Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Взаимодействие динамическое

Рис. 8,2. Зависимость энергии взаимодействия двух произвольно выбранных молекул воды друг с другом от времени в кластере (НгО)в-Молекулярно-динамическое моделирование с потенциалами (2). Средняя кинетическая энергия отвечает температуре 271 К Рис. 8,2. <a href="/info/362259">Зависимость энергии</a> взаимодействия <a href="/info/1696521">двух</a> произвольно выбранных <a href="/info/5256">молекул воды</a> друг с другом от времени в кластере (НгО)в-<a href="/info/339444">Молекулярно-динамическое</a> моделирование с потенциалами (2). <a href="/info/1182658">Средняя кинетическая энергия</a> отвечает температуре 271 К

    Работа бесконтактных уплотнений динамического действия связана с давлением в системе, создаваемым винтовой поверхностью вращающегося вала, и вихревым эффектом, возникающим при взаимодействии потока жидкости с неподвижной поверхностью втулки. [c.244]

    Большинство существующих промышленных процессов в химической и нефтехимической промышленности (реакторные процессы, массообменные и теплообменные процессы, процессы смешения газо-жидкостных и сыпучих сред и т. д.) — это процессы с низкими (малыми) параметрами (давлениями, скоростями, температурами, напряжениями, деформациями). В силу специфики целей и задач химической технологии здесь на передний план выступают процессы химической или физико-химической переработки массы. Поэтому при структурном упрощении обобщенных описаний, как правило, пренебрегают в первую очередь динамическими соотношениями (характеризующими силовое взаимодействие фаз и отдельных составляющих внутри фаз) или учитывают их косвенно при установлении полей скоростей фаз, концентрируя основное внимание на уравнениях баланса массы и тепловой энергии. Кроме того, в самих уравнениях баланса массы и энергии, наряду с чисто гидромеханическими эффектами (градиентами скоростей, эффектами сжимаемости, диффузии и т. п.), первостепенную роль играют [c.13]

    Сравнивая выражения для Сг и С2 в (2.179) с уравнениями характеристик (2.178) системы (2.176), нетрудно установить, что скорости волн с I VI с2 являются линеаризованными вариантами характеристических скоростей. В монографии Уоллиса [94] эти волны называются динамическими. Сопоставляя уравнение движения частиц в (2.177) и выражения для скоростей волн с, и в (2.179), нетрудно заметить, что эти волны, так же как и звуковые волны в газах, определяются взаимодействием инерции и квазиупругой силы сопротивления сжатию (растяжению), которая в данном случае возникает в связи с существованием дополнительного диффузионного потока частиц. С другой стороны, при мы получаем волновое уравнение [c.142]

    Релаксационные процессы в системе определяются оператором взаимодействия динамической системы с термостатом и полем , который мы выберем в виде (см. 103) [c.489]

    Динамика комплексов с водородными связями представляет собой один из важнейших разделов учения о межмолекулярном взаимодействии. Динамические свойства водородных связей проявляются в колебательных спектрах, в геометрии комплексов, в изотопных эффектах, в рассеянии нейтронов, в реакциях переноса протона и т. п. [c.89]


    ПОЗВОЛЯЮТ найти прямые электростатические и индукционные взаимодействия. Динамические поляризуемости связей, найденные в [119], позволяют рассчитать дисперсионные взаимодействия. [c.126]

Рис. 1.3. Структурная схема взаимодействия динамических процессов Рис. 1.3. <a href="/info/24140">Структурная схема</a> <a href="/info/842137">взаимодействия динамических</a> процессов
    Фазы изолированной системы могут взаимодействовать друг с другом, обмениваясь веществом и энергией. В неравновесной системе их компоненты будут самопроизвольно переходить из одной фазы в другую. Этот процесс самопроизвольного массо-и энергообмена между фазами должен в итоге привести к такому предельному состоянию, когда скорость перехода из одной фазы в другую в точности уравновесится переходом в обратном направлении, и в системе не будет наблюдаться никаких видимых изменений. В этом случае, когда во всех фазах системы все макроскопические свойства остаются неизменными во времени, говорят, что система находится в состоянии динамического фазового равновесия. [c.10]

    Электрические заряды возникают в любом технологическом процессе, при котором происходит динамическое взаимодействие диэлектрических материалов (смешение, распыление, перемещение по трубам, дробление, разделение, механическая обработка и др.). Статическое электричество образуется при применении плоскоременных передач от электродвигателей к механизмам. [c.339]

