Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Особенности коррозии металлов в морской воде

    Всякое воздействие, способствующее снятию с металла защитной пленки или ее разрыхлению, усиливает коррозию. Одним из наиболее энергичных ее стимуляторов является С1 , действием которого обусловлено, в частности, особенно быстрое разрушение большинства металлов морской водой. Громадную роль играет содержание в воде растворенного кислорода, ускоряющего коррозию [c.448]

    Зависимость коррозионных потерь от времени экспозиции для образцов, испытывавшихся на среднем уровне прилива, имеет интересные особенности, являющиеся серьезным аргументом в пользу изложенной выше теории биологического контроля скорости коррозии в морской воде. Эта кривая представлена на рис. 122. Видно, что в течение первого года экспозиции скорость коррозии стали была очень велика (примерно 250 мкм/год), почти вдвое выше, чем при экспозиции в условия> постоянного погружения. Образцы в зоне прилива также подвергались обрастанию (в основном усоногими раками), но оно происходило значительно медленнее, чем при постоянном погружении в том же месте, и только через год на металле образовался слой, обладающий высокими защитными свойствами. После этого (в интервале от 1 до 2 года испытаний) скорость коррозии упала до очень малого значения (менее 10 мкм/год). Медленное обрастание и больший доступ кислорода к поверхности металла в зоне прилива (по сравнению с погруженными образцами) задержали возникновение полностью анаэробных условий на металлической поверхности, что, очевидно, и проявилось в увеличении периода защиты металла вследствие обрастания. Если бы рост бактерий на этой стадии можно было затормозить, то скорость коррозии осталась бы на очень низком уровне, сделав возможной длительную эксплуатацию углеродистой конструкционной стали без защитных покрытий. Это было бы аналогично случаю атмосферной коррозии стареющих (низколегированных) сталей, при многолетней эксплуатации которых практически не требуется никакого ухода. [c.444]


    Современная техника включает детали и конструкции из различных металлов и сплавов. Если они находятся в контакте и попадают в раствор электролитов (морская вода, растворы любых солей, кнслот и щелочей), то может образоваться гальванический элемент. Более электроотрицательный металл становится анодом, а более электроположительный — катодом. Генерирование тока будет сопровождаться растворением (коррозией) более электроотрицательного металла. Чем больше разность электрохимических потенциалов контактирующих металлов, тем больше скорость коррозии. Почти все книги, особенно популярные, по коррозии металлов описывают случай, произошедший в 20-х годах текущего столетия в США. Один из американских миллионеров, не жалея денег, решил построить самую шикарную яхту. Ее дниш,е было обшито дорогим монель металлом (сплав 70 % никеля и 30 % меди), а киль, форштевень и раму руля [c.147]

    ОСОБЕННОСТИ КОРРОЗИИ МЕТАЛЛОВ В МОРСКОЙ ВОДЕ [c.96]

    Особенности коррозии металлов в морской воде [c.298]

    Неоднородные металлы различной активности в среде токопроводящих теплоносителей образуют гальванические пары, анод которых подвержен разрушению. В конденсаторах и испарителях, имеющих стальные трубные решетки и медные теплообменные трубки, наблюдается интенсивная коррозия стали решеток у мест контакта с трубами (особенно в присутствии морской воды). Разрушения прекращаются после полного омеднения или лужения решетки со стороны теплоносителя. [c.216]

    I 5. Особенности коррозии металлов в атмосфере, почве, морской воде и контактная коррозия [c.47]

    Стойкость коррозионно-стойких сталей определяется их пассивностью. Однако из-за разрушения хлор-ионами защитной пленки коррозионно-стойкие стали в морских условиях склонны к местной коррозии, особенно при слабой аэрации. Максимальная скорость местной (точечной) коррозии на стали типа 10Х18Н9Т в морской воде составляет 1,85 мм/год, в то время как при скорости движения морской воды 1,2. .. 1,5 м/с развитие местной коррозии снижалось до 0,09. .. 0,1 мм/год при отсутствии сколько-нибудь ощутимых общих массовых потерь. Коррозионная стойкость различных металлов в морской воде показана в табл. 9.3. [c.271]

