Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекула оптические свойства

    Наряду с дисперсными системами в курсе коллоидной химии изучают свойства растворов высокомолекулярных веществ (ВМВ). Эти системы принципиально отличны от коллоидных систем. Растворы ВМВ — гомогенные термодинамически устойчивые обратимые системы, которые образуются самопроизвольно и по своей природе являются истинными молекулярными растворами. Однако при всех различиях их объединяет с коллоидными системами такой важный признак, как размер частиц. Молекулы ВМВ — макромолекулы как и коллоидные частицы, состоят из многих тысяч атомов. С этим связаны схожесть оптических свойств, малая скорость диффузии, низкое осмотическое давление у тех и других систем. [c.460]


    Помимо постоянного / -эффекта в молекуле в ходе реакции может возникнуть дополнительное смещение электронов в результате изменения окружающей среды — динамический индукционный Или индуктомерный эффект / . Этот эффект отражает поляризуемость молекулы. Для понимания процесса химического превращения необходимо знать, с какой легкостью изменяется распределение электронов в молекуле. Поляризуемость электронов в молекуле проявляется в оптических свойствах и обусловливает молекулярную рефракцию вещества. Суммарное значение поляризуемости для молекулы не отражает того факта, что в действительности она пространственно анизотропна это имеет важное значение при объяснении протекания реакций, поскольку в химических процессах наиболее существенны сдвиги электронов, совершающиеся вдоль линий связи. Значение оптической поляризуемости по осям координат для молекулы хлорбензола показано на схеме [c.66]

    Оптические свойства растворов сахарозы. Тростниковый сахар и продукты его разложения принадлежат к числу оптически активных веществ, т. е. веществ, способных изменять положение плоскости поляризации проходящего через них поляризованного света (света, в котором колебания происходят в определенной плоскости). Оптическая активность связана с наличием в молекуле асимметричных атомов углерода. Оптические изомеры отличаются по своему строению друг от друга, как несимметричный предмет отличается от своего зеркального изображения. По своим физическим и химическим свойствам такие молекулы одинаковы и отличаются только различным по направлению, но одинаковым по величине смещением плоскости поляризации света. Угол смещения плоскости колебаний поляризованного луча называется углом вращения плоскости поляризации. Угол вращения плоскости поляризации а прямо пропорционален толщине слоя с/ и концентрации активного вещества с (Био, 1831 г.) [c.355]

    Оптические свойства полимеров определяются строением электронных оболочек атомов, из которых состоят молекулы. Оптические свойства полимеров, характеризующие их взаимодействия с электромагнитным излучением, обычно изучаются в диапазоне длин волн [c.232]

    A. С использованием принципов стехиометрического анализа по априорной (логической, качественной и количественной) информации методами общей алгебры осуществить синтез возможных механизмов химической реакции. При расчете возможных механизмов реакции на ЭВМ учитывается качественный и количественный состав реагирующих молекул, а также их геометрическая конфигурация и оптические свойства. На основе качественной теории дифференциальных уравнений прогнозируются динамические свойства химического процесса и определяются необходимые условия наличия или отсутствия у химических систем колебательных динамических режимов или множественности стационарных состояний. [c.81]


    Для 30 фракций были определены температура кипения, кинематические вязкости при 100 и 210°, индексы рефракции, отношение углерода к водороду, молекулярные и удельные веса, анилиновые точки, а также оптические свойства фракций. Исследование физических констант последних показало, что таким путем удалось разделить сложную смесь углеводородов смазочного масла на отдельные типы углеводородов. Для отдельных фракций кинематические вязкости при 100° варьировали от 74 до 18 сантистоксов, индексы вязкости от—35 до 149, коэффициенты преломления от 1,5032 до 1,4587, а значения X в формуле С В.2 +х от —9 до -f0,35 (в то время как число углеродных атомов в молекуле оставалось почти постоянным). Выделение экстракцией более высокомолекулярных углеводородов оказалось затруднительным. [c.403]

    Как хорошо известно, механические и оптические свойства молекул и кристаллитов сильно анизотропны. В зависимости от рассматриваемого свойства носителями молекулярной анизотропии являются направленные связи (инфракрасный дихроизм), сегменты цепей (оптическая и механическая анизотропия) и ориентация цепей (высокоэластические свойства). Поэтому для понимания вытекающей отсюда макроскопической анизотропии приходится учитывать молекулярную анизотропию и неоднородность анизотропных молекулярных структурных эле- [c.46]

