Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селективность к изомерам

    Влияние заместителей при сульфировании аналогично другим реакциям электрофильного замещения в ароматическое ядро, причем для сульфирования характерна средняя селективность в отношении ориентации в разные положения молекулы и относительной реакционной способности. Так, толуол сульфируется в 5 раз быстрее бензола, причем получается 75% пара-, 20% орто-и 5% лета-толуол сульфокислот. Электроотрицательные группы значительно дезактивируют ароматическое ядро, вследствие чего не удается ввести вторую сульфогруппу при действии серной кислотой. В отношении состава изомеров сульфирование имеет некоторые особенности, зависящие от обратимости реакций. При мягких условиях состав изомеров определяется относительной реакционной способностью различных положений ядра, при нагревании или при большой продолжительности реакции он зависит от термодинамической стабильности изомеров. Так, нафталин в первом случае дает главным образом 1-сульфокислоту, а во втором 2-изомер. [c.329]


Таблица 5.5. Соотношение изомеров, фактор селективности Sj, фактор стерического затруднения Е и мера неспецифичности Н в реакции переалкилирования алкилбензолов в толуоле Таблица 5.5. <a href="/info/479554">Соотношение изомеров</a>, <a href="/info/266055">фактор селективности</a> Sj, <a href="/info/9413">фактор стерического</a> затруднения Е и мера неспецифичности Н в <a href="/info/741160">реакции переалкилирования</a> алкилбензолов в толуоле
    Образование изопрена при термическом разложении димеров пропилена было обнаружено американскими исследователями Гориным и Обладом в 1946 г. Однако применявшееся ими сочетание газофазной димеризации пропилена над алюмоси-ликатным катализатором при 360 °С с пиролизом димеров при 775—825 С обеспечивало селективность образования изопрена, едва превышавшую 20%. Последующий анализ показал, что из семнадцати различных построению изомерных гексенов, образующихся при димеризации пропилена, только пять при пиролизе дают изопрен. Известно, что при пиролизе олефинов наиболее легко разрывается насыщенная С—С-связь, находящаяся в Р-положении по отношению к двойной связи. Легко убедиться, что этому правилу подчиняются лишь соединения типа 3,3-ди-метил-1-бутена, 2,3-диметил-1-бутена, 2-этил-1-бутена, 2-метил-2-пентена и 3-ме-тил-2-пентена. Наибольший выход изопрена наблюдается при термическом разложении двух последних изогексенов. Из остальных изомеров получаются этилен, пропилен и бутены. Технические перспективы метода стали более определенными, когда на смену среднестатистическому синтезу димеров в присутствии кислотных катализаторов пришел высокоселективный синтез 2-метил-1-пентена из пропилена с применением гомогенных алюмоорганических катализаторов и последующей изомеризацией полученного соединения в прямой предшественник изопрена — 2-метил-2-пентен. [c.376]

    Как видно, повышение давления при прочих идентичных у ловиях снижает глубину, но повышает селективность изомери — [c.200]

    ВЗАИМОСВЯЗЬ МЕЖДУ КОЭФФИЦИЕНТ.ЛМИ СЕЛЕКТИВНОСТИ ИЗОМЕРОВ ПАРАФИНОВЫХ УГЛЕВОДОРОДОВ И ИХ ПОВЕРХНОСТНЫМ НАТЯЖЕНИЕМ [c.53]

    Коэффициенты селективности изомеров гексана [c.53]

    Для неполярных анализируемых веществ, а именно для изомеров парафиновых углеводородов, коэффициенты селективности Байера могут быть определены с высокой точностью [85, 86] и позволяют характеризовать селективность НФ для разделения изомеров. При этом, как найдено в указанных работах, коэффициенты селективности изомеров по отношению к нормальным парафинам не связаны с полярностью НФ. [c.119]


    Семикарбазоны метилкетонов имеют наивысшую температуру плавления и труднее всех растворяются в органических растворителях. Семикарбазоны кетонов, у которых кетогруппы расположены ближе к середине цепи, растворяются гораздо легче. Поэтому семикарбазон метилкетО На, находяпгегося в смеси с другими изомерами, можно легко выделить в чистом виде кристаллизацией, все другие изомеры остаются в маточном растворе. Следовательно, селективность проявляется дважды первый раз при реакции с семикарбазидом и второй раз при перекристаллизации. Если проследить за выходами, сраэу будут заметны значительные потери. К тому же еще обнаружилось, что если заместитель находится в положении 2, растворимости натриевых солей алкилсульфатов и алкилсульфонатов в органических растворителях чрезвычайно малы, в то время как другие изомеры растворяются относительно легко. Так, из смеси различных изомерных алкилсульфатов или алкилсульфо-катов можно экстрагировать хлороформом, метилэтилкетоном или амиловым спиртом все изомеры, кроме 2-алкилсульфата или 2-алкилсуль-фоната, которые остаются нерастворимыми [84]. Алкилсульфонаты, у которых гидрофильная группа находится у второго атома углерода, негигроскопичны другие же изомеры сильно притягивают влагу и на воздухе расплываются. [c.567]

