Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Молекулярный ион водорода энергия

    Рентгеновские лучи, гамма-лучи, поток нейтронов и другие излучения большой энергии также вызывают в веществе глубокие физикохимические изменения и инициируют разнообразные реакции. Так, при действии ионизирующих излучений кислород образует озон алмаз превращается в графит оксиды марганца выделяют кислород из смеси азота и кислорода или воздуха образуются оксиды азота в присутствии кислорода ЗОг переходит в 50з происходит разложение радиолиз) воды, в результате которого образуются молекулярные водород, кислород и перекись водорода. Возникающие при радиолизе свободные радикалы (-Н, -ОН, -НОз) и молекулярные ионы ( НзО , -НзО ) способны вызывать различные химические превращения растворенных в воде веществ. [c.203]


    Энергия химической связи. Основными параметрами связи считают ее длину, энергию и направленность. Поэтому любая теория химической связи прежде всего должна дать количественную оценку этих важнейших характеристик. Мерой прочности химической связи служит энергия связи. Ее величина определяется работой, необходимой для разрушения связи, или выигрышем в энергии при образовании вещества из отдельных атомов. Например, энергия связи Н—Н в молекуле водорода равна 435 кДж/моль. Это значит, что при образовании 1 моль газообразного молекулярного водорода из изолированных атомов по уравнению [c.75]

    К первичным фотохимическим процессам -близки так называемые сенсибилизированные реакции, в которых участвуют не те молекулы, которые непосредственно поглощают лучистую энергию, а соседние молекулы, которые сами по себе нечувствительны к излучению данной частоты и получают энергию от непосредственно поглощающих ее молекул. Примером такого процесса является уже рассмотренная нами диссоциация молекулярного водорода в присутствии паров ртути, атомы которой поглощают свет, соответствующий резонансной линии ртути с длиной волны Я = 2536,7 А. В настоящее время известно большое число сенсибилизированных реакций. Кроме паров ртути, сенсибилизаторами могут быть галогены, хлорофилл, ионы железа и др. [c.237]

    Для объяснения ряда реакций перегруппировок к изомеризации привлекается гипотеза о протеканий подобных процессов с промежуточным образованием третичных карбониевых ионов. При этом предполагается, что наиболее подвижными структурными составляющими являются алкильные группы и атомы водорода, перемещение которых от одного атома углерода к другому происходит в соответствии с принципом наименьших структурных изменений. Внутримолекулярный механизм этого процесса подтверждается отсутствием среди продуктов реакции молекулярного водорода. Энергия взаимного перехода ионов одинакового строения, различающихся расположением меченых атомов углерода, во многих [c.236]

    Трудности, встречающиеся нри использовании спектров поглощения для регистрации радикалов, детально обсуждены Ольденбургом [19], который считает основным затруднением малую концентрацию этих активных продуктов. Ольденбургу, однако, удалось применить метод поглощения при изучении радикалов ОН, получающихся при реакции между молекулярным водородом и кислородом. Позднее метод исследования спектров поглощения был развит Портером, который решил проблему создания высоких концентраций свободных радикалов, применив в качестве источника сверхмощный импульсный разряд [20]. При использовании больших энергий оказалось возможным получить нестационарную концентрацию радикалов того же порядка, что и концентрация исходного вещества. [c.96]


    Прямая рекомбинация молекулярного водорода с атомом кислорода на третьем теле с образованием Н О — это очень тяжелый процесс, причем основные затруднения имеют скорее пространственный (стерический фактор порядка 10- 10- ), чем энергетический характер. В то же время обратная реакция (диссоциация Н О на О и Hg) затруднена в основном энергетически, и теплота реакции практически целиком равна энергии диссоциации, будучи при этом чуть выше энергии диссоциации конкурирующей реакции 8 . Данные по экспериментальному и теоретическому определению значений кгв полностью отсутствуют, что в значительной степени объясняется почти единодушным мнением в том, что реакция 26 не играет важной роли в механизме окисления. Расчет значений /с = /(Т, М) по формулам (4.10), (4.11) не приводит к удовлетворительным результатам вследствие тех же причин, что и при расчете kjo, кгз- При экспериментальном определении Age следует учитывать два обстоятельства во-первых, наличие конкурирующей реакции 4 и, во-вторых, что имеется по крайней мере 4 линейные комбинации более быстрых маршрутов 13 10, 23 - 28, 2 -> 24, 21 29, сильно маскирующих основную медленную стадию 26. Из численного моделирования следует, что нигде термодинамическая доля 26 не выше предельных значений 0,01—0,02, что подтверждает справедливость предположения о ее незначительности. [c.291]