    Всякое воздействие, способствующее снятию с металла защитной пленки или ее разрыхлению, усиливает коррозию. Одним из наиболее энергичных ее стимуляторов является СГ, действием которого обусловлено, в частности, особенно быстрое разрушение большинства металлов морской водой. Громадную роль играет содержание в воде растворенного кислорода, ускоряющего коррозию связыванием ее первичных продуктов. При одновременном наличии и стимулятора, и ингибитора коррозии устойчивость металла сильно зависит от соотношения их концентраций (рис. Х1У-33). [c.344]


    Можно отметить некоторые характерные особенности эксплуатации металлических конструкций в различных областях народного хозяйства с точки зрения их повреждений от коррозии в условиях эксплуатации. Для морского флота специфично будет агрессивное воздействие на металл морской воды и морской атмосферы. Для стационарных энергетических тепловых установок и паровозов на железнодорожном транспорте важны вопросы котельной коррозии, а также проблема устойчивости металла в атмосферах с заметным содержанием окислов серы (возникающих вследствие сжигания в топках топлива с примесью серы). Для авиации характерна опасность коррозионного разрушения деталей, изготовляемых из легких алюминиевых и магниевых сплавов зачастую с минимальными допусками размеров и запасами прочности и работающих в условиях вибрации. Для химической промышленности характерно действие на металл агрессивных кислот, щелочей и целого ряда других активных реагентов. [c.9]

    По данным Р. Мирса [76], алюминиевые сплавы в теплой и влажной чистой атмосфере стойки даже при значительном скоплении влаги. Алюминиевые сплавы в контакте с большинством металлов и сплавов являются анодами и поэтому сильно разрушаются, в особенности при соприкосновении с медью и медными сплавами. Контакт алюминиевых сплавов с обычной сталью более опасен, чем с нержавеющей. Контактная коррозия алюминиевых сплавов проявляется сильнее всего в приморской атмосфере и в морской воде. В минеральных водах Цхалтубо алюминиевые детали в контакте с обыкновенной сталью выходят из строя через 2—3 месяца [77]. [c.73]

    Металлические покрытия, в основном алюминиевые и цинковые, применяют для защиты от коррозии в минерализованных водах, содержащих различные газы, а также в морской воде. В хлорсодержащих растворах как алюминий, так и цинк — аноды по отношению к стали, защищая ее электрохимически. Однако в процессе коррозии в результате поляризации или влияния других факторов возможно изменение знака покрытия. Такой эффект наблюдается для цинковых покрытий в горячей воде, особенно если в систему попадает кислород. Максимум скорости коррозии достигается в температурном интервале 338—343 К, что связано со строением окисной пленки, отличающейся пористостью и обеспечивающей доступ кислорода к металлу. Совместно наличие кислорода и углекислоты в минерализованной воде значительно ускоряет коррозию цинкового покрытия (табл. 20). При этом мягкая и дистиллированная вода более агрессивна по отношению к цинку, чем жесткая, которая способствует образованию защитных пленок. [c.79]

    При коррозии металлов в морской воде наблюдается и контактная коррозия, которую трудно избежать, особенно судам, вследствие высокой проводимости морской воды ( 3-10 0м см ). При наличии у них пары стальной корпус— бронзовый гребной винт коррозия усиливается. Чем больше общая площадь металла, работающего катодом при контактной коррозии, по отношению к площади анода, тем выше разрушающее действие коррозионного процесса. [c.30]

    Однако в некоторых средах титан обладает более высокой коррозионной стойкостью, чем тугоплавкие металлы (кроме Та). Это окислительные среды, в особенности щелочные растворы [50], растворы хлоридов и другие среды, содержащие хлор. Впрочем, полная нечувствительность к коррозионному воздействию относительно слабых в химическом отношении сред (например, морской воды, промышленных атмосфер и др.) и хорошие технологические свойства Т1 обеспечили возможность широкого применения этого металла в различных отраслях промышленности, в том числе и при создании архитектурных сооружений, памятников и тд. Отсутствие необходимости защиты от коррозии (например, окраски) создает значительные преимущества при эксплуатации сооружений, в которых использован титан. [c.52]