    Триметил- циклопентан Бензол Продукты дегидроизомеризации (ксилолы) и гидрогенолиза (геж-диме-тилциклопентан, СН ) Дегидро Дифенил (I) три-фенил] Pt, Pd, Со, Fe. Только Pt селективно изомери-. зует до ксилола [972] конденсация Pt на А1,0з в автоклаве, 360° С, 12 ч. Конверсия 7,71%, выход I — 85,3% [1061] [c.841]

    В связи с этими результатами необходимо еще раэ подчеркнуть (см. стр. 563), что при такого рода исследованиях отдельные стадии настоятельно требуется проводить количественно, неуклонно сопровождая это определением выходов. В противном случае может произойти селективное обогащение или обеднение каким-либо изомером. Особую осторожность надо проявлять при перекристаллизации, так как растворимость соединений с одной и той же функци- [c.566]

    Из данных табл. 39 видно, что изменение количества уксусной кислоты заметно меняет селективность, но слабо сказывается на скорости реакции. Наибольшее образование цис-олефинов отмечено при равных количествах олефина и кислоты. В соответствии с приведенной схемой, по выходу ц с-изомеров отмечается пологий максимум, причем при ловышении температуры в большей степени увеличивается скорость второй стадии, и выход 1 с-изомеров снижается. Селективность по цис-изомерам при степени превращения гептена-1 >75% достигает ж70% она падает с ростом темпера-ратуры и степени превращения. [c.136]

    Селективность. В условиях каталитического риформинга -парафины, подвергаясь изомеризации, превращаются главным образом в малоразветвленные изомеры, которые, как и исходные углеводороды, способны подвергаться ароматизации- и гидрокрекингу. В этой связи можно условно принять, что количество прореагировавшего парафина отвечает суммарному количеству, превращенному в продукты ароматизации (Ар) и гидрокрекинга (Г), а селектив-ност> (5) ароматизации углеводорода выразить следующим образом  [c.30]

    Практическое значение имеет факт низкой селективности и ма-лой скорости ароматизации -гексана в обычных условиях каталитического риформинга, что во многих случаях делает нецелесообразным включение этого углеводорода и его изомеров в состав сырья для этого процесса. [c.32]

    Полученные экспериментальные данные позволяют нам сделать следующие выводы наличие фосфинных лигандов изменяет селективность металлического никеля использование в качестве катализатора комплекса Ni с трифенилфосфинным лигандом приводит к получению контакта селективного в реакции изомеризации гексена-1 на основании данных по отравлению пропиточного никелевого катализатора трифе-нилфосфином можно утверждать, что причиной селективного изомери- [c.173]

    Подтверждением сказанному может служить xapaKi j) симости отношения селективности изомеров 1/11 (I1/I) н H-li)/III от концентрации вводимого в реакционную зону ацетата натрия (при этом учтено влияние самого натрия на селективность и активность используемых катализаторов) (рис. 2). Так, при увеличе- [c.26]

    Что касается селективности, то она меняется в зависимости от варианта применяемой каталитической реакции [1096] (см. подобные эффекты в реакции Дарзана, разд. 3.13.3). В ряде работ, в которых применялись твердые порошкообразные NaOH или К2СО3, было показано, что соотношение /2-изомеров может определяться в какой-то степени выбором используемого катализатора [1214, 1215]. [c.225]

    Опираясь на вычисленные отношения термодинамического равновесия для различных гексеновых изомеров в области от 300 до 1000 К (рис. 50), Баас и сотрудники показали, что для достижения максимальной конверсии 2-метилпентена-1 в 2-метилпентен-2 в каждый проход следует поддерживать как можно более низкую температуру. Исследования Эммета (105] подтвердили, что подобную изомеризацию легко осуществить в мягких условиях со слабокислыми катализаторами [10] и что сдвиг двойных связей при этом проходит очень селективно. Эти результаты подтверждаются и другими авторами. Описан метод, по которому можно изомеризовать 2-метилпентеп-1 прп комнатной температуре с 50% раствором серной кислоты, получив при этом равновесную смесь 2-метилпентена-1 и 2-метилпентена-2 [107]. [c.228]