    Определите константу равновесия Кр реакции диссоциации молекулярного водорода при Т = 5000 К, используя молекулярные постоянные молекулы Hg со = 4396, 55 m S / = 0,459-10- кг-м. Энергия диссоциации при Т = О равна D = 431,9 кДж/моль. Основное электронное состояние молекулы Hj и атомов Н невырожденное, число симметрии для Hj равно а = 2. [c.275]

    На рис. 3 представлена зависимость удельной активности (/Суд) от числа валентных электронов металла-катализатора. Кривая / показывает изменение удельной активности металлов в отношении реакции изотопного обмена в молекулярном водороде. В -1У периоде наиболее активным оказывается никель (3 , 45 ), у которого почти полностью заполнена -зона. Завершение заполнения -зоны при переходе от N1 к Си приводит к снижению активности. Эта зависимость обусловлена влиянием электронной структуры металла на характер и энергию поверхностного взаимодействия с водородом. [c.34]

    Взаимодействие водорода и других восстановителей с отдельными видами твердых топлив протекает с различной интенсивностью в зависимости от реакционной способности органической массы углей. Большое значение имеет также форма, в которой водород взаимодействует с твердым топливом, и условия проведения гидрогенизации. В отличие от молекулярного кислорода, действие которого было рассмотрено, молекулярный водород при нормальных условиях практически не реагирует ни с одним видом твердого топлива, хотя и сорбируется им. Отсутствие взаимодействия в этом случае объясняется значительно большей энергией диссоциации Нг (432,4 кДж/моль) по сравнению с энергией диссоциации Ог (146,2 кДж/моль). Атомарный водород обладает высокой химической активностью в момент его выделения при различных реакциях. [c.175]

    Если исходить из концепции о локализованной адсорбций атомов водорода на стекле и энергию активации процесса принять равной 25,1 ккал/моль, то удается вполне удовлетворительно объяснить экспериментальные значения скорости выделения молекулярного водорода из слоя атомов водорода на стекле при неполном покрытии последнего. [c.102]

    Если же допустить, что атомы водорода свободно движутся по поверхности, то при этой же величине энергии активации скорость образования молекулярного водорода должна быть меньше наблюдаемой на опыте в 10 раз. В случае подвижных атомов требуется меньшая энергия активации. Наблюдаемая скорость реакции может быть получена, если принять энергию активации равной 23,7 ккал/моль [128 б, в . [c.102]

    При температурах ниже 200°С молекулярный водород медленно растворяется в железе, имеющем гладкую поверхность. Напротив, атомарный водород легко проникает в железо даже прн комнатной температуре [170]. В случае молекулярного водорода скорость растворения определяется энергией активации процесса, протекающего на поверхности. На гладкой или загрязненной поверхности железа суммарная скорость [c.107]

    Если на поверхности находится примесь, которая образует дипольный слой, что, например, имеет место в случае серы, то диссоциативная хемосорбция молекулярного водорода будет изображаться кривой АВСО, приведенной на рис. 40. Эта кои-вая характеризуется наличием энергии активации (разность [c.164]

    Гидриды можно разделить на экзотермические и эндотермические Б зависимости от знака энтальпий их образования (рис. В.18). Экзотермичны реакции водорода с самыми электроположительными металлами, а также с некоторыми сильно электроотрицательными неметаллами. Если же разность электроотрицательностей невелика, реакции образования гидридов эндотермичны. Положение равновесия реакций элементов с молекулярным водородом определяется изменением свободной энергии АС . Для расчета равновесия необходимо знать изменение энтропии в этой реакции, например [c.463]


