Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Явления переноса в потоке

    В гетерогенных процессах явления переноса (поток, диффузия, конвекция), если они достаточно медленны, могут затемнять истинную картину химических процессов. Практически в каждом случае возможно решение вопроса о влиянии явлений переноса путем определения температурного коэффициента суммарных реакций. Температурный коэффициент процессов переноса незначителен, в то время как температурный коэффициент химических реакций велик и выражается показательной функцией. [c.26]


    Обычно на ход превращения в реакторе оказывают влияние явления движения потоков и переноса массы и теплоты. Для достижения полного подобия реакторов необходимо соблюдать  [c.461]

    Обобщенный технологический оператор Т является совокупностью простейших операторов, соответствующих различным типам процессов химического производства. К ним следует отнести операторы смешения, деления, изменения энтальпии, изменения давления, химического превращения. Оператор деления может быть двух типов простой делитель потоков и выделение отдельных чистых веществ (или фракций). На основании физико-химических и технологических свойств процессов при разработке технологической схемы необходимо выбрать для каждого из них соответствующий оператор Т. Поскольку основные процессы химической технологии базируются на явлениях переноса массы, энергии, кинетики реакций в условиях относительного движения фаз, определяющих гидродинамическую обстановку в аппарате, то математическое описание технологического оператора будет основываться на законах сохранения массы, энергии и импульса, законах термодинамики многофазных систем, законах тепломассопереноса и т. д. На этапе расчета технологической схемы каждому технологическому оператору необходимо сопоставить адекватный в смысле воспроизведения реальных условий оператор математического описания процесса, такой, что [c.76]

    Недостаточная изученность явлений переноса через мембрану и трудность подбора материала мембраны (пока он ведется в большей степени экспериментально) являются основными сдерживающими факторами интенсивного внедрения этого способа разделения. Кроме того, сильная зависимость долговечности мембран от механических нагрузок, температуры, примесей в значительной степени ограничивает область их применения. Это особенно относится к разделению жидких смесей, где труднее обеспечить однородность потока. [c.86]

    Вопрос о механизме переноса газового потока через мембрану до сих пор является дискуссионным, и существующие подходы к моделированию процесса основываются на явлениях растворимости и диффузии. По существу, математическое описание явлений переноса основывается на уравнениях диффузии (закон Фика) и растворимости (закон Генри). Закон Фика позволяет определить [c.86]


    Исходный принцип системного подхода к анализу отдельного процесса химической технологии состоит в том, что объект исследования рассматривается как сложная кибернетическая система, так называемая физико-химическая система (ФХС). Основу любой ФХС составляют явления переноса субстанций — массы, энергии, импульса, момента импульса, заряда. Механизм этого переноса, его внутренние причинно-следственные отношения проявляются во взаимосвязи диссипативных потоков и движущих сил ФХС. Как показано в первой книге авторов по системному анализу, для широкого класса ФХС характерна многоуровневая структура взаимосвязей физико-химических эффектов при весьма сложной и разветвленной сети прямых и обратных связей между ними. Различные виды неравновесности ФХС порождают движущие силы, которые приводят к появлению соответствующих потоков субстанций потоки субстанций влияют на степень удаления системы от химического, теплового, механического и энергетического равновесия, что, в свою очередь, опять сказывается на движущих силах [1]. [c.6]

    Под названием внешняя гидродинамика кипящего слоя мы объединяем все явления взаимодействия потока газа (жидкости) со слоем в целом — критические скорости начала псевдоожижения и уноса, закон расширения слоя. К внутренней гидродинамике кипящего слоя относятся явления, обусловленные нестационарными движениями твердой фазы и ее перемешиванием внутри слоя, дисперсия скоростей и перемешивание в газовом потоке, механизм переноса импульса, теплоты и массы. Перенос теплоты от кипящего слоя к стенкам аппарата или погруженным в него поверхностям принято называть внешним теплообменом , в отличие от межфаз-ного теплообмена между зернами и проходящим потоком газа [c.7]

    Из приведенного выше краткого описания видно, что в пределах одного цикла формования одновременно, но в различной степени интенсифицируются и вязкий разогрев (объемная скорость потока при заполнении формы очень высока), и теплопередача, и релаксация напряжений. На эту картину накладываются еще и явления переноса, и, поскольку времена затвердевания полимера соизмеримы с вре- [c.522]