    Поляризуемость полимерной молекулы по направлению главной оси и поперек ее различна. Поскольку главные оси полимерных молекул ориентированы перпендикулярно радиусу сферолита, такие агрегаты обладают способностью к двулучепреломлению и рассеивают лучи света, если их размер оказывается соизмерим с длиной волны видимого света (в то же время аморфные полимеры, например полистирол, оптически прозрачны). Размеры сферолитов влияют не только на оптические свойства полимеров, но также и на их механические характеристики. Степень кристалличности, число и размеры кристаллитов так же, как и скорость кристаллизации, существенно зависят как от температуры кристаллизации (отжига), так и от величины молекулярной ориентации (степени ориентации) в момент кристаллизации, вызванной воздействием внешнего поля механических напряжений. [c.40]

    При изменении агрегатного состояния скачкообразно изменяются такие свойства вещества, как плотность, теплосодержание, оптические свойства и т. д. Для воды, например, изменение энтропии при испарении составляет 109 Дж/(К-моль). Эта величина значительно выше, чем для нормальных жидкостей (- 88 Дж/(К-моль)) (разд. 22.1.1), так как при испарении воды разрушаются водородные связи между молекулами. [c.366]

    ККМ —это концентрация ПАВ, при которой в растворе возникает большое число мицелл, находящихся в термодинамическом равновесии с молекулами (ионами), и резко изменяются свойства раствора (поверхностное натяжение, электрическая проводимость, оптические свойства и др.). [c.180]

    В методах ДОВ и КД вопрос об абсолютной конфигурации решается лишь приближенно или качественно, так как в строгой теории методов, связывающей оптические свойства и молекулярную конфигурацию для расчета вращательной силы перехода, необходимо задавать электронные функции молекулы для основного и возбужденных состояний. К сожалению, такая информация достаточной точности отсутствует, что и приводит к установлению различных правил к закономерностей, к развитию полуэмпирических методов при использовании ДОВ и КД. [c.224]

    Почему электрические и оптические свойства молекул определяются их троением  [c.22]

    Однако часто ассоциация, установленная электрохимическими методами, не сопровождается изменениями оптических свойств и появлением полос в спектрах, соответствующих молекулам. В этих случаях, вероятно, имеет место электростатическое взаимодействие между ионами при образовании ассоциатов. Однако область поглощения света такими ионами лежит в далекой ультрафиолетовой области, т. е. в области интенсивного поглощения растворителями, что затемняет картину. [c.10]

    Влияние растворителя на оптические свойства молекул 253 [c.253]

    Исследование растворов путем изучения их оптических свойств осложняется тем, что различия в энергетическом состоянии свободных ионов и ионов, входящих в ионные двойники, невелики и, следовательно, невелики и различия в их свойствах, в том числе и оптических. К тому же оптические свойства ассоциатов нельзя сравнивать с оптическими свойствами недиссоциированного вещества в свободном состоянии, так как в растворах могут образовываться ионные молекулы, отличные от тех молекул или агрегатов ионов, которые существуют в свободном состоянии. Наконец, исследования осложняются тем, что большинство сильных электролитов не поглощают в видимой и в близкой ультрафиолетовой области спектра. [c.304]


    ОПТИЧЕСКИЕ СВОЙСТВА МОЛЕКУЛ [c.130]

    В физике твердого тела для различных классов кристаллов наблюдаются сверхсостояния (сверхпроводимость, ферромагнетизм и сверхпластичность для металлов, сегнетоэлектрическое состояние для диэлектриков), для квантовой жидкости (гелия) наблюдается сверхтекучесть. Полимеры обладают своим сверхсостоянием, которое называется высокоэластнческим состоянием. Высокоэластическое состояние объясняется не только структурой полимерных молекул или макромолекул, но и свойством внутреннего вращения, известным для простых молекул в молекулярной физике. Теория высокой эластичности основывается на применении конформ анионной статистики макромолекул, которая является развитием статистической физики в физике полимеров. Аморфные полимеры по структуре сложнее, чем низкомолекулярные вещества, но в их ближнем порядке примыкают к строению жидкостей. Релаксационные и тепловые свойства расплавов полимеров и жидкостей во многом аналогичны (процесс стеклования, реология). Кристаллические полимеры по своему строению похожи на твердые тела, но сложнее в том отношении, что наряду с кристаллической фазой имеют в объеме и аморфную фазу с межфазными слоями. По электрическим свойствам полимеры — диэлектрики и для них характерно электретное состояние, по магнитным свойствам полимеры — диамагнетики, а по оптическим свойствам они характеризуются ярко выраженным двойным лучепреломлением при молекулярной ориентации. При этом все полимеры обладают уникальными механиче- [c.9]