    В работах X. Киты с сотр. (1957—1973) эти представления были подтверждены и развиты далее и привели к обнаружению эффекта селективности электрохимического получения цис- и транс-изомеров. Эти авторы в ряде других работ на примере ацетона количественно оценили эффект избирательного электровосстановления. Н. Ф. Федорович с сотр. (1978—1981) получила данные, указывающие на участие протонов в электровосстановлении ряда анионов, причем эта стадия, совместно с переносом электрона, определяет скорость всего процесса. Ход реакции восстановления сущест-аенло зависит от природы доноров протонов и их адсорбируемости на электроде. [c.441]

    Результаты [4], полученные при гидрировании 4-трет-бутил-1-метиленциклогексана над РЮг, приведены на рис. 4. Предполагают, что наиболее вероятным первоначальным продуктом его изомеризации является 4-грет-бутил-1-метилциклогексен. На следующем этапе идет, по-видимому, одновременное гидрирование обоих соединений при этом при низких давлениях водорода 4-трет-бутил-1-метиленциклогексан практически селективно превращается в цис-4-трет -бутил-1-метилцикло-гексан, а из 4-трег-бутил-1-метилциклогексена образуется главным образом транс-изомер. Изменение соотношения цис- и транс-изомеров при увеличении давления водорода в ходе гидрирования 4-грег-бутил-1-метиленцик- [c.25]

    Изомеризация при низких температурах имеет большие преимущества с точки зрения термодинамического равновесия, которое в этом случае более благоприятно для образования изопарафинов, в том числе вы-сокоразветвленных изомеров, обладающих высокими антидетонацион-ными характеристиками. Во всех процессах глубина превращения парафиновых углеводородов лимитируется равновесием, однако разделение, возврат непревращенной части исходного сырья и высокая селективность процесса изомеризации позволяет получить глубину превращения исходного углеводорода, близкую к 100%. В зависимости от количества рецикла изменяются показатели и технико-экономическая характеристика процесса увеличение рецикла приводит к удорожанию процесса, обеспечивая при этом более высокие октановые числа изомеризата. С этой точки зрения наиболее эффективными являются процессы изомеризации, осуществляемые при низкой температуре, обеспечивающей максимальную глубину превращения за проход . [c.4]

    В присутствии ультрастабильного цеолита Y, содержащего 0,5% Pt, при температуре 80-240 °С, давлении водорода 0,5-1,0 МПа была изучена изомеризация нюктана и 2,4,4-триметилпентана [133]. Селективность реакции зависела определяющим образом от конверсии парафинового углеводорода. При конверсии н-октана меньшей 15% селективность была близка к 100%, а при более глубоком превращении н-октана она падала. На цеолите Y максимальная конверсия н-октана составляла 46%. Изомеры с двумя заместителями образуются в последовательных реакциях из моноразветвленных изомеров. Сопоставление результатов эксперимента с данными термодинамического равновесия показывает, что содержание линейного октана в реальном продукте всегда выше равновесного, а содержание диметилзамещенных изомеров всегда меньше 1%. Это с очевидностью доказывает, что достижению термодинамического равновесия препятствует распад диметилзамещенных изомеров. Среди моноразветвленных изомеров преобладают метилзамещенные. Изомеры с этильны-ми и пропильными боковыми цепями практически не образуются. Соотношение монометилпроизводных октана близко к равновесному и не зависит от температуры и парциального давления реагентов, а определя- [c.116]

    При конверсии 2,2,4-триметилпентана последовательно образуются диметилпроизводные, моноразветвленные и н-октан. 2,2,4-Триметилпен-тан более реакционноспособен, однако селективность его превращения в изомерные продукты очень низкая даже при незначительной конверсии и не превыщает 10%. Таким образом, по-видимому, крекинг происходит без образования промежуточных соединений. Крекинг ди- и тризамещен-ных октанов препятствует достижению равновесного состава изомеров во фракциях с одинаковой степенью разветвления. [c.118]