    Роль первого постулата термодинамики необратимых процессов играет предположение о локальном равновесии во всех частях изучаемой системы. Согласно этому предположению неравновесную систему можно представить в виде совокупности макроскопически малых элементов объема, к каждому из которых допустимо применять обычные термодинамические методы — указать для них локальную температуру, давление, вычислить энтропию и т. п. Это позволяет задавать для неравновесной системы поле термодинамических интенсивных параметров (обобщенных сил) с указанием значений этих параметров в окрестностях каждой точки изучаемой системы. Неравновесность системы выражается в том, что в полях термодинамических обобщенных сил будут наблюдаться потоки соответствующих им координат состояний. Такие потоки описывают применяемыми в физике непрерывных сред дифференциальными уравнениями переноса. Это усложняет математическое описание неравновесной системы по сравнению с ее описанием в классической термодинамике. Однако общие методы термодинамики необратимых процессов можно проиллюстрировать на достаточно простых примерах, не усложняя разбор физического смысла проблемы сравнительно сложным аппаратом математической физики явлений переноса. [c.283]

    Из классической физики известно, что в явлениях переноса такие законы хорошо описывают потоки теплоты, электричества и массы. [c.288]

    При наличии перекрестных явлений переноса стационарное состояние— это неизменное во времени состояние системы, при котором воздействие двух или большего числа градиентов термодинамических интенсивных параметров точно компенсирует создаваемые ими потоки. Например, в стационарном состоянии термодиффузии при действии постоянной разности температур поддерживается постоянный градиент концентраций компонентов, концентрации остаются постоянными, хотя и не одинаковыми. [c.292]

    В ГЛ. V мы рассмотрели явление переноса (кинетические явления), возникающие в проводнике под действием электрического и температурного полей. Если проводник, по которому протекает электрический или тепловой поток, поместить в магнитное поле, то в нем возникают новые явления, которые называются гальваномагнитными (если одновременно действуют электрическое и магнитное поля) и термомагнитными (если одновременно действуют магнитное и температурное поля) эффектами. Они многочисленны [2, 12, 13]. Ниже мы рассмотрим лишь некоторые из них в приближении времени релаксации. [c.326]

    Очевидно, что V является параметром, имеющим первостепенное значение для всех явлений переноса твердых частиц. В конечном счете представляется даже возможным количественно выразить вклад частиц в перенос тепла и импульса к стенке трубы через V и другие характеристики контакта со стенкой. Степень электрической зарядки потока взвеси является другим примером величины (см. разд.. 9.2.3), которая могла бы, по-видимому, быть рассчитана при известном значении V. [c.347]


    С увеличением высоты трубы Я из формулы (6.1) следует, что максимальная концентрация вредного вещества уменьшается обратно пропорционально квадрату высоты трубы. Существовало мнение, что повышение высоты труб — одно из наиболее эффективных средств обеспечения чистоты приземного слоя атмосферы. Однако с увеличением высоты труб возрастает район распространения вредных веществ, выбрасываемых из разных труб. При высоте труб 300 и более м вредные вещества переносятся потоками ветра в верхних слоях атмосферы на большие расстояния. Известен факт загрязнения атмосферы в Скандинавии выбросами вредных веществ из высоких труб промышленных предприятий ФРГ. В этих условиях указанные выше основные посылки метода прогнозирования загрязнения не соответствуют физическому явлению. Увеличивающееся число труб в регионе приводит к переходу количества в качество. Происходит всеобщее по всей Земле загрязнение атмосферы. Выброшенные в атмосферу вредные вещества со временем могут накапливаться, меняя состав атмосферы. Назрел вопрос о составлении баланса вредных веществ в атмосфере всей планеты Земля. Решение такой задачи в настоящее время реально с учетом [c.123]

    При рассмотрении целого ряда задач о горении можно пренебречь явлениями переноса, которые играли определяющую роль в задачах предыдущей главы. В уравнениях сохранения явлениям переноса соответствуют члены со старшими производными, так что, вообще говоря, явления переноса будут несущественными, если градиенты характеристик потока достаточно малы. Необходимая степень малости этих градиентов зависит, конечно, от величины других слагаемых в уравнениях сохранения. Большие значения слагаемых, описывающих конвективный перенос и нестационарность процесса, часто позволяют пренебречь явлениями переноса. Например, в потоках с большими дозвуковыми или сверхзвуковыми скоростями явления переноса обычно несущественны везде, кроме таких областей, как ударная волна или пограничный слой, где свойства потока быстро меняются с расстоянием. Данная глава посвящена системам, в которых скорости химических реакций конечны, а явлениями переноса можно пренебречь. [c.90]