    Молекула водорода представляет собой пример простейшей молекулы, состоящей из двух атомов, связанных ковалентной связью. Вследствие большой прочности и высокой энергии диссоциации распад молекул водорода на атомы происходит в заметной степени лишь при температуре 2500 (степень термической диссоциации 0,0013). А при температуре 5000 " С молекулярный водород почти сполна диссоциирован на атомы (степень диссоциации равна 0,95). Интересно, что для молекулы дейтерия О. энергия диссоциации несколько больше и равна 439,56 кДж/моль при практически равных межатомных расстояниях в Из и Ог (0,07414 и 0,07417 нм соответственно). Быть может, это редкий случай, когда гравитационные силы (из-за большей массы дейтерия) оказывают влияние на прочность химической связи. [c.99]

    В результате присоединения Н2 к алкену образуется алкан. Эта реакция, называемая гидрированием, не протекает при обычных температурах и давлениях. Одной из причин низкой реакционной способности водорода по отношению к алкенам является большая энергия связи Н2. Для проведения реакции гидрирования необходим катализатор, способствующий разрыву связи Н—Н. Чаще всего в реакции гидрирования применяются гетерогенные катализаторы-тонкоизмельченные металлы, на поверхности которых происходит адсорбция Н2. Действие таких гетерогенных катализаторов в реакции Н2 с алкенами подробно описано в разд. 13.6. Молекулярный водород также реагирует в присутствии катализаторов с алкинами, образуя с ними алканы, например  [c.423]

    Метод ВС позволяет понять способность атомов к образованию определенного числа ковалентных связей, объясняет направленность ковалентной связи, дает удовлетворительное описание структуры и свойств большого числа молекул. Однако в ряде случаев метод ВС не может объяснить природу образующихся химических связей или приводит к неверным заключениям о свойствах молекул. Так, согласно методу ВС, все ковалентные связи осуществляются общей парой электронов. Между тем, еще в конце XIX века было установлено существование довольно прочного молекулярного иона водорода энергия разрыва связи составляет здесь 256 кДж/моль. Однако никакой электронной пары в этом случае образоваться не может, поскольку в состав иона Hj входит всего один электрон. Таким образом, метод ВС не дает удовлетворительного объяснения существованию иона. Далее, образование молекулы кислорода О2 описывается методом ВС как результат создания двух общих электронных пар. Согласно такому описанию, молекула О2 не содержит неспаренных электронов. Однако магнитные свойства кислорода указывают на то, что в молекуле О2 имеются два неспаренных электрона. [c.105]

    Наряду с совершенствованием топлив, при применении которых энергия выделяется в результате окисления (сгорания), исследователи ряда стран заняты проблелюй использования качественно новых источников энергии для авиационных двигателей. В частности, ведутся работы по использованию энергии свободных радикалов. Свободными радикалами называются осколки молекул — группы aтo юв или отдельные атомы, обладающие свободной валентностью. Известно, что диссоциация (распад) молекул на свободные радикалы происходит, как правило, со значительным поглощением энергии извне. При ассоциации Соединении) свободных радикалов в молекулы эта энергия выделяется. Например, для диссоциации 1 кг молекулярного водорода на атомы Нг->И + Н необходимо-за- [c.94]

    Принцип расчета молекулярной (U q ) и ионной ( 7 он) составляющих энергий сорбции органических ионов на ионитах приведен на рис. 91, на котором представлена зависимость AG от мольной доли органического иона в ионите для обмена иона морфина на ион водорода на ионите КУ-1. Из рисунка видно, что может быть рассчитана как разность между AG при данной мольной доле N, и AG при N, = 1. При = 1 AG следует считать величиной, соответствующей только энергии взаимодействия органического иона с ионогенной группой сорбента, так как при полном использовании органическим ионом емкости сорбента поверхность ионита вблизи ионогенной группы практически полностью занята неполярными радикалами органических ионов, и молекулярная составляющая энергии адсорбции органического иона ничтожна. [c.369]