    Скорость коррозии алюминия, погруженного в воду, зависит от количества растворенного в воде кислорода, содержания хлорида и в особенности от присутствия тяжелых металлов (таких, как медь). Состав и количество солей в воде, влияющих на образование окислов, также сказываются на скорости коррозии. Очень высокое содержание хлорида вызывает мгновенную общую коррозию поэтому алюминий, как правило, непригоден для эксплуатации в морской воде. В питьевой воде присутствие даже очень небольшого количества растворенной меди способствует возникновению точечной коррозии, а твердые окислы, осаждающиеся в питтингах, вызывают снижение активности микросреды внутри язв. Благодаря последнему фактору скорость коррозии несколько снижается по мере увеличения длительности ее воздействия. При температуре приблизительно до 80° С точечной коррозии не возникает, вероятно, в результате осаждения тяжелых металлов и твердых солей и уменьшения количества растворенного кислорода. [c.108]


    Гидрохимический режим моря в условиях влажных субтропиков имеет особо важное значение с точки зрения атмосферной коррозии металлов, особенно при движении воздушных масс с моря на сушу. Содержание хлоридов, наличие растворенного кислорода, соленость и плотность морской воды, помимо других факторов, являются постоянными характеристиками гидрохимического режима моря. В результате изучения материалов Батумской метеорологической обсерватории, установлено, что в районе Батуми содержание хлоридов и соленость мало меняются в течение года сравнительно больше колеблется плотность морской воды (рис. II. ГГ). Как видно из рисунка, начиная с февраля до августа включительно плотность воды постепенно уменьшается, затем повышается. Такая закономерность динамики [c.37]

    Коррозия металлов в других типах вод в основном подчиняется закономерностям, рассмотренным для морской воды с учетом особенностей, связанных с ионным составом, температурой и биологическим фактором конкретной водной среды. В пресной воде с малым содержанием растворимых солей скорость коррозии всех материалов уменьшается. Отсутствие в воде ионов хлора позволяет успешно применять хромистые и хромоникелевые стали, алюминиевые сплавы без опасности возникновения язвенной коррозии. Отличительной особенностью пресной воды является ее меньшая электропроводность, что приводит к уменьшению опасности контактной и щелевой коррозии. Отсутствие в воде галоидных ионов повышает характеристики коррозионно-механической прочности, стойкость защитных лакокрасочных покрытий. [c.30]

    Коррозию, особенно при наличии механических напряжений, испытывают многие материалы. Корродировать — значит, постепенно растворяться или изнашиваться, в частности в результате химического воздействия среды. В широком смысле это просто ухудшение, разложение, разрушение. Именно в смысле разрушения в данной книге рассмотрено поведение не только металлов, но и неметаллических материалов в морских условиях. В последней главе, например, обсуждается действие морской воды на полимеры, керамику, ткани, электронные компоненты и взрывчатые вещества. Склонность этих материалов к биокоррозии и химическому разрушению в морской воде необходимо оценить, чтобы правильно определить их пригодность для морских условий. [c.9]

    Морская коррозия протекает по механизму электрохимической коррозии с кислородной деполяризацией. Особенностями морской коррозии металлов при этом являются как высокая агрессивность морской воды и морской атмосферы, так и наличие дополнительных механических факторов воздействия на материал — эрозии и кавитации. Не менее важна роль биологического фактора — обрастания подводной части металлических конструкций морскими организмами. [c.60]

    Возможность контактной коррозии при сочленении разнородных металлов должна обязательно учитываться конструкторами и технологами при конструировании и эксплуатации различного оборудования. Вопросам контактной коррозии в различных условиях (нейтральных и агрессивных средах, в атмосферных условиях и, особенно, в морской воде) уделяется большое внимание [6, 7, 50, 51]. [c.77]

    Некоторые общие вопросы, возникающие при проведении лабораторных испытаний в растворах электролитов. Количество коррозионного раствора. Выбор количества раствора для испытаний связан с площадью образцов, ожидаемой скоростью коррозии и продолжительностью испытаний. Для того чтобы свойства среды существенно не изменялись в процессе коррозии, приходится выбирать тем большее количество раствора, чем больше исследуемая поверхность, выше скорость коррозии и продолжительнее испытания. Особенно необходимо следить за концентрацией веществ, присутствие которых определяет характер и скорость коррозии металла. Следует иметь в виду, что иногда такую концентрацию трудно регулировать. Например не составляет большого труда синтезировать в лаборатории морскую воду, но воспроизвести равновесие окислителей и восстановителей—кислорода и двуокиси углерода, поддерживаемое живыми организмами в естественных условиях, чрезвычайно затруднительно [51]. В тех случаях, когда имеется определенное практическое соотношение между объемом раствора и корродирующей поверхностью, в лаборатории следует, по возможности, его воспроизводить. Конечно, речь идет о минимальном количестве раствора на единицу поверхности образца, соответствующем реальным условиям. Особенно важно это делать в тех случаях, когда вторичные продукты коррозии существенно влияют на характер и кинетику процесса. Встречающееся разнообразие условий соотношения между скоростью коррозии, размером используемой площади и продолжительностью испытаний не позволяет конкретно указать даже наиболее общепринятые отношения между объемом коррозионного раствора и площадью образца. Можно лишь сослаться на работу [1], в которой даются наиболее типичные минимальные отклонения этих величин 20—200 см раствора на 1 см поверхности образ-62 [c.62]