    Изучение оптических переходов связано с расчетом возбужденных состояний молекул, который в силу его сложности мало освоен. Поэтому можно считать, что теория оптических свойств молекул только создается. Мы познакомим, читателя с некоторыми квантовохимическими подходами к решению спектроскопических задач, не затрагивая по существу всего того многообразия результатов Экспериментальных исследований, о которых упоминалось выше. [c.130]

    При написании книги использованы оригинальные исследования преподавателей вузов, ведущих ученых страны и зарубежных исследователей, работающих в области физики жидкого и аморфного состояний вещества. Помимо литературных данных книга содержит результаты исследований автора. Структурные особенности тех или иных веществ анализируются в тесной связи с их свойствами, характером движения и взаимодействия атомов и молекул. Отмечается определяющее влияние структуры твердого состояния на формирование ближнего порядка в жидкости. Учебных пособий аналогичного содержания нет ни в отечественной, ни в зарубежной литературе, хотя потребность в них очевидна. На основе структурных данных, глубокого понимания природы, сил взаимодействия атомов и молекул можно прогнозировать пути и возможности создания новых материалов с заданными механическими, тепловыми, электрическими и оптическими свойствами. Знание атомной структуры, законов движения и взаимодействия частиц способствует формированию материалистического мировоззрения. [c.3]

    Затрудненность вращения вокруг простых связей объясняет устойчивость шахматных (продолженных) конформаций сопряженных молекул. Оптические свойства изомеров каротиноидов с конфигурациями целиком транс- и моно-г ыс согласуются со свойствами, предсказанными для структур, имеющих гранс-конфигурацию при всех простых связях в сопряженной системе [17], а эта конфигурация, например в случае 9,9 -дегидро-р-ка-ротнна, была подтверледена путем рентгенографического исследования [18]. Было также показано, что транс-коп-фигурация относительно простой связи устойчива и в случае сопряженных молекул меньших размеров, таких, как бутадиен-1,3, глиоксаль и оксалилхлорид. В этих молекулах гранс-конфигурация стабилизируется как сопряжением, так и благоприятной азимутальной ориентацией относительно простой связи, в то время как двум скошенным конформациям благоприятствует ориентация, но не благоприятствует сопряжение, а цис-конфигурации благоприятствует сопряжение, но не ориентация. Предсказанное различие в энергиях цис- и транс-конфигураций может быть определено из высот барьеров Б других веществах для углеводородов оно оказывается равным примерно 1,5 ккал/моль. [c.14]

    При превращении линейных молекул в циклические появляется новый асимметрический атом углерода, обозначенный в формуле звездочкой. С бразующиеся при этом два изомерных сахара не являются антиподами, и различие между ними сводится лишь к пространственному расположению заместителей при первом углеродном атоме. Для некоторых моносахаридов известны оба упомянутых изомера, а-и 3-, ра 5личающисся по температурам плавления, растворимости и особенно по оптическим свойствам. Так, а-глюкоза имеет [о ] -1-109,6°, а 3-глюкоза -(-20,5°. Если растворить в воде а-глюкозу, то вращательная способность раствора будет постепенно уменьшаться, пока не достигнет постоянного значения 4-52,3° при растворении же р-глюкозы происходит постепенное увеличение вращательной способности и через определенное время такл<е достигается постоянная величина 4-52,3 Это конечное значение, очевидно, соответствует состоянию равновесия между а- и р-сахарами, которые в растворе превращаются друг в друга. Перегруппировка протекает, по-видимому, через альдегидную форму сахара или форму альдегидгидрата  [c.416]

    Вукс М. Ф. Электрические и оптические свойства молекул и конденсированных сред.— Л. Изд-во ЛГУ, 1984. [c.282]

    Нетрудно заметить, что эти модели невозможно совместить в пространстве они построены зеркально и отображают пространс гвенную конфигурацию молекул двух различных веществ (в данном примере молочных кислот), отличающихся некоторыми физическими, а главным обра зом, биологическими свойствами. Такая изомерия называется зеркальной стереоизомерией, а соответствующие изомеры зеркальными изомерами. Стереончомеры с асимметрическими атомами, в том числе и зеркальные, различаются по оптическим свойствам, а именно по влиянию на пропускаемый через них поляризованный свет поэтому их называют также оптическими изомерами. Различие в пространственном строении зеркальных изомеров может быть представлено и при помощи структурных формул, в которых показано различное расположение атомных групп при асимметрическом атоме например, для приведенных на рис. 29.11 зеркальных изомеров молочной кислоты  [c.557]

