различают короткодействующие и дальнодейству-ющие силы. Соотношение между этими силами в равновесии является таким при взаимодействии молекул, а также более крупных элементов, что они взаимно располагаются на определенном расстоянии, характеризуемом минимумом энергии. Именно энергия, отвечающая равновесному расстоянию в процессе межмолекулярных взаимодействий, определяет состояние нефтяной дисперсной системы. Величина энергии связывания молекул и структурных образований друг с другом зависит также от соотношения их эффективных диаметров и типа упаковки в элементарную пространственную группу. Состояние нефтяной дисперсной системы зависит в значительной степени от струк туры таких пространственных групп и их упаковки в более сложные структурные комбинации. [c.94]

    Впервые с позиций квантовой механики природу сил в молекуле водорода объяснили в 1927 г. английские ученые Гейтлер и Лондон. На основе уравнешгя Шредингера они рассчитали две количественные характеристики связи — энергию и длину (расстояние между центрами ядер в молекуле) результаты этих расчетов с достаточным приближением совпали с опытными данными. [c.74]

    РАСТВОРЫ ЭЛЕКТРОЛИТОВ, характеризуются электролитич. диссоциацией растворенного в-ва с образованием нонов. Степень диссоциации (а) зависит от природы и силы связи между катионом и анионом в молекуле электролита, а также от диэлектрич. проницаемости (е) р-рителя и его способности сольватировать ионы. Поскольку а в первом приближении экспоненциально завиеит от (—1/е), образование ионов сколько-нибудь существенно только в полярных р-рителях с высокой е — в воде, спиртах, ДМФА и др. Наиб, изучены водные Р. э. По степени диссоциации [c.495]

    Каковы же положительные черты такого подхода к изучению химической связи, основанного на анализе сил, действующих на ядра в моле-кулах > Во-первых, это единая траюовка природы химической связи в любых рядах соединений на ядра действуют классические электростатические силы, и молекула существует как целое за счет того, что силы притяжения ядер к электронному облаку компенсируют силы ядерно-ядерного отталкивания При этом достигается исключительная простота и высокая наглядность интерпретации, весь вопрос о химической связи трактуется здесь в терминах классических электростатических сил, действующих на ядра Во-вторых, анализ сил делается на основе электронного распределения в молекуле, что обеспечивает универсальность подхода к описанию химической связи в любых рядах соединений, независимо от того, к каким химическим классам они относятся, каков конкретный вид волновой фунции и вообще каким способом получено электронное распределение Речь идет, таким образом, об универсальном языке описания химической связи, чтобы им воспользоваться, нужно знать только электронное распределение [c.109]

    ВОЗМОЖНО Проявление индивидуального влияния природы связей на газопроницаемость полимеров. Для редких сеток основная роль в снижении гибкости цепных молекул и уменьшении проницаемости принадлежит мостич-ной связи, по сравнению с которой межмолекулярные силы, обусловленные химической природой этой связи, в первом приближении не имеют существенного значения. Шанин исследовал диффузию и растворимость кислорода и водорода в натрийбутадиеновом каучуке при 40—100 °С в зависимбсти от степени его окисления, которая определялась по числу молей Ог, поглощенных молем (54 г) каучука. Характер изменения коэффициен- тов диффузии и проницаемости в частном случае при изучении переноса кислорода при 40°С показан в табл. 9. [c.99]

    Межмолекулярные силы, так же как обычные валентные, имеют электрическую природу, но в отличие от последних не обладают свойством насыщаемости и не связаны с переходом или значительными смещениями электронов. Межмолекулярные силы полярных молекул обусловлены взаимодействием жестких диполей соседних молекул, приводящим к взаимной ориентации ориентацион- [c.27]

    Рассмотрим теперь, какие межмолекулярные связи участвуют в образовании необратимого прочного межфазного адсорбционного слоя. Можно ожидать, что в образовании межмолекулярных связей будут участвовать те же типы связей, которые обеспечивают определенную конформацию молекул белка в растворе. Все эти типы связей электрической природы, но различно11 силы кулоновское взаимодействие, ван-дер-ваальсово взаимодействие и водородные связи. При денатурации молекул яичного альбумина разрываются внутримолекулярные водородные связи и ван-дер-ваальсовы ( гидрофобные ) связи, при этом образуются в соответствующих условиях межмолекулярные связи. [c.206]


Смотреть страницы где упоминается термин Силы связи в молекулах, природа: [c.20]    [c.133]    [c.311]    [c.22]    [c.650]    [c.14]   
Электронное строение и химическая связь в неорганической химии (1949) -- [ c.110 , c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Молекулы связь

Связь природа

природа связе

силы связи



© 2025 chem21.info Реклама на сайте