Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография элюционный анализ

    При рассмотрении теоретической основы хроматографии в тонком слое следует отметить, что во всех хроматографических процессах разделения основной принцип один и тот же. Подвижная фаза движется сквозь неподвижную фазу и при этом разделяемые компоненты перемещаются с различными скоростями в направлении движения потока. Получение хроматограмм в тонком слое в основном выполняется методом элюционного анализа. Если в бумажной распределительной хроматографии за основную характеристику принята величина /, то здесь к этому показателю следует относиться с осторожностью. Движение растворителя и веществ протекает в тонких слоях несколько иначе. Так как сорбент в ХТС берется сухой, распределение растворителя вдоль пути неодинаково и относительные скорости перемещения хроматографируемых веществ будут неравномерны. [c.80]


    Рааделение амино слот на ионообменниках основано на способности аминокислот образовывать соли с кислотами и щелочами. Подбирая соответствующие катиониты или аниониты, можно быстро и с успехом разделить гидролизат белка, пользуясь для этого 2,5—3,5 мг белка. Ионообменную хроматографию хорошо сочетать с элюционным или вытеснительным анализом. Мур и Штейн пользуются для этого катионитной смолой сульфополистирольного типа Дауэкс-50, через колонку которого пропускают аминокислоты последние вымывают затем соответствующими буферными растворами. Для разделения достаточно 3 мг аминокислот. [c.481]

    Основной особенностью хроматографии является принцип многократного повторения элементарных актов адсорбции-десорбции или ионного обмена. Когда, например, при элюционном анализе растворитель вымывает вещества из адсорбированного слоя в верхней части колонки, то на всем протяжении колонки эти вещества испытывают многократную адсорбцию их на адсорбенте и десорбцию растворителем. На высоте слоя адсорбента 1 сж при хроматографии происходит несколько десятков или даже сотен элементарных актов адсорбции-десорбции или ионного обмена (Самсонов), причем общая высота колонки может составлять десятки сантиметров и более. Понятно, что эффективность разделения компонентов смеси при этом резко повышается по сравнению с эффективностью единичного процесса. [c.128]

    Наряду с элюционным методом для определения изотермы адсорбции из растворов применяют метод фронтальной хроматографии, когда в колонну с адсорбентом подается раствор известной концентрации. Адсорбцию находят анализом фронта (выходной кривой). [c.264]

    Принцип фронтального анализа в сущности значительно проще, чем принцип элюционной хроматографии. При нанесении раствора смеси нескольких веществ на хроматографическую колонку наступает частичное разделение. Растворитель, из которого происходит адсорбция веществ, проходит через столбик адсорбента значительно быстрее, чем адсорбируемые вещества. Полоса наименее сильно адсорбируемого компонента, который [c.369]

    Для проведения вытеснительной хроматографии необходима такая же сложная аппаратура, как и для фронтального анализа (стр. 369). При вытеснительной хроматографии легче, однако, добиться полного разделения компонентов смеси, благодаря чему ее можно использовать и для препаративного разделения. Методику, разработанную Тизелиусом, редко используют для препаративных целей, так как изотермы адсорбции компонентов смеси, как правило, не известны. Другой недостаток этого метода состоит в том, что нужно точно отделять очень близко расположенные адсорбционные зоны. Поэтому в данном случае необходимо применять более точные методы обнаружения, чем, например, при непрерывной элюционной хроматографии. [c.372]


    Очистка должна быть по возможности простой и быстрой. С этой целью часто применяют распределение образца между двумя несмешивающимися растворителями. Жиры, например, почти полностью удаляются из экстрактов биологических образцов путем распределения экстракта между гексаном и ацетонитрилом жир при этом остается в гексане, а определяемое соединение — в ацетонитриле. Часто помогают групповые разделения (например, разделение кислотной, основной и нейтральной фракций путем экстракции). Для удаления ненужных материалов, а часто и для одновременного разделения анализируемых соединений пробу хроматографируют, применяя подвижную фазу, элюционную способность которой в ходе анализа увеличивают (колоночная хроматография). С этой же целью применяют и тонкослойную хроматографию. Во многих случаях мешающие вещества удается удалить путем такой химической обработки образца, которая не затрагивает анализируемые соединения (например, удаление жиров путем [c.426]