    Углеродистая сталь особенно быстро разрушается в зоне брызг, где скорости коррозии могут быть на порядок выше, чем при полном погружении. Обильный приток кислорода и постоянное смачивание металла морской водой делают зону брызг наиболее агрессивной из всех морских сред. На рис. 11 показаны результаты краткосрочного эксперимента, в котором 4-метровые стальные полосы, а такн е отдельные пластинки помещались в зонах брызг и прилпва. Отметим, что для одной из пластинок в зоне брызг глубина проникновения коррозии (рассчитанная по потерям массы) составила 0,61 мм, что соответствует скорости коррозии около 1,3 мм/год [181. Это примерно в 5—6 раз больше, чем для полностью погруженных пластинок. Отметим также, что для длинных полос скорость коррозии в зоне брызг была в среднем вдвое меньше, чем для расположенных там же квадратных пластинок. На рис. 12 показан типичный коррозионный профиль стальной сваи после 5-летней экспозиции в Кюр-Биче [18]. Скорость коррозии в зоне брызг более чем в четыре раза превосходит скорость коррозии на полностью погруженной части свап. [c.33]

    Ценным свойством титана является его высокая химическая и коррозионная стойкость, связанная, по-видимому, с образованием стойкой окисной пленки на поверхности, защищающей его от дальнейшего воздействия агрессивной среды. Особенно ценным и важным свойством является его стойкость против коррозии в морской воде. На рис. 88 показан внещний вид образцов различных металлов [c.320]

    Магний довольно стоек во влажном воздухе и в воде за счет образование на его поверхности малорастворимой пленки М5(0Н)г. Й безводной среде, особенно при соприкосновении с окислителями при высокой температуре, магний — очень активный металл. Это свойство широко используется в химической практике для восстановления, в первую очередь, титана, а также бора, кремния, хрома, циркония и других металлов методами магнийтермии. На этом же свойстве основано применение магния в кино- и фотоделе и др. Некоторое применение магний находит и в производстве химических источников тока в качестве анодного материала, а также при проведении магнийоргани-ческого синтеза. Протекторы, изготовленные из магниевых сплавов, широко применяются для защиты от коррозии в морской воде судов и эксплуатируемых в этих водах стальных конструкций, а также от подземной коррозии — газопроводов, нефтепроводов. [c.481]

    Коррозия под осадком и питтинговая коррозия. Если скорость водной среды невелика и на поверхности образуются отложения (это особенно вероятно при скоростях водного потока менее 1 м/с), то в результате эффектов дифференциальной аэрации медь и медные сплавы могут подвергаться питтинговой коррозии. В морской воде такая коррозия может возникнуть под отмершими рачками и моллюсками, при этом разлагающаяся органика содействует разрушению. Питтинговая коррозия наиболее вероятна в загрязненных прибрежных водах, особенно при наличии сероводорода. В таких водных средах на металле формируются сульфидные окалины, не обладающие защитными свойствами и даже способные ускорять разрушение материала. [c.100]

    Стойкость к щелевой коррозии. Титан проявляет большую стойкость к ш,елевой коррозии, чем большинство обычных металлов и сплавов, особенно в условиях дифференциальной аэрации. Например, он очень стоек к щелевой коррозии в морской воде при обычных температурах. Коррозия усиливается, если в щели повышается кислотность среды, а это чаще происходит в условиях теплопередачи [21]. При этом, особенно в присутствии галогенов, титан может подвергаться коррозии, и поэтому его не следует применять в сильных водных растворах галогенов при температурах выше 130°. Использование сплава Т1—0,15Рс1 позволяет поднять эту предельную температуру до 180° С [21—23]. [c.193]