    КВАНТОВАЯ МЕХАНИКА - физическая теория, изучающая общие закономерности движения и взаимодействия микрочастиц (элементарных частиц, атомных ядер, атомов и молекул) теоретическая основа современной физики и химии. К. м. возникла в связи с необходимостью преодолеть противоречивость и недостаточность теории Бора относительно строения атома. Важнейшую роль в разработке К. м. сыграли исследования М. Планка, А. Эйнштейна, Н. Бора, М. Борна и др. К. м. была создана в 1924—26 гг., благодаря трудам Л. де Бройля, Э. Шредингера, В. Гейзенберга и П. Дирака. К. м. является основой теории многих атомных к молекулярных процессоБ. Она имеет огромное значение для раскрытия строения материи и объяснения ее свойств. На основе К. м были объяснены строение и свойства ато MOB, атомные спектры, рассеяние света создана теория строения молекул и рас крыта природа химической связи, раз работаиа теория молекулярных спектров, теория твердого тела, объясняющая его электрические, магнитные и оптические свойства с помощью К. м. удалось понять природу металлического состояния, полупроводников, ферромагнетизма и множества других явлений, связанных с природой движения и взаимодействием микрочастиц материи, не объясняемых классической механикой, [c.124]

    Оптические изомеры обладают одинаковыми физико-химическими свойствами в тех случаях, когда речь идет о свойствах неасимметрической природы. Напр-имер, молекулярная электропроводность, кислотно-основные, магнитные свойства не зависят от конфигурации оптического изомера. Физико-химические свойства асимметрического характера у зеркальных изомеров могут оказаться существенно различными. Например, оптические изомеры обладают одинаковой по величине, но противоположной по знаку вращательной споообностью плоскости поляризации светового луча, различными скоростями взаимодействия оптических изомеров с молекулами оптически активного заместителя. Примеры оптически активных веществ приводятся в табл. 7. [c.51]

    Оптическая (зеркальная) изомерия. Оптическими изомерами являются комплексные соединения, способные существовать в виде двух изомеров, один из которых по своей конфигурации является зеркальным повторением другого. Оптические изомеры обладают одинаковой по величине, но противоположной по знаку вращательной способностью плоскости поляризации светового луча, различными скоростями взаимодействия с молекулами оптически активного заместителя. Такие свойства, как молекулярная проводимость, магнитные и кислотно-основные, не зависят от конфигурации оптического изомера. Оптическая изомерия наблюдается у комплексных соединений М[Ни (С204)2РуЫ01, Кз[НЬ ( 204)20121, Кз[1г(0204)2012], [СоЕп2СШ02]Х и др. [c.240]

    Однако влияние этих равновесий на силу кислот сказывается только в концентрированных растворах. В разбавленных растворах, в которых определяются термодинамические константы, реакция (IV) обычно проходит до конца, а реакция (V) практически еще не начинается. Напрймер, в очень концентрированных водных растворах молекулы азотной кислоты ассоциированы, при добавлении воды ассоциаты уступают место продуктам взаимодействия азотной кислоты с водой состава HN0з H20 и НКОз-ЗНзО одновременно изменяется степень ассоциации воды. При дальнейшем разбавлении эти продукты диссоциируют па сольватированные ионы. Если при этом диэлектрическая проницаемость раствора невелика (смеси диоксана с водой), то образуются ионные молекулы — ионные двойники. Наличие таких ионных двойников наряду с молекулами обнаруживается на основании различия между константами диссоциации, определенными из электрохимических и оптических данных. Ионные молекулы, как и обычные, не переносят тока, но их оптические свойства близки к свойствам свободных ионов. [c.295]

    В отличие от щелочно-галоидных солей, ионы которых имеют оболочки инертных газов, соли тяжелых металлов, не имеющих оболочек инертных газов, — С(1, Hg, Си, Ag, Со, N1 и Т1, — образуют в растворе молекулы, спектральные свойства которых значительно отличаются от свойств ионов. Оптические исследования указывают, что в более концентрированных растворах образуются и сложные ионы, нанример РЬС " , РЬС , С(1С1 , С<ЗС14 , Т1СР . [c.305]