    Анализ высококипящих фракций нефти без разделения по классам углеводородов позволяет получить лишь простейшую, информацию. Исключительно важное значение для такого разделения углеводородов приобрел метод элюционной хроматографии Нефтяные фракции, выкипающие ниже 200 °С, часто удается анализировать без предварительного хроматографического разделения, но с повышением температуры кипения фракций ценность хроматографии прогрессивно возрастает. [c.12]

    Выше нами был описан (см. рис. II.1) проявительный (элюционный) вариант хроматографического анализа, который, хотя и наиболее распространен в газовой хроматографии, однако отнюдь не является единствен- [c.82]

    В заключение укажем, что если давление пара анализируемых веществ настолько ничтожно, что анализ даже при использовании очень слабых адсорбентов или малых количеств неподвижной жидкости [158] невозможен, то можно использовать либо высокие давления (см. гл. II), либо пиролитическую хроматографию [10], либо, наконец, обращенную хроматографию [159—163], когда исследуемая смесь служит неподвижной фазой и определяют элюционные характеристики эталонных сорбатов. Эти методы используют при [c.246]

    В газовой хроматографии проба небольшого объема вводится в движущийся газовый поток, проходящий через колонку стационарной фазы — активного твердого вещества или слаболетучей жидкости, удерживающейся на инертном твердом веществе в виде тонкой поверхностной пленки. Стационарная фаза может также быть представлена жидкостью в виде тонкой пленки на внутренней поверхности капиллярной трубки. Составляющие пробы распределяются между двумя фазами. Если их коэффициенты распределения различны, то они движутся сквозь стационарную фазу с разными скоростями, выходя из колонки раздельно. Теперь с помощью соответствующей аппаратуры можно определять отдельные компоненты. Описанный метод известен как элюционный . Другие способы, такие как фронтальный анализ и методы вытеснения, применяются относительно редко. В случае применения жидкой стационарной фазы метод называется газо-жидкостной хроматографией, а в случае применения твердого вещества — газо-твердой хроматографией. [c.268]

    Комбинация вытеснительной газо-адсорбционной хроматографии с элюционной газо-адсорбционной или газо-жидкостной хроматографией представляет собой наилучший метод анализа примесей. [c.194]

    Наиболее простая картина анализа элюционного хроматографического разделения при любом механизме установления равновесия между веществом в подвижном растворителе, проходящем через хроматографическую колонку, и веществом на твердом сорбенте, заполняющем колонку, наблюдается при линейной зависимости между концентрациями вещества в этих двух фазах, а также при условии, что сорбция каждого компонента не зависит от присутствия других компонентов. При ионообменной хроматографии это осуществимо в том случае, когда количество сорбированных в верхней части колонки ионов невелико, а концентрация электролита, используемого для развития или проявления хроматограммы, т. е. для перемещения сорбированных компонентов вдоль колонки, значительна. Полагая, что для первого приближения можно считать коэффициент избирательности ионного обмена постоянным [уравнения (2. 38) и (2. 39)1 уравнение изотермы ионного обмена для анализа динамического процесса можно использовать в виде [c.281]

    Газоадсорбционную хроматографию (ГАХ) в элюционном варианте используют для разделения газов и паров легкокипя-щих жидкостей, а также для разделения высококипящих твердых веществ, особенно структурных изомеров и изомеров положения. ГАХ применяют и во фронтальном варианте для улавливания вредных примесей из воздуха или для их концентрирования перед элюционным анализом. Селективность и емкость колонн с адсорбентами в ГАХ во многих случаях гораздо выше селективности и емкости колонн тех же размеров с жидкими фазами в ГЖХ. Однако до недавнего времени ГАХ уступала по эффективности ГЖХ. Применение мелких зерен непористых и крупнопористых адсорбентов с близкой и однородной поверхностью в капиллярных заполненных колоннах и получение стабильных адсорбирующих слоев на стенках открытых капиллярных колонн позволило значительно повысить эффективность газоадсорбционных колонн. Все это способствовало увеличению разделяющей способности таких колонн и вместе с высокой термической стабильностью многих адсорбентов привело к расширению области практического применения. При разделении газов адсорбционные колонны с однороднопористыми адсорбентами и с до1Статочно большой удельной поверхностью обладают более высокой емкостью (по сравнению с ГЖХ), а при разделении жидкостей и твердых веществ — более высокой термостойкостью, позволяющей работать при температурах колонн до 500 °С и выше. Это дает возможность использовать предельные чувствительности детекторов при физико-химических исследованиях межмолекулярных взаимодействий адсорбат — адсорбент и в аналитической практике, особенно при анализе микропримесей. [c.10]


