Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитическая способность сплавов

    Была исследована также каталитическая активность сплавов серебра с алюминием, магнием, медью, цинком, галлием, германием, селеном, индием, кадмием, оловом, теллуром, висмутом [138]. Показано, что степень превращения метанола на серебре и его сплавах с различными добавками, за исключением цинка, германия, галлия, висмута возрастает с увеличением отношения Оа СНзОН. Селективность процесса окисления в формальдегид на серебре и его сплавах с теллуром нечувствительна к повышению этого отношения, тогда как у сплавов серебра с германием, галлием и индием — увеличивается, а у остальных уменьшается. Введение в серебро 10% магния [139], меди и кадмия увеличивает дегидрирующую способность катализатора, повышая тем самым общую конверсию метанола, а присутствие селена и сурьмы увеличивает селективность процесса. Существенно пониженной каталитической активностью обладают сплавы серебра с цинком, галлием и германием. Сплавы серебра с алюминием, теллуром, оловом по сравнению с чистым серебром также проявляют пониженную активность. Однако по другим наблюдениям, добавки алюминия интенсифицируют процесс [140]. Для сплавления с серебром рекомендуется платина (0,45—0,75%>) [113]. Есть указания на целесообразность применения в качестве добавок и оксидов некоторых металлов молибдена (VI) [141], титана (IV), магния и кальция [142]. В последнем случае массовая доля серебра составляет от 5 до 30% от всего катализатора. Предложено использовать в качестве добавок к серебру пероксиды щелочных и щелочноземельных металлов [114], а также соли серебра — карбонаты и оксалаты [143]. Однако сведений о практическом применении сплавов и модифицирующих добавок пока нет. [c.55]


    КАТАЛИТИЧЕСКАЯ СПОСОБНОСТЬ СПЛАВОВ [c.28]

    Весь экспериментальный материал по исследованию каталитической способности сплавов можно разделить на три группы. [c.31]

    Катализаторы - это вещества, которые, изменяя скорость реакции, сами после реакции остаются химически неизменными. Без применения катализаторов скорость реакции окисления диоксида серы очень мала. Применение катализаторов позволило многократно увеличить скорость реакции. Способностью ускорять окисление 302, то есть каталитической способностью обладают различные металлы, их сплавы и оксиды, соли и многие другие вещества. [c.13]

    Рассмотрим более подробно и систематически исследования каталитической способности сплавов, разделив весь экспериментальный материал на 3 части. [c.32]

    Поэтому возникают следующие вопросы каков средний состав поверхности сплава по отношению к составу объемной фазы катализатора, как атомы металлов-катализаторов группируются на поверхности, какова относительная способность этих атомов или их агрегатов к образованию связей с адсорбируемыми молекулами Вопрос о составе поверхности довольно подробно обсуждается в других главах, здесь же достаточно заметить, что в равновесных условиях можно ожидать обогащения поверхности компонентом с меньшей поверхностной энергией, как это часто наблюдается в действительности. Кроме того, обогащению способствует хемосорбционная специфичность одного из компонентов сплава. Очевидно, что перечисленные факторы значительно усложняют интерпретацию каталитической активности сплавов. [c.29]

    Общая и эффективная удельная каталитическая активность сплавов больше, чем у чистых компонентов (см. рис.). Как показано ранее, с изменением химического состава меняется адсорбционная способность по водороду, энергия его связи, фазовый состав и структура катализаторов [1], а также связанные с этим величины их истинной и оптимально используемой поверхности. Все эти факторы так же, как различия в энергетической однородности поверхности и адсорбционной способности катализаторов по отношению к веществу и продуктам реакции, влияют на их активность и определяют оптимальные составы для данной реакции. Максимум эффективной удельной активности в реакции электровосстановления нитрометана (см. рис.) отвечает составу катализатора с 24 вес. % осмия, являющемуся однофазным твердым раствором на основе платины. [c.252]


    Ниже дается краткий обзор литературы по растворению сплавов, их каталитической способности, превращениям в сплавах и др. [c.16]

    Уже заранее можно было предположить, что структура сплава будет оказывать очень сильное влияние на его каталитическую способность. Так оно и оказалось в действительности. [c.32]