    Установлено, что в процессе образования химической связи в некоторых молекулах определенную роль играют не электронные пары, а отдельные электроны. Это наиболее отчетливо видно на примере ионизированной молекулы водорода Hl, которая получается при электронной бомбардировке молекулярного водорода. Спектральные исследования показывают, что расстояние между ядрами в этой частице составляет 108 пм, а энергия связи равна 2,65 эВ таким образом, это довольно прочная частица. Поскольку в Н имеется только один электрон, то очевидно, что в данной молекуле осуществляется одноэлектронная связь. [c.105]

    Активные частицы, образовавшиеся в первичных процессах, могут вступать в химическое взаимодействие с обычными молекулами. Они, очевидно, могут и дезактивироваться, отдавая избыточную энергию путем излучения или превращения ее в теплоту. Активная частица может передавать свою энергию молекуле другого вещества, а та затем вступать в химическую реакцию. Примером такого процесса, называемого сенсибилизацией, является диссоциация молекулярного водорода Б присутствии паров ртути  [c.256]

    Эта величина существенно больше энергий связи в галогенах (см. табл. 15), что и объясняет сравнительно ма-лу(С активность молекулярного водорода при обычных условиях. Так, при обычной температуре водород реагирует лишь с фтором (в темноте) и с хлором при освещении (см. гл. XI). При повышенной температуре водород реагирует со многими веществами, например при нагревании происходит реакция образования воды  [c.285]

    В заключение отметим, что атомный водород обладает повышенной реакционной способностью по сравнению с молекулярным водородом. Так, атомный водород уже при комнатной температуре реагирует с серой, азотом, бромом, образуя соединения того же состава, что и молекулярный водород. Некоторые окислы металлов, такие, как РЬО, СиО, HgO, восстанавливаются до свободных металлов атомарным водородом также при обычных температурах. Причиной большой реакционной способности атомарного водорода является то, что в этом случае не требуется энергия, необходимая для разрыва связей в молекуле Нг. [c.286]

    Обычно атомарный водород получают при действии электрического разряда на молекулярный водород. Атомы водорода энергично рекомбинируют в молекулы, но для быстрого протекания реакции необходимо, чтобы энергия, которой обладают сталкивающиеся атомы, отводилась из сферы реакции. Поток атомов водорода, направленный на какую-либо твердую поверхность, сильно нагревает ее, так как поверхность служит в этом случае местом отвода теплоты. Возможен также распад молекулы Нг на ионы Н+ и Н" он происходит при взаимодействии водорода с переходными металлами ион Н при этом связывается с металлом. [c.148]

    В данном рассмотрении молчаливо предполагалось, что выделившаяся энергия не принадлежит образовавшемуся молекулярному водороду, а потеряна системой. Естественно поэтому масса последней должна уменьшиться при этом, очевидно, увеличивается масса тех веществ, которые окружают нашу систему и [c.33]

    Адамс с сотрудниками [183] изучали кинетику окисления пропилена на катализаторах молибдата висмута. Они наш.ли, что по отношению к пропилену реакция будет первого порядка и не зависит от кислорода и других продуктов. Энергия активации составляет при 350—500 °С около 20 ккал/моль. Молекулярный водород не влияет на образование акролеина и не окисляется. Наилучшая селективность в отношении образования акролеина достигается при пс-пользовании катализаторов молибдата висмута нри 490—520 °С. Побочными пpoдyктaмиJ будут угольная кислота, формальдегид и ацетальдегид. [c.94]

    При этом гранс-форма, имеющая более низкую энергию, подвергается полимеризации, а ис-форма, возникающая при более высоких температурах, является промежуточным продуктом распада, так как в этой конформации облегчается отщепление молекулярного водорода. Таким образом, при 1700—2300 К и отсутствии условий конденсации углерода основным продуктом разложения бензола является ацетилен, а процесс сажеобразо-вания происходит через возбуждение состояния его молекулы. [c.169]