    Тем не менее всегда желательно иметь адсорбенты со строго определенным размером частиц. Чем меньше размеры частиц адсорбента, тем быстрее устанавливается равновесие и тем меньше нарушается оно вследствие диффузии. Однако при очень малом размере частиц адсорбента в коленке создается значительное сопротивление и жидкость проходит через нее с большим трудом. Практически оптимальным размером частиц следует считать диаметр от 2 до 15 р.. Окись алюминия фирмы Мерк , стандартизованная по методу Брокмана, имеет частицы примерно в 10 раз большего диаметра, ллесон [51а] применял при фронтальном анализе, а также при вытеснительной и элюционной хроматографии активированный уголь с размером Частиц 5—40 р.. В случае слишком малых размеров частиц адсорбентов [c.339]

Рис. 330. Распределение адсорбционных по лос при различных модификациях адсорбционной хроматографии. а — элюционная хроматография б — фронтальный анализ в — вытеснительная фОматография. А — Рис. 330. <a href="/info/1328327">Распределение адсорбционных</a> по лос при <a href="/info/774168">различных модификациях</a> <a href="/info/5698">адсорбционной хроматографии</a>. а — элюционная хроматография б — <a href="/info/39465">фронтальный анализ</a> в — вытеснительная фОматография. А —
    Достоинством метода фронтального анализа является его большая чувствительность, позволяющая разделять смеси веа1,еств, мало различающихся ио своим адсорбционным свойствам. Поэтому фронтальный анализ часто используется для раздемния членов гомологических рядов, например алифатических спиртов, жирных кислот и т. д. [6]. При использовании в качестве адсорбента активированного угля этим методом удается разделять вещества по величине или конфигурации их молекул. В отличие от элюционной хроматографии, разделение веществ при фронтальном анализе не ухудшается при наличии в молекулах активных центров. [c.370]

    Ионообменная хроматография карбоновых кислот в растворах ацетата натрия и уксусной кислоты имеет широкое использование. Этим методом оказывается возм[ожным разделять даже очень сложные смеси оксикислот, что особенно важно для химии сахаров. Раствор ацетата натрия является подходящим элюентом для разделения ионов различных монокарбоновых кислот. Альдоновые и уроновые кислоты элюируются в порядке увеличения молекулярной массы. Если сравнить поведение при элюировании кислот с равным числом углеродных атомов, но с различным числом гидроксильных групп, то оказывается, что силы взаимодействия со смолой увеличиваются с уменьшением числа таких групп. Это дает возможность разделять ряд стереоизомеров, различающихся по степени гидратации и по силе ионного взаимодействия. Однако некоторые изомеры кислот не разделяются путем элюирования раствором ацетата натрия, и в таком случае более выгодно использовать уксусную кислоту. При элюировании уксусной кислотой наиболее важным фактором является кислотность разделяемых кислот. Слабые кислоты элюируются легче, чем сильные кислоты. Если кислоты элюируются буферными смесями, составленными из уксусной кислоты и ацетата натрия, влияние состава элюирующей смеси на удерживаемые объемы легко оценить, применив закон действующих масс. Было найдено также, что элюционную хроматографию органических кислот на анионообменных смолах в ацетатной среде можно успешно использовать для анализов некоторых кислот, содержащихся во фруктовых соках. Гуди и Риман [27] количественно разделили смесь 4—9 мг яблочной, винной и лимонной кислот, находящихся в фруктовых соках, и отделили их от сахаров с помощью 2,0 М раствора уксусной кислоты и 0,4 М [c.160]

    Нами было установлено, что нри применении газо-жидкостпой хроматографии [7] на некоторых стационарных фазах, содержащих оксигрунпы, можно достичь требуемого разделенпя на оспове различного сродства изомерных метиловых эфиров и стационарной фазы. Присутствие эфира бензойной кислоты не оказывает влияния на результаты хроматографического анализа, потому что элюциониая характеристика этого эфира другого порядка, чем характеристики эфиров — дикарбоновых кислот — фталевой, изофталевой и терефталевой. [c.313]