    Для нахождения динамических характеристик колонных аппаратов по гидродинамическим каналам необходимо знать механизмы распространения и взаимодействия волн концентрации дисперсной фазы в двухфазном потоке. Успехи, достигнутые за последние годы в развитии континуальной модели движения дисперсных смесей, позволяют провести исследование волновых процессов в рамках этой модели, используя различные уровни приближения. [c.113]

    Физико-химический подход основан на рассмотрении процесса на микроскопическом уровне с последующим переходом к изучению его макроскопических свойств. Для простой реакции, т. е. процесса, протекающего с преодолением одного энергетического барьера, задача расчета коэффициента скорости реакции может быть разделена на две — динамическую задачу расчета сечения реакции и статистическую задачу нахождения функции распределения. В первом случае необходимо определить вероятность того, что в процессе соударения и обмена энергией взаимодействующие частицы (молекулы, атомы, радикалы, ионы и т. д.) изменяют свою химическую индивидуальность. Во втором случае нужно найти, как меняется во времени распределение частиц по различным энергетическим состояниям, и рассчитать макроскопический коэффициент скорости химической реакции в зависимости от этого распределения. [c.48]

    Формально результат воздействия обратной связи на ход каталитического процеса в математических моделях автоколебаний учитывается различными путями. В основу гетерогенно-каталитических моделей обычно полагается механизм Лэнгмюра—Хиншельвуда с учетом формального отражения а) зависимости констант скорости отдельных стадий реакции от степеней покрытия адсорбированными реагентами [93—98] б) конкуренции стадий адсорбции реагирующих веществ [99—103] в) изменения во времени поверхностной концентрации неактивной примеси или буфера [104—107] г) участия в стадии взаимодействия двух свободных мест [108] д) циклических взаимных переходов механизмов реакции [109], фазовой структуры поверхности [110] е) перегрева тонкого слоя поверхностности катализатора [100] ж) островко-вой адсорбции с образованием диссипативных структур [111, 112]. К этому следует добавить модели с учетом разветвленных поверхностных [113] гетерогенно-гомогенных цепных реакций [114, 115], а также ряд моделей, принимающих во внимание динамическое поведение реактора идеального смешения [116], процессы внешне-[117] и внутридиффузионного тепло-и массопереноса I118—120] и поверхностной диффузии реагентов [121], которые в определенных условиях могут приводить к автоколебаниям скорости реакции. [c.315]

    Если продукты реакции способны взаимодействовать, образуя исходные реагенты, процесс рекомбинации протекает до тех пор, пока не установится динамическое равновесие и скорость прямой реакции станет равна скорости обратной. Теоретически все реакции можно рассматривать как обратимые, но часто скорость обратной реакции весьма мала или даже неощутима. Обратимость реакций приобретает особый интерес, так как позволяет обнаружить связь между кинетикой и термодинамикой. Рассмотрим реакции [c.62]


    Автором и сотр. [405] предложен динамический критерий водородной связи, основанный на анализе не только данной конфигурации, полученной в ходе молекулярно-динамического моделирования, но и ее предыстории и ее дальнейшей судьбы . Построение временных зависимостей энергий взаимодействия двух молекул в большинстве случаев позволяет судить о том, существует ли при данной конфигурации водородная связь, в какие моменты времени она возникла и когда была разорвана (рис. 8.2). Как и всегда при рассмотрении ансамбля /-структур, при использовании этого подхода могут возникать сомнительные случаи. Однако такие случаи редки и по степени определенности поиска водородных связей динамический критерий приближается к анализу f-структур. [c.142]

    Основные трудности теории соударений заключены в самой методологии подхода, которая состоит в тем, что делается попытка непрерывно следить за процессом соударения в течение всего времени соударения и связать характеристики реагирующих частиц с характеристиками системы в седловинной точке на поверхности потенциальной энергии. Для того чтобы обойти эти трудности, связанные с динамической частью задачи, и был предложен метод переходного состояния (активированного комплекса) [2, 18—20, 22, 23]. Основная идея этого метода состоит в том, что рассматривается равновесная функция распределения для системы, уже находящейся в седловинной точке, которая (вместе с функциями распределения взаимодействующих частиц) и определяет коэффициент скорости. Иначе говоря, динамическая задача вообще не решается, а анализ процесса начинается с того момента, когда система достигает седловинной точки. Поскольку состояние системы в этой точке играет особую роль во всем процессе, система в этом состоянии получила название активированного комплекса. [c.74]