    Пентаны. С увеличением молекулярного веса увеличивается легкость изомеризации парафинов, но вместе с тем увеличивается и размер реакции перераспределения. Можно создать условия, при которых будет проходить изомеризация только бутана (селективная изомеризация), но для нентанов и более высоких углеводородов создать такие условия трудно. При 27° С над А1Вгз равновесная смень и-пентанов и изопентанов содержит 70 и более процентов изомеров с разветвленными цепочками при 0° С — около 90% [423]. В побочных реакциях даже при 0° С образуются также и более высоко- или низкокипящие углеводороды (гексаны, гентаны и изобутап). С увеличением температуры количество побочных реакций увеличивается [423, 397]. Несмотря на то, что термодинамические условия благоприятны, неопентан не показывает и признака изомеризации даже после 1000 часов обработки при комнатной температуре нет нигде сообщений о его присутствии в продуктах какой-либо изомеризации пептана. н-Пентан изомеризуется нри более мягких условиях, чем н-бутан. Изомеризация низкооктанового легкого сырья каталитического риформинга, содержащего к-нентан и гексаны, на практике осуществляется нри помощи хлористого алюминия [431]. [c.118]

    Разделение смеси углеводородов СаНщ отнюдь не простая задача. Этилбензол и орто-ксилол выделяют из смеси изомеров путем четкой ректификации. Мета- и пара-изомеры обладают очень близкими температурами кипения и не могут быть выделены в чистом виде дистиллятивным путем. Мета- и пара-ксжяоя выделяют при помощи дробной кристаллизации или же селективного сульфирования [346]. Кроме того, л<ета-ксилол способен образовывать комплекс со смесью HF—ВРз. Этот комплекс растворим в избытке фтористого водорода. [c.589]

    Важной особенностью хемоэкстрагентов по сравнению с обычными органическими экстрагентами является селективность при разделении углеводородов, имеющих одинаковое число л-связей, но различную структуру изо- и нормальных углеводородов (например, изобутилена и 1-бутена), транс- и ЫС-изомеров (например, транс- и цис-пш раленов) и т. п. Последнее особенно интересно, так как проблема разделения транс- и цис-пипериленов до сих пор не имела приемлемого технического решения. [c.677]

    Была изучена позиционная и субстратная селективность реакции алкилирования нафталина алкилгалогенидами (метил-, этил-, изопропил- и грет-бутилбромид) при контакте с А1С1з в растворах нитрометана и сероуглерода в условиях конкурирующих реакций с бензолом и нафталином. Установлено, что в сероводороде субстратная селективность, выраженная отношением н/ б, и позиционная селективность (отношение скоростей образования а- и р-алкилнафталинов) изменялись от условий реакции. Когда в качестве растворителя использовали нитрометан, отношение йн/ б и изомеров а-/р-алкилнафталинов при 25 °С оставалось постоянным в случае метилирования и этилирования [c.154]

    Первоначально пытались объяснить эти результаты, предполагая образование каталитического комплекса сенсибилизатора и добавки, но такое предположение не согласуется с отсутствием влияния комплекса без воздействия -квантов. Более естественно объяснить этот эффект на основе поглощения энергии тушителем возбужденного состояния гранс-изомера. В этом случае добавка стабилизирует молекулы гранс-олефина и позволяет селективно Перевести цис-тоиер в транс-. Олефины сами являются активными тушителями (сечение захвата у пропилена равно 0,46 нм про-,Тив 2,3-10-2 нм для пропана), и, естественно, они активно поглощают энергию возбужденных молекул сенсибилизатора. Таким рбразом, из проведенного рассмотрения ясны многостадийный ха- )актер передачи энергии при активированной цис-гранс-изомери-Йацйи и вероятность существования нескольких различных возбуж-ненных форм сенсибилизатора и олефина. [c.65]

    Растворители не только изменяют скорость реакции, но иногда влияют и на ее селективность спирты ускоряют образование транс-изомеров (в СН3ОН при полном превращении гептена-1 содержание гранс-изомеров в 5,6 раза больше по сравнению с цис-изомерами, в С2Н5ОН в 5,7 раза). Остальные растворители не оказывают существенного влияния на селективность при 60%-ной степени превращения гептена-1 в бензоле, ацетоне, нитробензоле и уксусной кислоте содержание гранс-изомеров в 1,5 раза больше, чем г ис-изомеров такое же соотношение соблюдается при проведении реакции без растворителя. [c.120]

    ПРИМЕНЕНИЕ ГОМОГЕННОКАТАЛИТИЧЕСКОЙ ИЗОМЕРИЗАЦИИ ОЛЕФИНОВ ДЛЯ СЕЛЕКТИВНОГО ПОЛУЧЕНИЯ ИЗОМЕРОВ [c.134]