    Простой пример, в котором влияние явлений переноса можно считать пренебрежимо малым, иллюстрируется рис, 1 и подробно описан в работе [ ]. В поток нагретого окислителя, движущегося со скоростью V, вводится небольшое количество горючего, которое быстро приобретает температуру и скорость потока. Время задержки воспламенения можно определить как отношение отсчитываемого вниз по потоку расстояния Ь между местом инжекции и местом, где возникает пламя, к скорости потока V. Если предположить, что скорость смешения велика по сравнению со скоростью химической реакции в газе, то слагаемыми, описывающими явления переноса, можно пренебречь. Тогда из уравнения (1.4) следует приближенное [c.90]

    Если полностью пренебречь влиянием явлений переноса на скорость химической реакции, то можно приближенно считать, что отсчитанное вниз по потоку расстояние до точки, в которой впервые появляется пламя, [c.427]

    Явления переноса в [потоке [c.69]

    Явления переноса в потоке. Приведенные выше выражения для теплопровод- [c.69]

    В разд. 8 содержатся сведения, необходимые при проведении экспериментальных исследований механизма явлений переноса (тепло- и массообмена). Описаны методы современных экспериментальных исследований, в том числе подробно рассмотрены методы исследования структуры потоков, значительное внимание уделено методам аналогий. Следует особо указать на практическую значимость экспериментальных исследований интегральных характеристик тепловых потоков, коэффициентов теплоотдачи, массоотдачи, сопротивления трения. В разделе дано систематизированное изложение методов определения этих величин, указаны источники погрешностей и способы их уменьшения. [c.10]

    Химическая реакция, состоящая из элементарных стадий, протекает в молекулярном масштабе. Ее свойства (например, скорость) не зависят от масштаба реактора, т.е. скорость реакции зависит только от условий ее протекания независимо от того, как или где они созданы. Результатом исследования на этом уровне является кинетическая модель химической реакции — зависимость скорости реакции от условий. Следующий масштабный уровень — химический процесс — совокупность химической реакции и явлений переноса, таких как диффузия и теплопроводность. На этой стадии кинетическая модель реакции является одной из составляющих процесса, причем объем, в котором рассматривается химический процесс, выбирается с такими условиями, чтобы закономерности его протекания не зависели от размера реактора. Например, это может быть рассмотренное выше зерно катализатора. Далее полученная модель химического процесса как одна из составляющих элементов, в свою очередь, входит в следующий масштабный уровень - реакционную зону, в которую также входят и структурные закономерности потока, и явления переноса в ее масштабе. И, [c.94]

    Скорость превращения вещества будет определяться, естественно, условиями реакции, которые нельзя задать, а можно только определить в результате перераспределения концентраций и температур из-за одновременного протекания химической реакции и явлений переноса. Найденные из условий процесса условия реакции позволяют получить наблюдаемую скорость превращения — зависимость скорости превращения от условий процесса. И если скорость реакции зависит от концентрации и температуры, то наблюдаемая скорость превращения будет также зависеть от условий взаимодействия фаз (скорости и направления потоков, конфигурации поверхности) и их транспортных свойств (диффузия, теплопроводность, вязкость). Установление этих зависимостей является задачей исследования гетерогенного химического процесса. [c.108]

    Характерной особенностью термодинамики необратимых процессов является то, что в иее в явном виде входит время. Прн этом рассматриваются открытые системы, т. е. системы, которые обмениваются с окружающей средой различными веществами. Вполне очевидно, что живые организмы не могут считаться замкнутыми системами, с которыми оперирует классическая термодинамика, и являются открытыми системами. Для любой открытой системы характерно наличие непрерывного потока вещества в каком-то направлении. За счет этого в системе устанавливается градиент концентраций и одно из первостепенных значений приобретают явления переноса. Серьезной проблемой, ограничивающей применение в биологии термодинамики необратимых процессов, является то, что большая часть соотношений этой науки справедлива лишь для состояний, близких к равновесию, в то время как живые существа чаще всего весьма далеки от него. Поскольку биохимические реакции могут протекать очень быстро, не вполне ясно, может ли термодинамика необратимых процессов в том виде, как она сейчас существует, помочь в решении большинства биохимических задач. Однако в любом случае подход этот достаточно важен и при серьезном изучении биохимии без его рассмотрения никак нельзя обойтись. [c.233]