    В данной главе излагается разработанная в последние годы теория динамического взаимодействия ожижающего агента и твердых частиц в псевдоожиженном слое. В основу этой теории положено представление о псевдоожиженной системе как о двух взаимодействующих и взаимопроникающих сплошных средах-, рассмотрена взаимосвязь теоретической модели с реальной механикой системы. [c.74]

    Наиболее типичными целевыми функциями физической интенсификации при заданных ограничениях являются сокращение продолжительности лимитирующих стадий процессов, сокращение энергозатрат, увеличение производительности и к. п. д., улучшение качества продуктов, получение продуктов со свойствами, не достигаемыми по традиционной технологии, уменьшение габаритов аппаратов и расхода материалов на их изготовление, экономия сырья, проведение совершенно новых процессов, улучшение экономических и эргономических характеристик оборудования, ведение непрерывных управляемых процессов. Обрабатываемые вещества совместно с аппаратом и условиями, при которых проходит процесс, образуют сложную физико-химическую систему. Подобная система характеризуется взаимосвязью отдельных частей и их взаимодействием между собой, со смежными системами в общей химико-технологической системе и с окружающей средой. Свойства и поведение системы являются в общем случае динамическими и стохастическими. [c.7]

    Нельзя понять сложных явлений в растворе и дать верную его характеристику, не учитывая всех факторов, а принимая во внимание лишь некоторые из них и тем более один (нанример, влияние водородной связи), даже если он преобладает. Необходимо учитывать все типы взаимодействия между всеми видами частиц, включая те из них, которые возникли при образовании раствора (они могут быть связаны не только с формированием новых частиц, но и с разрушением существовавших в индивидуальных веществах). Возникновение и распад любых агрегатов описываются законом действующих масс, так как в растворе имеет место динамическое равновесие между всеми входящими в него частицами. Это позволяет охарактеризовать раствор как равновесную однородную систему, которая достигла минимума изобарного потенциала в результате взаимодействия всех ее частиц за счет всех возможных типов взаимодействия между ними.  [c.134]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    При динамическом взаимодействии газа и жидкости происходит дробление и коалесценция пузырей, вследствие чего в барботажном слое образуются энергетически более устойчивые пузыри, размеры которых не зависят от условий внедрения газа в жидкость. На основе [c.268]

    Каждая из фаз представляет гомогенную смесь (смесь газов, раствор), компоненты которой взаимодействуют на молекулярном или атомарном уровне. Обычно скорости относительного движения компонент малы и их нужно учитывать лишь в связи с определением концентраций компонент, в то время как динамическими и инерционными эффектами диффузионных скоростей можно пренебречь [c.45]

    Второй класс автоколебательных систем характеризуется тем, что автоколебания в них существенно зависят от скорости подачи исходных реагирующих веществ в реактор. В этом случае колебательное поведение системы обусловливается соотношением скоростей транспорта реагирующих веществ в реактор и собственно химической реакцией. Для описания динамического поведения реактора идеального смешения наряду с системой уравнений типа (7.18), описывающей протекание процессов на элементе поверхности, необходимо рассматривать уравнения, описывающие изменения концентраций реагирующих веществ в газовой фазе [116, 131]. Взаимодействие реакции, скорость которой нелинейна, с процессами подачи реагирующих веществ в реактор идеального смешения обусловливает при определенных значениях параметров возникновение нескольких стационарных состояний в режимах работы реактора. При наличии обратимой адсорбции инертного вещества (буфера) в системе возможны автоколебания скорости реакции. При этом на поверхности сохраняется единственное стационарное состояние, и автоколебания обусловлены взаимодействием нелинейной реакции и процессов подвода реагирующих веществ в реактор. [c.319]

    При взаимодействии динамического плотномера с киром нарушается характер взаимодействия со средой, что завышает количество ударов. При оценке прочностных свойств кира плотномером необходимо пользоваться поправочным коэффициентом, который для кира Мунайлы-Мола равен 5 при температуре 20—24°С. [c.230]

    При выборе материалов труб к других элементов трубопроводов факельной системы должны уч11тываться коррозпонность среды, возможность взаимодействия сбрасываемых газов и растрескивание от динамических нагрузок и больших температурных перепадов при сбросе газов. [c.214]