    Часто каталитические свойства металла или сплава зависят от их способности хемосорбировать определенные компоненты среды. Поэтому неудивительно, что переходные металлы обычно являются хорошими катализаторами и что электронные конфигурации в сплавах, благоприятствующие каталитической активности и пассивации, сходны между собой. Например, если палладий, содержащий 0,6 -электронных вакансий на атом в металлическом состоянии, катодно насыщен водородом, он теряет свою каталитическую активность для ор/по-па/>а-водородной конверсии [59] -уровень заполнен электронами растворенного водорода, и металл не может больше хемосорбировать водород. По каталитической эффективности Рё—Аи-сплавы аналогичны палладию, пока не достигнут критический состав 60 ат. % Аи. При этом и большем содержании золота сплав становится слабым катализатором. Золото, будучи непереходным металлом, снабжает электронами незаполненный уровень палладия магнитные измерения подтверждают, что -уровень заполнен при критической концентрации золота. Результаты исследований каталитического влияния медно-никелевых сплавов различного состава на реакцию 2ННа представлены на рис. 5.17. При 60 ат. % Си и [c.98]

    Как известно,свойства таких сплавов изменяются с составом постепенно, не обнаруживая резкого скачкообразного изменения. Следовательно, и каталитическая способность твердых металлических растворов будет [c.32]

    В разд. 4.2 сообщалось о влиянии химической природы материала насадки на разделяющую способность колонны. Насадки для лабораторных колонн в основном изготавливают из стекла, фарфора, глины, различных металлических сплавов и в последнее время также из пластмасс. Предпочтение обычно отдают стеклу и керамическим материалам благодаря их коррозионной стойкости в среде агрессивных жидкостей. Преимущество фарфора заключается в том, что он после обжига становится твердым и не содержит железа, которое может оказывать каталитическое воздействие на разделяемые вещества. Проволочные или сетчатые насадки из нержавеющей стали У2А обеспечивают наибольшую эффективность разделения. [c.415]

    Другой механизм может быть обусловлен развитием водородного растрескивания вдоль границ зерен сенсибилизированного сплава. Разрушение в этом случае протекает в кислой среде, так как она поставляет водород, необходимый для коррозионного процесса. Кислая среда способствует также образованию молекулярной формы НаЗ (а не Н5 или 5 "), которая является основной каталитической примесью, стимулирующей абсорбцию сплавом атомарного водорода. Показано, что водные растворы ЗОг так же, как и растворы политионовых кислот, вызывают межкристаллитное растрескивание сенсибилизированной стали 18-8. Это объясняется быстрым восстановлением 50з на катодных участках с образованием НгЗ или других аналогично действующих продуктов восстановления. Ионы 50 не способны к такому восстановлению, поэтому серная кислота вызывает растрескивание в значительно меньшей степени. [c.323]

    Согласно мнению еще одной группы исследователей при синтезе алмазов под давлением б системе жидкий металл — углерод роль катализаторов сводится к образованию нестойких карбидов. Эти карбиды являются промежуточными соединениями и, распадаясь, дают алмаз. Предложено много формул для таких карбидов, проведены расчеты равновесий и, исходя из этого, сделаны попытки объяснить каталитическую роль каждого из примененных металлов или сплавов. В этой гипотезе требование, чтобы металл-катализатор был жидким, уже не является необходимым, так как наличие жидкой фазы только резко ускоряет процесс за счет высокой подвижности атомов металла и большей реакционной способности его по сравнению с твердым состоянием. [c.137]

    Каталитическая очистка от органических веществ основана на каталитическом окислении или восстановлении примесей. Активные компоненты катализаторов, используемых для очистки отходящих газов, можно разделить на три группы благородные металлы сплавы оксидные системы. Они должны окислять более 90% (об.) СО и углеводородов в широком интервале температур (250-800 °С) в присутствии воды ( 15%) и не должны отравляться соединениями серы. Наиболее распространены платиновые катализаторы вследствие способности ускорять самые различные реакции превращения органических соединений в окислительных и восстановительных средах (окисление, гидрирование и т.д.). Для обезвреживания газов используются и более дешевые катализаторы на основе оксидов неплатиновых металлов (N1, Си, Сг, Мп). [c.440]


    Первая наша работа в этой области была посвяш,ена исследованию каталитической активности, хемосорбционной способности и магнитных характеристик ряда сплавов никель — медь [1]. Катализаторы готовили совместным осаждением карбонатов меди и никеля, с последуюш,им восстановлением до металлов. Рентгеновским и магнитным методами было показано, что при этом образуются такие же твердые растворы, как и при сплавлении этих металлов. Магнитные измерения полученных сплавов показали, что магнитный момент образцов падает по мере повышения содержания меди в сплаве, причем значение его достигает нуля (заполнение с -зоны сплава) при содержании около 80% меди в сплаве. Удельная каталитическая активность (при гидрировании бензола) и хемосорбционная способность (по адсорбции сернистых соединений) изменяются аналогичным образом (рис. 1). [c.182]