    Лишь в редких случаях молекулы исходного вещества реагируют непосредственно. Примером такой непосредственной реакции может служить реакция распада Иодистого водорода. При столкновении двух молекул иодистого водорода, обладающих достаточной энергией и соответственно взаимно ориенти рованиых, происходит разрыв связей Н—J и возникновение новых связей между атомами водорода и иода с образованием молекулярного водорода и иода. Примером реакций, для которых известны все элементарные процессы, т. е все промежуточные химические реакции, могут служить реакции между парами щелочных металлов и галогенов (так называемые ре-акции в разреженном пламени, см. гл. IV, 8). [c.60]

    Отсюда понятно, что атомы водорода должны быть гораздо активнее его мо.чекул. Чтобы молекулярный водород вступил в какую-либо реакннк , молекулы должны сперва распасться на атомы для чего необходимо затратить большое количество энергии. При реакциях же атомарного водорода такой затраты энергии не требуется. [c.347]

    При добавлении Ь120 к N 0 на каждый ион замещающий появляется 1 ион и дырочная проводимость (т. е. проводимость р-типа) возрастает (стрелка 1), при добавлении к N10 ОагОз число ионов (осуществляющих проводимость р-типа) уменьшается и проводимость р-типа падает (стрелка ). С работах ряда авторов [см., например Рогинский С. 3., Хим. наука и промышленность, 2, 138 (1957)] были изучены каталитические свойства окислов-полупроводников (N 0, 2пО,ХггОз и др.) и показано существование корреляции между их электронными свойствами и каталитической активностью, а также возможность путем соответствующих добавок изменять в заданном направлении каталитические свойства этих окислов для определенных реакций. Так, например, при окислении СО на N 0 введение в N 0 даже нескольких сотых процента заметно снижает каталитическую активность N 0 (повышает энергию активации изучаемой реакции) 2п0 с добавками, понижающими ее активность по отношению к окислению СО и распаду МгО, имеет повышенную активность для реакции изотопного обмена молекулярного водорода. — Прим. перев. [c.28]

    Из этого сопоставления следует, что в механизме горения углеводородов роль атомов И должны выполнять радикалы К. Однако ввиду того, что скорость процесса К 0 = ИО -Ь О, идущего с энергией активации, вдвое [203] превышающей энергию активации процесса Н 0 ОН -Ь О (равную —17 ккал), очевидно, должна быть существенно меньше скорости процесса Н О2 = ОН -Ь О, разветвления цепей в этом случае долншы осуществляться в значительной мере в последнем процессе. Далее, взаимодействуя с исходным углеводородом (или с промежуточными веществами), атомы Н дают молекулярный водород, взаимодействие ьоторого с О или ОН может служить новым источником атомарного водорс да. [c.220]

    Водород считают универсальным энергоносителем, который может служить передатчиком энергии от ядерного реактора разнообразным потребителям в тех случаях, когда невозможно непосредственное использование энергии ядерного топлива. Основные преимущества водорода как экологического топлива и энергоносителя следующие 1) отсутствие золы, ЗОг, СОг, СО и других загрязнителей атмосферы в продуктах сгорания 2) источником водорода может служить вода — дешевое серье, запасы которого неисчерпаемы и возобновляемы, так как при сгорании водород вновь превращается в воду 3) теплота сгорания молекулярного водорода, составляющая 125 510 кДж/кг, почти в четыре раза выше, чем угле- [c.71]

    Энергетический кризис и постоянное внимание, уделяемое охране окружающей среды, вновь ставят на повестку дня проблему производства малосернистых топлив путем ожижения углей. В большинстве случаев процесс ожижения ведут при 400—500 °С в растворителе при зтом протекают реакции переноса водорода. Было высказано предположение [1], что первоначально в результате взаимодействия угля с молекулярным водородом идет реакция деалкилирования и образуются активные ненасыщенные продукты, которые затем либо стабилизируют (путем гидрирования), либо реполимеризуют. Если уголь подвергнуть пиролизу [2], то протекают реакции деполимеризации и диспропорционирования, ведущие к возникновению свободных радикалов. Найдено также [3],. что ожижение (или растворение) высоколетучего битуминозного угля в тетралине при 350—450 °С идет с участием реакции переноса водорода, подчиняющейся уравнению второго порядка, причем по мере ее протекания возрастает энергия активации процесса. Предполагается [4], что перенос водорода от тетралина к углю идет в соответствии со свободнорадикальным механизмом, включающим термическое расщепление молекул угля. [c.325]

