Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы определения зависимости скорости реакции от температуры по экспериментальным данным

    При расчете геометрических параметров реактора на промышленную производительность чаще мы имеем информацию о лабораторных работах, позволяющих подобрать наиболее оптимальные параметры протекания реакции температуру, давление, катализатор, соотношение концентраций при определенной степени преврашения и времени протекания процесса. Лабораторные опыты в основном ведутся в периодическом режиме. Результатом этих работ является также и экспериментальная кривая распределения продуктов реакции в зависимости от времени, позволяющая сделать некоторые выводы об области, где протекает рассматриваемый процесс. Лишь после того, как будет выбрано уравнение скорости реакции, проинтегрировано и это уравнение будет хорошо аппроксимировать кривые распределения продуктов реакции, мы можем окончательно определить область протекания данной реакции. Выбранное уравнение скорости реакции и полученная на базе его интегрирования кривая распределения продуктов реакции используются затем при расчете реактора. Почти всегда область протекания реакции для рассматриваемого типа реакций не меняется при масштабном переходе. Влияние диффузионных процессов может стать более значительным при изменении гидродинамической обстановки с изменением масштабов аппарата. Но определяющей, как и прежде, остается сама химическая реакция, которая протекает медленнее диффузионных процессов. Таким образом,после того как мы определили область протекания химической реакции, рассчитали характеристический размер аппарата, его реакционный объем или длину в зависимости от гидродинамического режима, который необходимо создать в реакторе, можно перейти к составлению материального и теплового баланса. Поскольку процесс протекает в установившемся изотермическом режиме, уравнения материального и теплового баланса рассчитываются для аппаратов, для которых известны входные и выходные параметры и количество тепла, выделяющееся в нем- в единицу времени. Таким образом, имеющаяся информация для статических условий протекания процесса достаточна для того, чтобы с помощью физического метода моделирования на базе теории подобия рассчи- [c.89]


    Чтобы определить время релаксации для реакции в данном растворе из измерений коэффициента поглощения а, можно поступать следующим образом сначала определить а р при самой высокой и самой низкой доступной частотах. Если нет заметной разницы, то следует сравнить значение а// с его значением для чистого растворителя если первая величина больше, то нельзя исключать возможности уменьшения при некоторой более высокой частоте. Если эти два значения неразличимы, то может наблюдаться уменьшение значения а// при некоторой более низкой частоте или же следует считать раствор слишком разбавленным, чтобы можно было отметить достаточное релаксационное поглощение. Если, однако, коэффициенты поглощения на двух концах интервала частот заметно различаются, это, по-видимому, обусловлено релаксацией проводя измерения при промежуточных частотах, можно найти область перехода, показанную на рис. 20. Затем, предполагая, что данные удовлетворяют уравнению (5.12), т. е. соответствуют одному процессу релаксации, можно найти наилучшие значения для А, В и /д [17—19, 25]. Если с ними хорошо воспроизводятся экспериментальные значения в широком интервале частот, следует сделать заключение, что имеет место только один процесс релаксации, и можно вычислить т как /ая/с. Из изменений т в зависимости от концентрации определяют константы скорости, используя соотношения, приведенные на стр. 70 и далее, и учитывая, если необходимо, коэффициенты активности. Если же уравнение (5.13) удовлетворительно не представляет имеющиеся данные, то, вероятно, имеет место более чем один процесс релаксации. (Это часто бывает в случае растворов, содержащих ионы.) В этом случае процедура более сложная, но если измерения проведены в достаточном интервале частот и концентраций, можно определить несколько времен релаксации [4, 38]. Майером [20] разработан другой метод определения констант скоростей но измерениям при нескольких температурах и при одной частоте. [c.99]

    МЕТОДЫ ОПРЕДЕЛЕНИЯ ЗАВИСИМОСТИ СКОРОСТИ РЕАКЦИИ ОТ ТЕМПЕРАТУРЫ ПО ЭКСПЕРИМЕНТАЛЬНЫМ ДАННЫМ [c.198]

    Для простых случаев химического взаимодействия, не осложненных изменением механизма процесса в системе ненапряженный эластомер— жидкая среда, определяющим процессом является диффузия среды в резину. Об этом свидетельствуют как небольшие значения энергии активации, например при действии соляной кислоты на СКС-30-1, вулканизованный оксидом магния и = 26,6 кДж/моль), так и прямолинейная зависимость параметра, характеризующего скорость реакции от [298, 299]. Поэтому для прогнозирования изменения свойств полимера, если они непосредственно связаны с диффузией (например, защитная способность полимерного покрытия) можно использовать известные зависимости диффузии от концентрации среды и температуры. При наличии достаточно чувствительных методов определения проникновения жидкой среды в резину прогнозирование срока службы сравнительно толстого защитного покрытия можно осуществить и но экспериментальным данным, полученным за короткое время и без ускорения диффузии, т. е. в тех условиях, при которых покрытие работает (например, при диффузии соляной кислоты в гуммировочные резины на основе бутадиен-стирольных каучуков [265]). Уменьшение толщины неразрушенного слоя резины в процессе диффузии паров химически агрессивных сред в резины из СКИ-3, СКМ.С-10, СКН-18 + наирит используется для прогнозирования защитной способности этих резин. [c.138]