    Морская коррозия, аналогично почвенной, протекает как электрохимический процесс с кислородной деполяризацией. Вода различных морских водоемов содержит от 1 до 3,8% лег-кодиссоциирующих солей и поэтому обладает высокой электрической проводимостью. Морская вода, кроме того, хорошо аэрирована и содержит до 0,04 г/л кислорода. Это делает ее достаточно активной в коррозионном отношении. Разрушение металлов нередко усугубляется влиянием механического и биологического факторов (эрозия и кавитация, обрастание конструкций морскими растительными и животными организмами). Особенно усиливается коррозия корпусов судов вблизи ватерлинии в связи с легким доступом кислорода к металлу и ухудшением условий для образования и сохранения защитных пленок из продуктов коррозии. На скорость коррозии в морской воде сильное влияние оказывает окалина создавая катодные участки, она может в десятки раз увеличивать обычную для морских условий скорость коррозии. [c.162]

    Требования по качеству масел для двухтактных бензиновых двигателей связаны со спецификой применения масел и конструкцией двигателей. Необходимо, чтобы небольшое количество масла, поступающего в цилиндр в виде тумана, во время горения топлива достаточно хорошо смазывало все поверхности и смывало с них загрязнения, не засоряло свечи и окна цилиндров и не допускало прихватывания поршней. Для поддержания чистоты двигателя применяются высокоэффективные моющие присадки - детергенты, не содержащие металлов, которые при сгорании не образуют (либо образуют малое количество) золы. Зола и нагар способствуют ускорению износа двигателя и вызывают преждевременное (калильное) зажигание preignition). Масла должны обладать высокими антикоррозионными свойствами, особенно при применении в двигателях морских моторных лодок (с учетом влияния соленой морской воды). Кроме того, масло в течение продолжительного времени должно хорошо защищать от коррозии в режиме простоя двигателя. В некоторых случаях к маслам предъявляются дополнительные требования -смешиваемость с бензином и сохранение смазывающих свойств в условиях низких температур. [c.117]

    Самостоятельный интерес (особенно для оценки коррозии металлов) представляет изучение распространения аэрозолей морских солей в прибрежных районах. Содержание хлоридов в атмосфере этих районов определяется продолжительностью действия морских ветров, временем открытой воды, рельефом местности и расстоянием от линии уреза водьи. Имеются данные о том, что наиболее интенсивный вынос хлоридов с моря на континент происходит при скоростях ветра более 6 м/с [9]. Мерой возможного выноса хлоридов с моря является средняя непрерывная продолжительность скорости [c.20]

    Предлагались различные добавки, способные понижать коррозию различных металлов и особенно коррозию железа. Действие"этих добавок как минеральных, так и органических заключается в способности их взаимодействовать с поверхностью металла. В результате образуется тонкая пленка комплексов металла, которая препятствует диффузии растворенного газа к поверхности металла. Предложены и другие методы, например удаление из раствора кислорода -восстановлением или другим способом. Эти различающиеся технологии не обеспечивают достаточно полной защиты, особенно в том случае, если для охлаждения используется мбрская вода. Присутствие хлорид-ионов в морской воде усугубляет коррозию металлов в воднь(х средах. [c.34]

    Титан является термодинамически очень активным металлом. Его равновесный электрохимический потенциал равен —1,63 В. Характерной особенностью титана является высокая склонность к пассивации в окислительных и нейтральных средах. Вследствие этого-его стационарный потенциал в ряде сред (например, в морской воде) положительнее потенциалов конструкционных материалов, т. е. для титана не опасна контактная коррозия. Как указывалось в гл. 2, титан обладает высокой стойкостью в растворах, содерл<аших ионы хлора, в окислительных кислотах, в нейтральных средах, в щелочах средних концентраций (до 20%). Титан неустойчив в смеси плавиковой кислоты с азотной, а также в неокисляющих кислотах при повышенной температуре, в расплавленных солях. [c.76]

    С возрастанием скорости течения коррозия усиливается, особенно в турбулентном потоке. Движущаяся морская вода может разрушать слой ржавчины и усиливать приток кислорода. Ударное водействие воды ускоряет разрушение металла. Кавитация обнажает свежую поверхность стали и тем самым усиливает коррозию Повышение температуры среды способствует ускорению коррозии. Вместе с тем нагрев морской воды может приводить к выпадению защитного осадка или уменьшать концентрацию растворенного кислорода [c.36]