    Соотношение констант реакций диспропорционирования и рекомбинации этильных радикалов было изучено также при исследовании гидрогенизации этилена, фотосенсибилизиро-ванной парами ртути [282]. Реакцией взаимодействия этил-радикалов с молекулярным водородом при температурах ниже 200° можно пренебречь, и поэтому отношение выходов этана и бутана позволяет оценить соотношение констант диспропорционирования и рекомбинации, которое определялось при 42° (0,44 0,61 0,22 0,28) и 200° (0,45 0,49). Как видим, при низких температурах имеется значительный разброс значений и можно судить лишь о порядке величины отношения констант. Вопрос о соотношениях констант скоростей реакции диспропорционирования и рекомбинации этильных радикалов и реакций образования их из этана обсуждался также при изучении распада этана, фотосенсиби-лизированного парами ртути [283]. Для этого отношения при комнатной температуре принималось значение 0,2. Однако разброс значений не позволяет по температурной зависимости логарифма отношения констант судить о точном значении разности энергий активации реакций диспропорционирования и рекомбинации. Можно только с определенностью заключить, что энергия активации реакции диспропорционирования выше таковой для реакции рекомбинации, но эта разность, как указывалось, невелика. [c.224]

    Поверхности металлов ведут себя так, как если бы они действительно обладали свободными валентностями. Хемосорб-ционные реакции между адсорбируемыми атомами и поверхностями металлов не требуют энергии активации. Напротив, при реакции молекул с поверхностями металлов можно ожидать наличия энергии активации. Однако если справедливо, что поверхности металлов ведут себя как свободные атомы или как поверхности со свободными валентностями, то энергии активации должны быть невелики, так как известно, что химические реакции между молекулами и свободными атомами или свободными радикалами протекают либо без энергии активации, либо эта энергия невелика. Например, исходя из аналогии с реакцией между молекулярным водородом и атомами хлора, которая протекает без энергии активации, можно ожидать, что хемосорбция молекулярного водорода на поверхности металлов будет происходить с ничто -кно малой энергией активации. Од- [c.55]

    Усложним несколько молекулярную систему и перейдем от молекулы LiH к линейной молекуле ВеНг (симметрия. Из интуитив ных соображений, основанных на каких-то предварительных сведениях, представляется очевидным возможность выделения в этой молекуле двух эквивалентных связей Н-Ве-Н каждый валентный электрон атома Ве считают взаимодействующим со своим атомом водорода. Энергия возбуждения A (2s 2р) в атоме бериллия, как и в случае атома лития, невелика, и поэтому орбиталь 2ра должна бьггь принята во внимание при построении МО. Образуя из функций Is(Hi) и ls(H2) правильную линейную комбинацию, приходим к МО  [c.228]

    Потенциодинамический метод имеет определенное преимущество в информативности перед методом кривых заряжения, как и любой метод определения производной искомой функции перед интегральным методом. Это особенно проявляется при изучении образования адсорбированных атомов — адатомов, возникающих из ионов раствора при их адсорбции на поверхности электродов до того, как оказывается термодинамически возможным образование соответствующей фазы ( дофазовое выделение вещества). Фактически рассмотренную выше адсорбцию водорода и кислорода на платине можно трактовать как процесс образования адатомов, так как слой Яадд возникает из ионов HjO+ значительно раньше (на 0,35—0,4 В), чем начинается выделение молекулярного водорода, а адсорбированные атомы кислорода образуются за счет разряда молекул воды или ионов ОН при потенциалах, лежащих отрицательнее обратимого кислородного на 0,5—0,6 В. Образование адатомных слоев (или субмонослоев) до достижения равновесных потенциалов соответствующих систем описано в настоящее время при адсорбции большого числа катионов (Си +, Ag+, РЬ +, Bi +, Sn +, Hg2+, Т1+ и др.) и анионов (1 , S и др.) на электродах из Pt, Rh, Pd, Au и других материалов. Причина этого явления состоит в том, что энергия связи между металлом-субстратом и атомом-адсорбатом оказывается во многих случаях значительно больше, чем энергия связи между атомами в фазе адсорбата. [c.202]