    Часто каталитические свойства зависят от способности металла или сплава хемосорбировать определенные компоненты из окружающей среды. Поэтому неудивительно, что переходные металлы — хорошие катализаторы и что электронные конфигурации в сплавах, способствующие каталитической активности, подобны электронным конфигурациям, благоприятствующим пассивности. Например, когда палладий, который в металлическом состоянии имеет 0,6 вакансий -электронов на атом, катодно насыщается водородом, он теряет свою каталитическую эффективность для орто-параводородной конверсии 132]. Такое поведение объясняется заполнением -уровня электронами растворенного водорода, в результате чего хемосорбция водорода на металле прекращается. Аналогично каталитическая эффективность сплавов Pd—Au подобно каталитической эффективности Pd имеется до тех пор, пока в сплаве не будет достигнута критическая концентрация Au, равная 60% (ат.). При этом содержании золота и выше сплавы становятся плохими катализаторами. Золото — непереходный металл, отдает электроны незаполненным -связям палладия. Магнитные измерения подтверждают, что -связь становится заполненной как раз при критической концентрации золота. Аналогичность условий, влияющих на пассивность и каталитическую эффективность, подтверждает, что пассивные пленки на переходных металлах и их сплавах являются хемосорбиро-ванными. Вопросы пассивности обсуждены в литературе [331. [c.78]

    Сплавы меди, состоящие из одного или нескольких металлов, обладающих способностью окисляться при нагревании в присутствии воздуха и при реакции легко восстанавливаться, считают каталитическими активными ве-ществами. Например сплавы, имеющие состав 1) медь 85%, магний 15%  [c.298]

    Один из недостатков насадок, изготовленных из металлов или сплавов, состоит в том, что они подвергаются коррозии. Поэтому рекомендуется применять насадки из никеля или нержавеющей стали. При высокой температуре металлические насадки могут оказывать каталитическое воздействие на перегоняемые вещества (например, дегидрирование некоторых сесквитерпеновых углеводородов). В этих случаях предпочтительнее использовать насадку из керамики или стекла. К насадкам такого типа, помимо вышеупомянутых колец Рашига или стеклянных шариков, относятся так называемые седла Берла из фарфора. Однако все эти насадки имеют низкую эффективность например, ВЭТТ для седел Берла размером 4 мм составляет только 5—6 см в зависимости от выбранной пропускной способности [8]. Более выгодны цилиндры, изготовленные из стеклянной ткани (например, из изоляционного шланга, используемого в электротехнике). Шланг из стекловолокна надевают на подходящий стержень, например на стеклянную палочку, и разрезают на куски нужной длины (например, 4 мм при диаметре 4 мм). Стеклоткань обжигают в пламени для удаления из нее пропитки из искусственной смолы. По сравнению с металлической насадкой насадки из стекла имеют ряд недостатков. Во-первых, стеклянные частицы очень хрупки и легко ломаются, во-вторых, стеклянная насадка имеет большую динамическую задержку, чем аналогичная насадка из металлической сетки. Детальное описание способа изготовления стеклянной насадки приведено в работе [129]. [c.247]

    В химическом отношении железо, кобальт и никель — металлы средней активности. При отсутствии влаги они в обычных условиях не реагируют с кислородом, серой, хлором, бромом, В мелкодисперсном состоянии Ре, Со, N1 обладают повышенной реакционной способностью. Так, порошки этих металлов, полученные восстановлением их окислов водородом, пирофорны. Пирофорными свойствами обладают также металлы с так называемой скелетной структурой, находящие широкое применение (особенно N1) в каталитической практике. Получают скелетные катализаторы обычно выщелачиванием сплава данного элемента с растворимым в воде или щелочи элементом, чаще всего алюминием. [c.720]

    Изучение сорбционных свойств катализаторов плавов и их поведения в жидкофазном катализе при различной степени насыщения водородом приобретает весьма актуальное значение. Применение электрохимических методов для такого рода исследований позволит найти зависимость между сорбционной способностью и каталитической активностью металлов-катализаторов, а также их сплавов. [c.151]

    Платина и палладий обладают высокой сорбционной способностью по отношению к водороду и каталитической активностью в реакциях гидрирования [1—2]. При исследовании растворения и адсорбции водорода бинарными сплавами палладия показано [3—4], что введение в палладий добавок приводит к изменению прочности связи Ме — Ни сокращению протяженности участка фазового перехода, что существенно влияет на их каталитическую активность. [c.151]

    Настоящая работа посвящена изучению сорбционной способности Pd—Ni- и Pt—Re-сплавов по отношению к водороду, которая сопоставлена с каталитической активностью при гидрировании различных классов органических соединений. [c.151]