    Гипотеза о линейных связях потоков и термодинамических сил позволяет в общем виде рассмотреть все явления переноса, фазовые переходы, химические реакции. Вместе с тем эта гипотеза яв- [c.25]

    Перенос вещества и тепла зависит от условий взаимодействия фаз (скоростей и направлений потоков, конфигурации поверхностей) и их транспортных свойств (коэффициентов диффузии, теплопроводности, вязкости). Условия реакции есть результат перераспределения концентраций и температур вследствие одновременного протекания химической реакции и явлений переноса, т. е. гетерогенный процесс является многостадийным. Условия реакции можно выразить через условия процесса, которые заданы или известны, которые можно измерять или наблюдать . [c.64]

    Учет неидеальности потока в реакторе включает такие этапы предварительных исследований. Первый этап - установление поля скоростей потока в объеме реактора и других явлений переноса (например, диффузионного). Чаще это эксперименты с прямым измерением векторов скоростей и другие методы аэро-или гидродинамических испытаний. Второй этап - построение модели, наиболее полно отражающей полученную структуру потока и явлений переноса. Конечно, эти модели сложнее рассмотренных. Третий этап - анализ полученной модели с целью выявить роль отклонений от идеальности потока в показателях процесса. Например, такой анализ показал, что диффузионный перенос вдоль основного потока можно не учитывать в практических расчетах, если н//)э > 50, где L - длина реактора. В специальной литературе по химическим реакторам такого рода оценки сделаны. Можно ожидать, что в большинстве случаев результаты расчета реактора с неидеальным потоком будут находиться в области между двумя крайними режимами - идеального смешения и вытеснения. [c.131]

    В рамках этой теории коэффициенты линейной связи не расшифровываются, а вводятся исключительно формально и отражают линейную связь между обобщенными силами и потоками. Что касается явлений переноса, то связь между коэффициентами Онзагера и коэффициентами пропорциональности в эмпирических законах Фурье, Фика, Навье-СЗтокса записывается в виде  [c.151]

    Ячеистая модель в виде совокупности последовательно соединенных ячеек-реакторов полного смешения во многих случаях, особенно для реакторов с насадкой и жидкостньш потоком, не дает удовлетворительных результатов при объяснении как явлений переноса веш е-ства, так и скорости химического процесса. В частности, с помош ью ее не удается объяснить для таких реакторов сильно асимметричный характер кривых дифференциальной функции распределения времени пребывания. Поэтому был предложен ряд ячеистых моделей реакторов с неподвижным слоем катализатора (насадки) [52—54, 83, 101, 109, 123, 1291. [c.95]

    Данные, приведенные в таблице, позволяют сделать ряд интересных выводов относительно гидродинамической структуры потоков в порах осадка. Из таблицы видно, что числа Ре (графа 10), определенные для проточных пор осадка гидродинамическим методом, в среднем на порядок превышают значения Ре, рассчитанные по кривым вымывания примеси из осадка (графа И). Такая значительная разница в числах Ре объясняется тем, что расчет Ре по индикаторным кривым отклика на основе однопараметрической диффузионной модели не предполагает деления порового пространства осадка на объем водопроводяпщх, крупных проточных пор и объем тупиковых и не отражает явления переноса примеси. С увеличением давления промывки числа Ре, определенные гидродинамическим методом, уменьшаются. Уменьшение Ре обусловлено более быстрым ростом коэффициента продольного перемешивания В по сравнению с увеличением скорости потока промывной жидкости V (графы 2, 4 и 12 таблицы). [c.401]

    В работах В. Компаниец с соавт. было отмечено, что при исследовании процессов химического превращения, происходящих в условиях неизотермического турбулентного смешения реагирующих потоков, не всегда необходимо знать детальную картину движения среды, в которой протекают указанные процессы. В этом случае гидродинамические условия и пространственное распределение компонентов можно описывать с помощью осредненных величин. Такое упрощение заведомо оправдано, если исследователя интересует лишь кинетика самого химического превращения (в нашем случае межфазного переноса компонента) и явлений переноса. При этом пульсации случайных полей скорости, температуры и концентрации учитывают феноменологически с помощью эффективных коэффициентов переноса. [c.142]