    При рассмотрении гомонуклеарных двухатомных молекул 2-го периода отмечалось, что порядок заполнения МО у молекул и О, различен в первом случае орбиталь о2р заполняется после того, как заняты к2р-орбитали, а во втором — наоборот. Этот факт связан с взаимодействием орбиталей. В атоме водорода энергия АО определяется только величиной главного квантового числа. Поэтому энергия атомных орбиталей 2s, 2р , 2ру и 2р в атоме водорода одинакова. Проследим за образованием в молекуле молекулярных орбиталей из АО второго квантового уровня. МО должна быть образована линейной комбинацией АО одной и той же энергии и одинаковой симметрии относительно оси молекулы — оси 2. В атоме водорода все АО второго уровня ю.1еют одну и ту же энергию, но одинаковую симметрию относительно оси г имеют только 2д. - и 2л-орбитали (см. рис. 33). АО р и ру ориентированы соответственно вокруг осей xviy. Поэтому можно ожидать следующие ЛКАО второго квантового слоя атомов водорода А и В  [c.125]

    Из уравнения (И 1.1) следует, что если все реагирующие вещества в исходной смеси имеют парциальные давления, равные единице, то второй член правой части этого уравнения обращается в нуль и, следовательно, AG = AG°. Величина AG° при температуре 25°С (298 К) называется стандартным изменениел энергии Гиббса и обозначается AG gs- Особенно вах<ное значение при термодинамических расчетах имеьэт величины AGf, 298 реакций образования соединений из элементов. Они публикуются в справочниках и таблицах стандартных величин (см. гл. V). Зная величины AGf где для всех соединений, участвующих в сложной реакции, можно вычислить AG 2°98 этой реакции и константу равновесия. Расчет подобен описанному в гл. I для определения энтальпий реакций. Величины AG°, 98 для элементов (в стандартном состоянии) принимаются равными нулю. Почти для всех соединений значения AGf зэв отрицательны. В противном случае 01и не образовались бы. Редкие случаи, когда АОгэз положительны, означают, что в стандартных условиях данное вещество неустойчиво. Например, для молекулярного водорода Н2 в стандартном состоянии AG 298 = 0. Для водорода же в атомном состоянии AGf 298 +2l8 кДж/моль. Таким образом, атомный водород неустойчив по отношению к молекулярному и при 298 К он будет самопроизвольно превращаться в Н2. При других условиях, например при очень высоких температурах (в плазме), устойчивым может стать атомный водород. [c.47]

    Исключительная прочность молекул водорода (например, ирочнее молекул фтора в 2,7 раза) обусловливает высокие энергии активации химических реакций с участием молекулярного водорода. При обычных условиях в газообразном водороде активных молекул немного и молекулярный водород химически малоактивен. Он способен иепосредствешю соединяться липп) с наиболее активными нз неметаллов — с фтором и на свету с хлором. Для инициирования реакций молекулярного водорода с другими веществами требуется нагрев или другие способы активации. При нагревании же молекулярный водород вступает в химическое взаимодействие со многими металлами, неметаллами и сложными веществами. [c.101]


Смотреть страницы где упоминается термин Молекулярный ион водорода энергия: [c.291]    [c.192]    [c.80]    [c.163]    [c.163]    [c.164]    [c.312]    [c.267]    [c.25]   
Природа химической связи (1947) -- [ c.26 ]




ПОИСК





Смотрите так же термины и статьи:

Водород молекулярный

Молекулярный ион водорода энергия диссоциации

Перекись водорода распределение молекулярной энергии по связям

Перекись водорода. Динамика многоатомных молекул. Молекулярная энергия, ее распределение по отдельным химическим связям, работа разрыва связи. Гетерогенные и гомогенные каталитические реакции распада молекул перекиси водорода

Потенциальной энергии кривая молекулярного иона водорода

Энергии с водородом



© 2025 chem21.info Реклама на сайте