    Экспериментальное исследование кинетики реакции состоит в измерении скоростей исчезновения исходных веществ и (или) появления продуктов реакции при данной (постоянной) температуре и в установлении зависимости скорости реакции от концентрации одного (или всех) реагирующего вещества. Ход реакции можно контролировать различными методами, например непосредственно, отбирая аликвотные части реакционной смеси и проводя титриметрическое определение, или косвенно, наблюдая колориметрические, кондуктометрические, спектроскопические и другие изменения. В каждом случае наиболее важной частью исследования является поиск зависимости полученных кинетических данных от концентрации это осуществляют графически или путем расчетов. Так, для реакции [c.49]

    При расчете неизотермических реакционно-массообменных аппаратов появляется необходимость определения оптимального распределения температуры по высоте аппарата. Эта задача осложняется при расчете газожидкостных аппаратов ввиду значительного различия в теплоемкостях газовой и жидкой фаз, влияния температуры на распределение компонентов между фазами, а также взаимного влияния процессов переноса тепла и массы на процесс химического взаимодействия. Кроме отмеченной выше обратной связи, обусловленной влиянием массообмена на скорость химической реакции, в изотермическом реакционно-массообменном аппарате возникает еще одна обратная связь, обусловленная зависимостью скорости химической реакции от температуры, в свою очередь зависящей от тепловыделения. Поэтому предпочтение следует отдать методам, основанным на экспериментальном исследовании процесса в условиях, максимально приближенных к производственным, и использовании полученных данных для расчета с учетом вопросов масштабного перехода. [c.30]

    Основные сведения о протекании элементарных химических процессов в традиционной химической кинетике извлекаются из измерений, сводящихся к определению скорости изменения концентрации реагентов или продуктов как функции времени, температуры, концентрации самих реагентов или добавляемых в виде примесей веществ и т, п. Получаемая количественная информация представляет одну или несколько констант скорости реакций или их комбинацию в функции температуры. Из этой зависимости на основе более или менее простой теории определяется энергия активации процесса. Достоверность получаемых данных в значительной мере зависит от правильности постулированного механизма реакции, в который входит данный элементарный процесс, и, в частности, от учета всех возможных побочных процессов, которые (Могли бы исказить измерения. Таким образом, здесь видны два недостатка кинетических измерений. Один из них связан с постулированием простой— чаще всего аррениусовской — зависимости константы скорости реакции от температуры k T)=A ехр —E/RT). С накоплением экспериментальных данных принципиально новыми методами исследований и с развитием теории элементарных реакций становилось очевидным, что константа скорости является весьма грубой характеристикой процесса, примени мость которой ограничена условиями теплового равновесия или его малого нарушения в химической системе. Введенное Аре-ниусом понятие энергии активации характеризовало некоторую эффективную величину энергетического барьера, определяемого из температурной зависимости константы скорости реакции. Другая составляющая аррениусовского выражения — пред-экспоненциальный множитель — обычно представляется в виде произведения газокинетического числа столкновений на так называемый стерический множитель. Величина этого. множителя в рамках классических представлений являлась эмпирической поправкой, обеспечивающей согласие экспериментально определенной константы скорости реакции с рассчитанной на основе теории столкновений для твердых сфер. Теория переходного состояния позволила качественно, а также и количественно объяснить возникновение и величину сферического множителя, однако не оставила каких-либо надежд на обобщение этого понятия на неравновесные ситуации. [c.112]

    Цуханова производила обработку экспериментальных данных в указанной работе с помощью аналогии мегкду диффузией и теплопередачей и воспользовалась формулой Лейбензона (1.22) для определения диффузионного критерия — N0. Как известно, в методе тепловой аналогии исключается влияние химической реакции, так как предполагается, что она идет с бесконечно большой скоростью, и концентрация кислорода на стенках канала принимается равной нулю. Нами сделана попытка обработки тех же данных в области турбулентного течения с помощью выведенной выше формулы (1. 73). В рб-зультате была получена зависимость между видимой константой скорости реакции горения на стенке и ее температурой, которая укладывается в формулу Аррениуса [c.341]