    Обычно при изомеризации бутена-1 в бутены-2 в продуктах реакции преобладают транс-изомеры (см. табл. 57). Однако в ряде случаев, например для получения стереорегулярного каучука на основе бутадиена-1,3, необходимы jfu -изомеры. Преобладание 1 г1С-бутена-2 наблюдается при изомеризации бутена-1 в присутствии цеолита 10Х [11]. Изомеризацию бутена-1 в ц с-бутен-2 проводят в жидкой фазе при комнатной температуре, 2,1 МПа и объемных скоростях 5—15 ч в присутствии цеолита 10Х (размер пор 0,8 нм), активированного при 320°С. В этих условиях степень превращения бутена-1 составляла 5,2% (мольн.), а селективность его изомеризации в цмс-бутен-2 равна 95,7Сопроцессы в присутствии цеолитов с активированием -кванта-ми. Для изомеризации бутена-1 в бутен-2 при низких температурах используют облучение 7-квантами Со [12, 13]. Этот метод применяется в двух вариантах в первом случае изомеризацию проводят на предварительно облученном цеолите типа 13А, во втором облучению подвергают цеолит с адсорбированным на нем [c.182]

    Применение газоадсорбционной хроматографии (ГАХ) для разделения неуглеводородных соединений, как правило, затруднено из-за высокой адсорбируемости ГАС и необходимости использования недбнустимо больших температур для их десорбции. В связи с зтим в анализе компонентов нефти наиболее часто используются методы газо-жидкостной хроматографии (ГЖХ). Благодаря выпуску обширного лабора стационарных фаз, созданию высокочувствительных универсальных и специфических селективных детекторов [163], легкости варьирования условий проведения процесса эти методы позволяют четко разделять соединения различной химической природы. При этом используются самые малые различия в их свойствах, даже обусловленные оптической изомерией [164, 165]. Подбирая соответствующие стационарные фазы в газохроматографических колонках, можно реализовать любые принципы удерживания (сорбции). [c.21]

    Отмечено, что, подобно синтезу метакролеина (стр. 422), метакрилонитрил получается с более высокой селективностью, когда окислительному аммонолизу подвергают фракцию бутиленов без раздел 2НИЯ на изомеры. В этих условиях м-бутилены претерпевают оки лительное дегидрирование с высокоселективным образованием бут адиена  [c.427]

    Большое значение оказывают количество и активность катализатора, При небольших количествах катализатора и мягких условиях образуются в значительной,степени орто- и пара-то-меры. С увеличением количества катализатора возрастает содержание мета-томера. Кроме того, образование лега-изомера при мягких условиях наблюдается при высокой реакционной способности и низкой избирательности карбокатионов. В присутствии больших количеств катализатора ароматические углеводороды почти количественно превращаются в 1,3-диалкил- и 1,3,5-триалкилбензолы, что объясняется их большой основностью и соответственно стабильностью соответствующих сг-комплексов. Многочисленными примерами показано, что чем выше энергия у реагента (больше дефицит электронов), тем меньше его селективность как при атаке различных по основности ароматических углеводородов, так и отдельных положений монозамещенных ароматических соединений. Например, молекулярный бром (слабая кислота Льюиса) реагирует с толуолом в 600 раз быстрее, чем с бензолом, тогда как бром-катион из гипобромида (сильная кислота Льюиса) лишь в 36 раз. Подобный же эффект наблюдается для этих реагентов и при атаке различных положений толуола. В табл. 2.4 приведены факторы парциальных скоростей нитрования и галогенированЕя толуола и трет-бутилбензола. [c.42]

    Введением различных добавок к AI I3 можно менять селективность образования того или иного изомера алкилбензола. По-видимому, это объясняется тем, что в присутствии растворителя метилциклогексана и добавки изменяется структура промежуточного реакционного комплекса и прочность связи между органическими компонентами и катализатором в этом комплексе. Однако каталитические свойства и механизмы этих реакций изучены пока недостаточно. Но уже сейчас можно отметить ряд важных для катализа особенностей этих соединений. Одна из них —большее число, чем с AI I3, вероятных маршрутов химических превращений. [c.146]

    Исходя из относительных скоростей дегидрирования и изомери-зации циклогексана можно было ожидать, что наибольшая селективность его превращения в бензол будет достигнута при больших объемных скоростях пропускания углеводорода. Так, в той же работе было показано, что при увеличении объемной скорости подачи циклогексана (и) содержание метилциклопентана (МЦПа) в катализате снижается, а содержание бензола (Б) растет. [c.17]


Смотреть страницы где упоминается термин Селективность к изомерам: [c.179]    [c.115]    [c.119]    [c.322]    [c.173]    [c.180]    [c.134]    [c.135]    [c.135]    [c.275]    [c.316]    [c.177]    [c.227]   
Смотреть главы в:

Молекулярные основы адсорбционной хром аграфии -> Селективность к изомерам




ПОИСК







© 2025 chem21.info Реклама на сайте