    Волны, описываемые уравнением (2.125), обычно называют кинематическими [173]. Уоллис [94] предложил называть их волнами непрерывности (сплошности). Оба названия взаимно дополняют друг друга и отражают наиболее характерные особенности этих волн. Второе название указывает на то, что волны переносят некоторое непрерывное распределение вещества или состояния среды. Первое название введено для того, чтобы показать, что эти волны не связаны с динамическими эффектами, т. е. не определяются взаимодействием сил, как, скажем, звуковые волны в газах или гравитационные волны на поверхности жвдкости. Начало использованию теории кинематических волн для анализа нe тaц oнapныx явлений в дисперсных двухфазных потоках было положено в работах [94, 140, 174]. Наблюдение кинематических волн в пузырьковых потоках проводилось в работе [175]. [c.116]

    Предприятие как сложная динамическая система обладает рядом свойств. Организация — одно из наиболее важных свойств этой функционирующей системы, комплексно характеризующее ее состав, структуру, пропорции и взаимосвязи частей, сочетание в пространстве и во времени всех звс 1ьев и элементов производства (людей, орудий труда и предмета труда) и согласованность их взаимодействия. [c.6]

    Методы численного моделирования молекулярных систем (численного эксперимента) находят все более широкое применение в практике физико-химических исследований. Возникла целая иерархия методов численного эксперимента, позволяющих воспроизводить на ЭВМ различные свойства моделирующих систем — динамические, термодинамические, структурные (см., например, [357, 358]). Стремительный прогресс вычислительной техники и программного обеспечения ЭВМ позволяет создавать все более совершенные методы моделирования, максимально приближающие свойства моделируемых систем к свойствам систем реальных [359, 360]. Однако даже при помощи самой совершенной вычислительной техники невозможно детально моделировать поведение систем, состоящих более чем из нескольких тысяч взаимодействующих частиц. Наиболее удобными объектами моделирования являются системы, состо ящие из сравнительно небольшого числа молекул. В настоящей работе пойдет речь о моделировании кластеров из молекул воды, причем основное внимание будет уделено структурным характеристикам таких кластеров. [c.132]

    Более детальное статистическое рассмотрение взаимодействия трех молекул [34] требует знания динамического поведения системы внутри области взаимодействия, условий входа и выхода молекул из области взаимодействия, а также учета всех типов непрямого взаимодействия одинокой частицы с парой, образующейся вначале (А Аа, А2А3 или А1А3), что с точностью до перестановки можно записать так  [c.85]

    Заметим, что для объяснения природы химической связи не пришлось вгводить никаких новых типов динамических взаимодействий. Между образующими Молекулу частицами действуют только известные из классической физики электростатические (кулонов-ские) силы притяжения и отталкивания. Новизна, привнесенная квантовой механикой, состоит в ином, по сравнению с классикой, способе описания движения частиц (о чем мы уже писали выще) и в учете особого вида несиловых (по выражению В. А. Фока) взаимодействий, выражаемых принципом Паули. [c.151]

    Сопротивление течению псевдоожиженной системы можно рассматривать как результат внутреннего трения, действующего между соседними твердыми частицами слоя. Это внутреннее трение возникает вследствие проявления статических [влектростатических, ван-дер-ваальсовых и (или) капиллярных, обусловленных остаточной влажностью] и динамических сил взаимодействия между твердыми частицами при относительном перемещении последних в силовом поле. [c.228]

    Дальнейшее развитие теории псевдоожиженного слоя возможно только при учете сил статического и динамического взаимодействия между соседними твердыми частицами, что позволит приблизить теоретические построения безвихревого движения к реальной обстановке. Однако для этого необходимо располагать значительно большим объемом экспериментальных данных по реологии системы, чем имеется в настояп ее время. [c.250]

    Различают технологическую и организационную структуру гибки.х систем. Технологическая структура есП) множество технологических аппаратов и система материальных коммуникаций и взаимодействий между ними. Причем целесообразно различать статическую структуру в виде реально суще-ствуюишх материалоироводов между аппаратами и динамическую структуру как установление реальных связей (взаимодействий) между аииаратами, заключающихся в транспортировании порций вещества в течение определенных интервалов времени. [c.50]


Смотреть страницы где упоминается термин Взаимодействие динамическое: [c.265]    [c.295]    [c.16]    [c.24]    [c.91]    [c.228]    [c.176]    [c.6]    [c.39]    [c.40]    [c.80]    [c.81]    [c.125]    [c.68]   
Теория управления и биосистемы Анализ сохранительных свойств (1978) -- [ c.23 ]




ПОИСК







© 2025 chem21.info Реклама на сайте