    Между значениями средней степени полимеризации полимеров, образовавшихся при данной скорости реакции, полученными различными авторами, имеются некоторые расхождения [87, 88]. Это может быть связано с экспериментальными ошибками, присущими применявшимся раньще методам определения молекулярных весов, а также с использованием различных уравнений, связывающих характеристическую вязкость полимера с его молекулярным весом. Поскольку скорость инициирования часто рассчитывали из измерений средней степени полимеризации, эти ошибки отражались и на значениях констант скоростей индивидуальных реакций. Зависимость средней степени полимеризации от скорости реакции изучалась для различных инициаторов в широком интервале температур [34, 72, 88] и было показано, что если при расчетах берется одно и то же соотношение между характеристической вязкостью и молекулярным весом, то полученные результаты хорошо согласуются между собой. [c.103]

    Одним из наиболее интересных аспектов использования ЭПР в химии является возможность изучения кинетики реакций свободных радикалов в конденсированной фазе и определения 1 онстант скоростей элементарных реакций. К 1957—1958 гг. метод ЭПР стал уже распространенным методом идентификации и изучения строения свободных радикалов в жидкой и твердой фазах, однако он практически не использовался для проведения количественных кинетических экспериментов. В это время по инициативе В. В. Воеводского было поставлено исследование скорости диссоциации гексафенилэтана на трифенилметиль-ные радикалы [1] и проведен цикл исследований реакций свободных радикалов в облученном политетрафторэтилене (тефлоне). Результаты этих пионерских исследований публикуются в настоящей главе. Смысл этих работ заключается не только в количественном определении ряда элементарных констант скоростей реакций фтор алкильного радикала, теплоты распада перекисного радикала, коэффициента диффузии кислорода и т. д., но главным образом в демонстрации возможностей применения ЭПР для количественных кинетических измерений и в разработке методики анализа экспериментальных данных. Публикуемые здесь первые работы по изучению кинетики радикальных реакций в твердой фазе стимулировали дальнейшие иоследования учеников и сотрудников В. В. Воеводского, в которых были изучены специальные классы радикальных реакций [2, 3], построена кинетическая теория радикальных реакций в твердой фазе [4], начато прямое исследование клеточного эффекта [5] и проблемы пространственного распределения радикалов в твердых матрицах [6, 7]. Несомненно, что эти работы оказали также немалое влияние и на другие многочисленные исследования элементарных реакций в конденсированной фазе, выполненные или ведущиеся в Советском Союзе и за рубежом. В результате определения констант скоростей реакций рекомбинации фторалкильных и перекисных радикалов в публикуемых здесь работах В. В. Воеводского был поставлен принципальный вопрос о природе компенсационного эффекта (КЭФ), т. е. о причинах наблюдения аномально больших энергий активаций Е и предэкспоненциальных множителей ко, связанных между собой зависимостью типа ко=А+ВЕ. В. В. Воеводским было высказано предположение, что КЭФ наблюдается в результате того, что зависимость к от температуры не является аррениусовской Е падает с ростом температуры), но это отклонение не может быть замечено в обычных экспериментах. Позднее учениками В. В. Воеводского были прове- [c.250]

    Как уже указывалось, любая ферментативная реакция представляет собой цепь последовательных процессов, каждое звено которой характеризуется собственной константой скорости, значениями энергии активации и пространственного фактора. Поэтому, определяя экспериментально стационарную скорость ферментативной реакции при разных температурах и вычисляя по этим данным энергии активации, исследователь часто получает фиктивную величину — значение кажущейся энергии активации, которое трудно отнести к какой-то определенной стадии реакции. По этим причинам при изучении температурной зависимости результирующей скорости ферментативного процесса оказывается невозможным вычисление предэкспоненциального множителя и пространственного фактора. Все это приводит к настоятельной необходимости разработки специальных методов ферментативной кинетики, позволяющих вычислять константы скорости отдельных стадий процесса и на основе изучения их зависимости от температуры рассчитывать другие кинетические константы. [c.24]

    Основными задачами, стоящимив это время перед учеными, изучавшими квантовую химию органических соединений, Хюккель считал разработку приемлемых методов расчета электронного строения соединений с гетероатомами, углубление интерпретации связи между строением и реакционной способностью молекул, а также получение более надежных экспериментальных данных об изменении химических и физических свойств органических соединений в зависимости от условий их превращений (теплоты сгорания соединений, изменение их теплоемкостей с температурой, определение скоростей реакций при различных температурах). [c.56]