    Активность Pt—Ке-сплавов, содержаш их до 50% рения, увеличивается, несмотря на уменьшение адсорбционной способности (см. табл. 2), что свидетельствует об отсутствии прямой зависимости между скоростью каталитического гидрирования и количеством адсорбированного водорода. Это, по-видимому, обусловлено укреплением связи Ме—Н и повышением скорости воспроизводства реакционноспособного водорода. [c.156]

    Таким образом, исследования каталитической способности сплавов позволяют сделать вывод, что энергия активации катализируемой реакции является функцией структуры и концентрации катализатора. В случае гомогенных сплавов энергия активации изменяется непрерывно с составом смешанного металлического катализатора. Если же в сплавах имеет место процесс упорядочения, то интерметал.лпческие соединения обладают более высокой каталитической способностью, чем неупорядоченные сплавы того же состава. [c.36]

    Обзор работ по изучению каталитической способности сплавов показал целесообразность исс.ледованпй подобного рода. Изучение смешанных металлических катализаторов у Рпнэкера с сотрудниками преследовало цели чисто прикладного характера, тем не менее достаточно убедительно была вскрыта общая закономерность в изменении каталитическо активности сплавов при изменении их состава. [c.41]

    Отметим, что химическая активность зависит от состояния, в котором компоненты участвуют в реакции. Каленберг [139] обратил внимание на то, что аммиак и химически чистый хлористый водород не реагируют с заметной скоростью, в то время как добавление бензола вызывает немедленное взаимодействие. На основании этого исследования предполагают, что бензол облегчает образование стойкого коллоидального хлорида аммония, который каталитически ускоряет соединение хлористого водорода и аммиака. Френд [103] применил эту теорию автокаталитического действия для объяснения способности сплавов участвовать в качестве промоторов или ингибиторов (Ag-.Си-промотор N1—Зп — ингибитор) в процессах коррозии железных сплавов и цветных металлов. Тот факт, что добавление щелочных карбонатов к воде не только не препятствует коррозии, но, наоборот, способствует более быстрой [c.371]

    Результаты, полученные на ряде сплавов Р — Аи, нанесенных на силикагель, характеризуют дальнейшую плодотворность применения толуола в исследовании реакционной способности алкилбензолов. Хотя работа находится на ранней стадии, уже установлено, что при 601%-ном содержании Аи в сплаве происходит изменение каталитических свойств сплавов в реакциях гидрирования и обмена. Реакция гидрирования не наблюдается при содержании Р(1 в спла,ве ниже 40%, как сообщалось для превращения бензола на Си — Р(1-сплавах, хотя реакция обмена в кольце еще обнаруживается. Это, вероятно, подтверждает теорию Гэрнетта, но необходимы дальнейшие доказательства. [c.282]

    Исследовались и другие пути. Несколько лет тому назад Толлей сравнивал каталитическое окисление ЗОг в ЗОз на чистой стали, на стали, покрытой алюминием методом напыления и алюмйнизированной стали (получавшейся путем нанесения сплава алюминия с кадмием и последующего нагревания с целый испарения кадмия в результате на поверхности должен получиться сплав железа с алюминием). В случае применения последнего процесса получения алюминиевого покрытия скорость реакции окисления 30а в ЗОз была значительно ниже, чем на чистой стали это, несомненно, связано с низкой каталитической способностью окиси алюминия, образовывавшейся на поверхности металла. Хотя подобные эксперименты и не имели прямого отношения к котлам, работающим на нефти, они представляют некоторый практический интерес и для них однако на их основе нельзя сделать вывод, что покрытием железа алюминием или его сплавами можно полностью избежать каталитического действия [99]. [c.430]

    В работах Бика [26], Кембзла [27] и других быJгa показана связь гидрирующей способности металлов и сплавов с пррцентои -состояния, что свидетельствует о комплексообразовании как первичном акте в этих реакциях. Таким образом, наличие вакантных d-электронных орбит является условием каталитической активности металлов в реакциях окисления, восстановления и ряде реакций присоединения. [c.157]