    В других экспериментах, приведенных в лаборатории фирмы Dow , сравнивалась коррозионная стойкость углеродистой и низколегированной сталей. Сплава 20, сталей 304 и 311, а также ряда алюминиевых и медных сплавов [232]. Главной причиной коррозии всех исследованных сплавов в морской воде был растворенный кислород. Низколегированные стали обладали более высокой стойкостью, чем малоуглеродистые, особенно в быстром потоке. Скорости коррозии сталей возрастали вдвое при повышении температуры воды от 82 до 120 °С, Алюминиевые сплавы были нечувствительны к повышению температуры до 120 °С и к изменению содержания кислорода нинсе уровня 1 мг/кг, но подвержены влиянию гальванических эффектов, скорости движения воды и ионов тяжелых металлов. [c.199]

    Стойкость снаряжения к коррозии и повышению давления может быть различной. Упаковка обычно бывает герметичной, но в зависимости от условий, рано или поздно начинает протекать. Затопленные вещества могут влиять на непосредственное окружение, причем в замкнутых объемах это влияние будет особенно сильным. Скорость разрушения материалов изменяется в результате выщелачивания солей, огшслите-лей и бактерищздных добавок, коррозии металлов, образования гальванопар, включений и осадков и прочих взаимодействий. Таким образом, суммарное влияние погружения в морскую воду на военное снаряжение труднопредсказуемо. Можно сделать лишь общие замечания, пока превалирующие условия в данном месте точно не известны. [c.491]

    Определение защитных свойств смазочных материалов лабораторными нетодани проводят в условиях, обеспечивающих повышенное действие того или иного фактора, определяющего скорость электрохимической коррозии. Обычно это достигается тем, что образцы неталлов, покрытые тонкий слоен исследуеного смазочного натериала, выдерживают в условиях повышенной влажности и тенпературы, паров морской воды, воздуха, содержащего повышенные концентрации сернистого газа, а также в условиях, обеспечивающих периодическую конденсацию влаги на поверхности образцов или непосредственный их контакт с водой или раствором хлористого натрия. Необходимым условием ускоренных лабораторных испытаний защитных свойств смазочных материалов является обеспечение постоянной скорости конденсации влаги на поверхности защищенного маслом металла. Это связано с тен, что на характер коррозионного процесса большое влияние оказывает сначивающее действие конденсата, особенно при вертикальном расположении образцов. [c.20]

    Такой эффект катодного выделения более положительных металлов и, вследствие этого, ускорение коррозии наблюдается также, если в растворе находятся соли тяжелых металлов с достаточно положительным электрохимическим потенциалом (Р1, Аи, kg, Си, N1 и, в меньшей степени. Ре). Поэтому в замкнутых полиметаллических системах, по которым циркулируют водные растворы, например, морская вода, наблюдается усиление коррозии алюминия и его сплавов, если в этой системе находятся медь или медные снлавы, даже при отсутствии электрического контакта с алюминием. Таким образом, сравнительно высокую коррозио1ь ную стойкость чистого алюминия и некоторых его сплавов, кроме основного влияния защитных кроющих иассивны.ч пленок (анодный контроль), в значительной мере объясняют высоким перенапряжением выделения водорода на поверхности алюминия, особенно в пассивном состоянии (катодный контроль). Примеси тяжелых металлов (в первую очередь в практических условиях железа илн меди) сильно понижают химическую устойчивость алюминия не только вследствие нарушения сплошности защитных пленок, но и благодаря облегчению катодного процесса. Присадки более электроотрицательных металлов с высоким перенапряжением водорода (Mg, 2п) в меньшей степени понижают коррозионную стойкость алюминия. [c.261]


Смотреть страницы где упоминается термин Особенности коррозии металлов в морской воде: [c.481]    [c.140]    [c.187]    [c.166]    [c.16]    [c.8]    [c.12]    [c.741]    [c.327]   
Смотреть главы в:

Техника борьбы с коррозией -> Особенности коррозии металлов в морской воде




ПОИСК





Смотрите так же термины и статьи:

Коррозия металлов

Коррозия металлов коррозии

Коррозия металлов морская

Морская вода



© 2025 chem21.info Реклама на сайте