    Во второй части рассматривается оценка параметров теоретических или э.миирнческих закономерностей на основе экспериментально определенных величин. Эти методы связаны с регрессионным анализом и подбором зависимостей. Мы использовали подобные методики для изучения зависимости концентраций от времени для оценки кинетических констант или порядка реакции. Очевидно, что в известном отношении методы обработки данных аналогичны. Поэтому. метод изучения зависимости скорость реакции — температура для оценки параметров активации специально не разрабатывался. [c.152]

    Из отношения В А можно найти отношение А инг/ ст и, если /сст известна, можно также вычислить константу скорости реакции ингибирования. Из величин В, соответствующих различным температурам, можно найти энергию активации реакции ингибирования, если, конечно, имеются сведения о константах зарождения и развития цепей. Наиболее простым путем определения энергии активации реакций ингибирования оказалось вычисление ее из зависимости отношений В А от температуры. Разработанный метод прямой позволил вычислить на основании экспериментальных данных для заторможенного крекинга алканов энергии активации реакций торможения цепей на различных ингибиторах и энергию активации захвата радикалов СНз стенками ( инг = 3—8 ккал1молъ и ст, снз ккал1молъ) [33]. [c.353]

    Довольно типичной системой с сильной связью является 4-ВП, адсорбированный на АС/400. Результаты изучения температурной зависимости общей скорости П0лимеризащ1и в этой системе методом ИК-спектроскопии [48] приведены на рис. 3.17. Видно, что зависимость имеет сложный характер наклон кривой в интервале температур 30-90 °С соответствует энергии активации Е = 46,3 кДж/моль, а при температуре ниже 20 °С = 7,4 кДж/моль. Столь сильное уменьщение Е с понижением температуры, видимо, связано с изменением механизма полимеризации от радикального при высоких температурах к ионному при пониженных. Ослабление ингибирующего действия кислорода с понижением температуры ниже 20°С подтверждает это предположение. Здесь мы рассмотрим лишь радикальную полимеризацию 4-ВП на АС/400 по данным работы [48]. При 50 °С скорость полимеризации в этой системе в 5-10 раз меньше, чем, например, для ММА и ВА на той же подложке в сравнимых условиях эксперимента (т.е. в типичных системах со слабой связью). Существенно более низкими оказываются и молекулярные массы полимеров 4- и 2-ВП, образующихся на аэросиле. Общая энергия активации радикальной полимеризации 4-ВП значительно выше, чем в системах со слабой связью. Анализ возможностей перехода реакции роста цепей полимеризации 4-ВП в диффузионную область, проведенный по схеме, рассмотренной в разд. 3.2.3, с использованием экспериментально определенного значения коэффициента поверхностной диффузии 10 — 10 см /с, показал, что реакция протекает в кинетической области. Следовательно, наблюдаемые особенности кинетики не связаны с диффузионными эффектами. [c.87]

    Для нахождения констант скоростей этих четырех реакций в интервале температур 350—450 К (для ка и к интервал температур шире) использовалась струевая система,, в которой атомы образовывались за счет диссоциации на горячей поверхности вольфрама, а регистрация проводилась с помощью датчиков теплопроводности. Для определения к (250—750 К) и к (300—750 К) описан прямой экспериментальный способ, включающий наблюдения в фиксированном сечении и измерение концентрации Н и О методом ЭПР [168]. На рис. 4.13 показано точное соответствие между двумя сериями данных во всем температурном интервале, исключая низкотемпературную границу, где результаты Лероя и сотр. [167] сильнее отклоняются от аррениусовской зависимости, чем данные Вестенберга и де Хааза [168]. В рамках модели переходного состояния Вестона [169] проведены вычисления для комплексов НВа и ОНг [168]. Этот приближенный расчет без учета туннельного эффекта дал уже более высокие значения констант скоростей, чем наблюдаемые введение поправок на туннельный эффект должно вызвать еще большее расхождение между расчетными и измеренными зна-чениями констант скоростей. Поэтому такое объяснение не отве- [c.359]


Смотреть страницы где упоминается термин Методы определения зависимости скорости реакции от температуры по экспериментальным данным: [c.328]    [c.48]   
Смотреть главы в:

Химия технология и расчет процессов синтеза моторных топлив -> Методы определения зависимости скорости реакции от температуры по экспериментальным данным




ПОИСК





Смотрите так же термины и статьи:

Дания

Реакция определение

Реакция скорость, зависимость

Реакция температуры

Скорость зависимость

Скорость определения методы

Скорость реакции от температуры

Скорость температуры

Температура определение

Экспериментальные методы определения

Экспериментальные методы определения скоростей реакций

зависимость от температур



© 2024 chem21.info Реклама на сайте