    Индекс л/ означает, что величины взяты с учетои теипературы стенки трубы. Следует отметить, что явление переноса в реакторе конверсии представляет более сложный коиплекс физико-химических явлений и требует специального рассмотрения. Присутствие в реакторе многокомпонентной газовой химически реагирующей среды усложняется наличием твердой фазы - катализатора и одновременным течением газовой сиеси при значительных скоростях. Корректность расчета теплофизических свойств и решение задачи теплоотдачи в реакционпой трубе возможны после проведения специальных экспериментальных работ. С учетои термического сопротивления стенки реактора определяется коэффициент теплопередачи от наружной поверхности трубы к потоку К и среднее по окружности теплонапряжение трубы [c.88]

    Последующие главы посвящены процессам, принципиально зависящим от масштаба аппарата и определяемым гравитационными колебаниями слоя в целом с характерными частотами порядка VglH. Анализируются все прямые и косвенные данные, подтверждающие этот механизм и обосновывающие вытекающие отсюда закономерности. Сюда относятся все явления переноса вещества, теплоты и импульса в кипящем слое и взаимодействия частиц с пронизывающим слой потоком газа или жидкости. Основное внимание при этом обращено на системы, псевдоожижаемые газом. [c.6]

    Явление переноса влаги внутри материала носит название влагопроводности. Интенсивность, или плотность, потока влаги, перемещающейся внутри материала, пропорциональна градиенту концентрации влаги дадп)  [c.612]

    Из формулы (3-8) следует, что коэффициент диффузии для бинарной смеси Du существенно зависит от содержания компонент в смеси ii2ln и пфг. Однако опыт не подтверждает этого. При изменении содержания компонент в смеси коэффициент диффузии меняется очень слабо (в пределах нескольких процентов величины Dia). Дело в том, что рассмотренный вывод является слишком упрощенным. Строгая теория явлений переноса была развита Энско-гом и Чепменом. В этой теории прежде всего учитывается изменение функции распределения скоростей (и энергий) молекул при их взаимодействии, т. е. учитываются отличия функции распределения от максвелловской (хотя эти отличия могут быть и небольшими). Тем не менее отклонения от максвелловского распределения существенно сказываются на коэффициенте диффузии и других коэффициентах переноса. Максвелловское распределение осуществляется только при равновесных состояниях газа. Отсюда ясно, что рассмотренная выше элементарная упрощенная теория, основанная на предположении, что в каждой точке пространства, занятого газом, осуществляется максвелловское распределение, не может привести к всесторонне правильным результатам. И все же оказывается, что из упрощенной теории вытекает правильная зависимость (3-6) для диффузионного потока. Однако выражение (3-7) для коэффициента диффузии не отвечает действительности. [c.67]

    Из теории явлений переноса следует, что поток / прямо пропорционален вызвавшей его движушей силе. При переносе массы / = v (с — молярная концентрация, V — линейная скорость переноса). Заменив скорость абсолютной подвижностью и, которая равна отношенню скорости к движущей силе и = vif, получаем j = uf. Диффузия аналогична смешению растворов различной концентрации. Этот процесс совершается медленно и сопровождается изменением строения системы, на которое идет почти полностью все изменение энергии Гиббса. [c.215]

    Существенно новые результаты в теории явлений переноса удалось получить при описании более сложных явлений — потоков теплоты, электричества или массы в полях нескольких одновременно действующих сил — нескольких различных градиентов Pk. Такие явления называют перекрестными явлениями переноса. Наиболее известными из них являются термоэлектрические явления. Еще в 1821 г. Зеебек установил, что на концах правильно разомкнутой электрической цени возникает разность электрических потенциалов, если поддерживать контакты двух различных проводников при различных температурах. В 1834 г. Петелье открыл обратное явление — выделение и поглощение теплоты в спаях различных проводников при прохождении тока в цепи. В 1854 г. Томпсон обнаружил выделение теплоты (не зависящее от джоуле-вой теплоты, которая в то время оставалась еще неизвестной) при прохождении тока в неоднородном по температуре проводнике. Эти явления привлекли к себе внимание современников и прочно вошли в сферу интересов физиков. [c.289]

    Интерес к уравнениям Онзагера обусловлен тем, что они выражают взаимные связи между разными процессами переноса. Коэффициенты Lik и Lki входят в разные уравнения и относятся к различным явлениям переноса. Так, коэффициент Lik относится к переносу i-й координаты (поток Ii = dXijdt) описывает под действием силы X = gradP, тогда как 1, — другое физическое явление, а именно возникновение потока / под действием силы Xi. [c.292]