    Детально структуру обычно выявляют спектральными методами. Из них наиболее широкие возможности имеет масс-спектрометрия. Она зани-.мает особое положение среди других методов, поскольку обычно позволяет определить формулы соединений. Так, анализ моноциклической ароматической фракции, выделенной из среднего дистиллята методом элюционной хроматографии, позволяет непосредственно определить содержание. молекул с эмпирическими формулами С Н2 в> п 2п-8 С Пг -ю. и т. д. Кроме того, удается определить все значения п, соответствующие присутствующим компонентам. В этом случае найденное значение С Н2 в указывает на относительное содержание молекул всех алкилбензолов, — молекул моноциклоалкенилбензолов, С Н2 ]о — молекул би-циклоалкилбензолов и т. д. Аналогично анализ других хроматографически разделенных фракций показывает относительное содержание молекул различных гомологических рядов. Из сказанного очевидно, что предварительное разделение по молекулярным весам обязательно, когда одновре-.менно присутствуют различные молекулы, например углеводороды, в формуле которых 2 различается на 14 единиц. Без предварительного разделения удается обойтись лишь в сравнительно простых случаях, но даже в этих условиях можно получить детальную информацию, пользуясь сочетанием разделения по типам молекул с масс-спектрометрическим анализом- Вообще говоря, чем более детально проведено предварительное разделение по типу, или по весу молекул, или по обоим показателям, тем более полные данные можно получить методами спектрального анализа. Так, если разделение довести до индивидуальных соединений, то часто удается определить структурные особенности их молекул, например число и тип боковых цепей, природу и число колец, число и тип замещающих групп в кольцах. [c.14]

    Однако это лишь кажущаяся неопределенность. Применение полимерных и низкомолекулярных международных стандартов позволяет точно охарактеризовать качество упаковки и свойства сорбента, а, соответственно, предсказывать элюционное поведение макромолекул и сравнивать результаты экспериментов. К сожалению, не все экспериментаторы характеризуют используемые ими разделяющие хроматографические системы. Как ни странно, но этому способствует простота хроматографического экпери-мента, эффективность разделения, а также использование информативных детекторов. Что же касается сущности вопроса, то успешное и воспроизводимое использование жидкостной хроматографии в полимерном анализе в первую очередь зависит от стандартизации условий эксперимента типа упаковки колонки, геометрических размеров колонки и частиц сорбента, давления, температуры разделения, количества образца в пробе и т. д. Этому во многом способствует широкое применение стандартного оборудования и предварительно упакованных колонок, охарактеризованных на фирмах-изготовителях. [c.9]

    Ионообменную хроматографию можно также использовать совместно с элюционным или вытесниггельным анализами. В этом случае получается более тонкое разделение, так как различные соединения, проходящие через колонку под действием данного буферного раствора [2656, 268, 363] или иного более ионизированного [c.151]

    Исследование количественных закономерностей равновесия, кинетики и динамики ионного обмена с учетом структуры ионитов и с использованием операционных методов решения задач и машинного способа расчетов приводит к возможности выбора и обоснования наиболее эффективных ионообменных методов, в частности режимов технологических процессов для гетерогенных ионообменных систем в реакторах с перемешиванием и в колоночных установках, а также для хроматографических элюцион-ных процессов. Использованные модели учитывают здесь диффузию ионов в растворе и в зернах ионитов, а также возникновение электрического потенциала при массообмене. Анализ медленной диффузии органических и других сложных ионов в сетчатых сополимерах и других пористых и проницаемых зернах сорбентов привел к установлению новых представлений о неравновесной динамике сорбции и хроматографии. С помощью критериальных зависимостей в этих случаях возможно установить условия перехода к процессам полного насыщения колонок сорбируемыми веществами и полному выходу десорбируемых веществ в зависимости от радиуса зерен сорбентов, скорости протекания растворов, коэффициентов диффузии, констант ионного обмена и высоты колонки. [c.3]


Смотреть страницы где упоминается термин Хроматография элюционный анализ: [c.512]    [c.16]    [c.10]   
Коллоидная химия (1959) -- [ c.127 ]

Коллоидная химия (1959) -- [ c.127 ]




ПОИСК





Смотрите так же термины и статьи:

Хроматография анализ

Элюционный анализ



© 2024 chem21.info Реклама на сайте