    Если молекулы оптически активны, то мезофаза называтся холестерической. Холестерические жидкие кристаллы известны главным образом для соединений холестерина и ряда других стероидов. Холестерические жидкие кристаллы характеризуются наличием двухмерного порядка. Его особенность заключается в существовании нематических молекулярных слоев, в которых направления взаимной ориентации молекул не совпадают, а составляют определенные углы. В направлении, перпендикулярном нематическим слоям, расположение осей ориентации имеет спиралеобразный вид (рис. 111.56, В). Шаг спирали зависит от природы молекул и очень чувствителен к небольшим изменениям внешних условий, в особенности температуры. Спиралеобразная система обладает свойством селективно отражать свет. Длина волны, отвечающая максимуму отражения, изменяется с изменением шага спирали вследствие незначительных изменений внешних условий, например температуры. [c.244]

    Порядок съемки спектра поглощения. Порядок съемки спектра поглощения исследуемого вещества совершенно аналогичен порядку съемки спектра полистирола. Вместо пленки из полистирола установить кювету с исследуемым веществом. Если исследуемое вещество газообразное, то в комплекте прибора имеются специальные кюветы. В один из световых потоков ставится кювета сравнения. Если нет кюветы с соверщенно одинаковыми оптическими свойствами, то можно кювету не ставить. Если вещество жидкое, то его следует поместить между окнами, прозрачными для исследуемого участка спектра. Если исследуется раствор, то в луч сравнения И для учета поглощения излучения молекулами растворителя поместить кювету с растворителем, причем толщина поглощающего слоя должна быть аналогична толщине поглощающего слоя раствора. Твердые вещества снимаются в виде суспензии в. вазелиновом масле или в виде таблетки, сп1рессованной с бромидом калия. [c.58]

    Книга HanH aifa в соответствии с основной частью программы Квантовая химия для студентов специальности 2018. На современном математическом уровне излагаются наиболее часто применяющиеся методы )асчета электронных систем, в частности полуэмпирические приближения, ассматривается применение этих методов для описания явлений ЭПР. ЯМР, оптических свойств молекул, электронных свойств кристаллов и реакционной способности молекул. [c.2]

    Помимо изложенного выше, существуют два других представ ения о внутрен-аем строении металлов. Согласно одному из них. ионизированы все атомы металла, т. е. последний построен только из положительных ионов и свободных электронов. По другому представлению металл считается состоящим из нейтральных атомов, положительных и отрицательных ионов данного элемента, т. е. свободные электроны из рассмотрения исключаются. Строение металла с этой безэлектронной точки зрения передается схемой рис. П1-62. Так как между отдельными атомами возможен постоянный обмен состояниями (обусловленный обменом электронами), хорошая электроиро-водность металлов и их механическая деформируемость этому представлению не противоречат. Однако общность оптических свойств металлов говорит за наличие в иих электронного газа . Средняя скорость движения электронов в этом газе составляет около 100 км1сек, т. е. она примерно в двести раз выше средних скоростей теплового движения молекул в воздухе. [c.111]

    Если рассмотреть симметрию молекул оптически активных соединений, то окажется, что эти молекулы не обладают ни плоскостями, ни центрами симметрии. Плоскостью симметрии называется плоскость, разделяющая тело на две зеркально симметричные половины (т. е. таким образом, что одна половина является зеркальным изображением другой). Центр симметрии — это точка, обладающая тем свойством, что если на любой прямой, проходящей через нее, отложить равные отрезки по обе стороны от центра, то получим эквивалентные точки тела. Это означает, что молекула, которая хотя бы в одной из своих конформаций обладает плоскостью или центром симметрии, является ахиральной (т. е. нехиральной) дру- [c.88]

    Эти два изомера отличаются расположением групп СНаОН, т. е. относятся как несимметричный предмет к своему зеркальному изображению. Их физическое различие выражается лишь в том, что один из них вращает плоскость поляризации влево, а другой — вправо. Такими же свойствами обладает вторбутиловый спирт СНзСН(ОН)С2Нб. Молекула оптически активного вещества содержит атом углерода, все [c.147]


Смотреть страницы где упоминается термин Молекула оптические свойства: [c.355]    [c.156]    [c.17]    [c.50]    [c.108]    [c.50]    [c.108]    [c.265]    [c.4]    [c.120]    [c.209]   
Практикум по физической химии Изд 4 (1975) -- [ c.33 ]




ПОИСК





Смотрите так же термины и статьи:

Оптические свойства

Оптические свойства свойства



© 2024 chem21.info Реклама на сайте