    Подобно тому, как явления переноса в ламинарных потоках связаны с вязкостьто жидкости, явления переноса в турбулентном потоке связаны со случайными колебаниями скорости. Эту аналогию впервые ввел Бусси-неск [8]. В ламинарном потоке напряжение сдвига определяется из уравнения [c.298]

    В данной главе будут рассмотрены две другие системы с реагирующим потоком, в которых явления переноса несущественны. В 2 обсуждаются вопросы установившегося квазиодномерного течения реагирующей среды и вопросы, связанные с течениями в сонлах ракетных двигателей. Затем в 3 излагается метод характеристик для потоков с химическими реакциями и рассматривается структура одномерной неустановившейся звуковой волны в реагирующем газе. Эти примеры должны служить иллюстрацией эффективных аналитических методов решения задач такого типа. [c.92]

    ПО потоку, соответствует распространяющейся с большой скоростью волне горения, в которой кинетическая энергия достаточно велика, а процессами переноса (вязкость, теплопроводность и диффузия) можно пренебречь. По-втому эта волна горения существенно отличается от волн, рассмотренных в главе 5. Различие связано главным образом с тем, что детонационная волна характеризуется гораздо большим значением массовой скорости (конвективной скорости). В этом случае потоки, обусловленные явлениями переноса, могли бы оказаться сравнимыми по величине с конвективными потоками только при наличии очень больших градиентов. Однако скорость химической реакции не является достаточно высокой для того, чтобы столь высокие значения градиентов могли быть достигнуты. Изменение параметров течения в этой волне горения показано на рис. 5, где ей соответствуют части кривых, расположенные справа. Вследствие больших значений скорости давление в области волны горения не остается постоянным (см. рис. 5). На рис. 5 видно небольшое уменьшение температуры при приближении к горячей границе. Этот эффект отсутствует у большинства сильных детонационных волн. Он наблюдается в волнах Чепмена — Жуге и связан с тем, что на линии Рэлея с добавлением тепла температура уменьшается (число Маха, конечно, растет) при числе Маха, заключенном между [c.211]

    ТРАССЁРА МЁТОД, метод изучения закономерностей явлений переноса (см. Переноса процессы) в хим.-технол. процессах с помощью примесей к.-л. в-в, наз. трассёрами, к-рые вводят на вход или в рабочий объем аппаратов. Применение Т. м. при анализе процессов и разработке аппаратуры для их проведения позволяет выявить влияние ее масштабов (см. Масштабный переход) и инженерного оформления иа макроперемешивание материальных потоков, устанавливать модели их движения, оценивать и использовать в послед, расчетах процессов параметры этих моделей (см. также Структура потоков). [c.626]

    При обычном рассмотрении переноса тепла в газах структура газа считается оплошной и поэтому не требуется привлечения представлений о молекулярном строении газа. Поток и явления переноса тепла при таких условиях непрерывности среды могут быть адекватно выражены через критерии Рейнольдса, Маха, Нуссельта и Прандтля. Однако при малых абсолютных давлениях газ частично теряет характерные свойства непрерывности и появляются являения, которые могут быть объяснены, только если принимаются во внимание представления о молекулярном строении газа. Изучение аэродинамики потока и переноса тепла в.разреисенных газах начато сравнительно недавно, и еще много основных вопросов надо разрешить путем анализа и эксперимента. [c.339]

    Приближенный анализ скользящего потока. Так как в данный момент нет в наличии прямых решений уравнений потока и энергии для области скользящего потока, то задача рассматривалась путем использования уравнений для обычного потока и энергии с введением эффектов разрежения в граничные условия. Были расмотрены два основных эффекта в явлении скользящего потока. Во-первых, как было показано теоретически Максвеллом и экспериментально Кундтом и Варбургом, вблизи гр.аницы скорость тотока не равна нулю и поток скользит вдоль стенки с конечной скоростью. Вонвгорых, температурный скачок, как было принято без доказательства Пойсоном, имеет место при переносе тепла от поверхности к разреженному газу, [c.349]


Смотреть страницы где упоминается термин Явления переноса в потоке: [c.147]    [c.16]    [c.92]    [c.384]   
Смотреть главы в:

Топочные процессы -> Явления переноса в потоке




ПОИСК





Смотрите так же термины и статьи:

Явления переноса



© 2025 chem21.info Реклама на сайте