    Одной из стадий образования каталитического углерода является диффузия углеродных атомов через металлическую частицу вследствие различия конценфации углеродных атомов вблизи фани, где происходит разложение углеводорода, и вблизи фаней конденсации фазы фафита. Направленная диффузия атомов углерода, происходящая при повышенных температурах, приводит и к перемещению атомов мафицы (Си и Ni). Этот эффект может быть выражен тем в большей степени, чем больше способность компонентов к образованию химической связи с углеродом. Объемной диффузией атомов можно объяснить расслоение и фрагментацию исходного монокристалла сплава в процессе роста углеродной нити. [c.64]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Большой интерес представляют так называемые скелетные катализаторы, получаемые сплавлением никеля или другого металла с алюминием. Такой сплав выщелачивают—обрабатывают раствором щелочи. Получаемый в результате выщелачивания пористый металл ( скелет ) обладает высокой каталитической активностью. Впервые скелетный катализатор был получен Ре-неем (1924 г.). Необходимо отметить, что восстановленные катализаторы и катализаторы Ренея обладают пирофорными свойствами, т. е. способны разогреваться и даже раскаляться на воздухе, что может быть причиной возникновения пожара. Во избежание этого катализаторы необходимо хранить в атмосфере водорода или инертного газа (N5, СО2). [c.134]

    Одним из интереснейших аспектов реакций каталитического гидрирования и дегидрирования является попытка связать активность катализатора в данной реакции со структурой катализатора. Баландин [40, 41] отметил, что циклогексан и вещества с аналогичными шестичленными циклами (декалин, пиперидин, циклогексены) могут дегидрироваться на многих металлах, экспонирующих атомы октаэдрических плоскостей при соответствующих расстояниях между ними, как показано н табл. 30, где эти металлы заключены в квадраты. Объемноцентрированные решетки не могут экспонировать октаэдрические грани. Баландин считает, что циклическая молекула адсорбируется физическими силами на поверхности в определенном положении по отношению к нескольким атомам металла, так что атомы водорода могут притягиваться к определенным атомам металла, а С — Н-связи — растягиваться. Это мультиплетная теория адсорбции. Обратную реакцию — гидрирование бензола — изучили Лонг, Фрезер и Отт [42], Эммет и Скау [43]. Первые из них [42] изучили гидрирование на железе, кобальте, никеле и меди и на бинарных сплавах этих металлов и на основании рентгенографического исследования пришли к заключению, что активны только металлы, способные экспонировать октаэдрические плоскости. Эммет и Скау [43] установили, что в дополнение к экспонированию октаэдрической грани межатомные расстояния должны лежать в определенных пределах, указанных в табл. 30. Так, серебро и железо неактивны, а кобальт, никель и палладий активны, тогда как сплавы обнаруживают промежуточные активности (табл. 31). Имелись сообщения, что железные пленки могут катализировать [c.286]

    Таким образом, для данной системы сплавов найдена четкая корреляция между изменениями удельной активности (на единицу поверхности образцов), хемосорбционной способности и магнитными свойствами этих катализаторов. Это указывает на определенные связи между наличием у металлов неспаренных -электронов и их каталитическими свойствами. Было показано, что при изменении состава сплавов энергия активации гидрировапия бензола остается постоянной (около 14 ккал/молъ), так же как и кинетические закономерности этой реакции. Отсюда следует, что изменение каталитической активности указанных сплавов отражается на изменении значений предэкспоненты в уравнении Аррениуса. [c.182]

    По мере заполнения -зоны, с повышением содержания меди в сплаве, условия для адсорбции ухудшаются, энергия активации адсорбции резко возрастает, вследствие чего скорость адсорбции падает и адсорбция может оказаться лимитируюш,ей стадией процесса. По-видимому, это явление и происходит па поверхности никель-медных сплавов с содержанием меди 80% и выше в результате возникает резкий спад каталитической активности и хемосорбционной способности в этой области. Такая точка зрения находит подтверждение в данных [6] по энергии активации адсорбции водорода на никеле она близка к нулю, а па меди составляет около 20 ккал/молъ. Последнее значение существенно превышает величину энергии активации процесса гидрировапия бензола, полученную в данной работе и приписываемую стадии поверхностного взаимодействия. Кроме того, если вследствие заполнения -зоны в области концентраций меди около 80% энергия активации адсорбции водорода повышается настолько, что адсорбция начинает лимитировать скорость процесса, то резкое падение активности в этой области составов должно быть общей чертой большинства процессов гидрирования, проводимых на никель-медных катализаторах. Экспериментальные данные [7] по гидрированию этилена, коричной кислоты и пара — орто-превращению водорода подтверждают этот вывод. [c.185]

    Цинк, кадмий и ртуть являются элементами побочной подгруппы И группы периодической системы. По химическим свойствам цинк и его соединения сходны G магнием и бериллием. С другой стороны, окислы металлов подгруппы цинка непрочны, они легко восстанавливаются, окислы и сульфиды являются полупроводниками, причем окись цинка, имея в междоузлиях кристалла избыточный цинк, проявляет электронную проводимость. Все эти свойства делают их сходными с элементами VIII группы и подгруппы меди. Двойственность химических и физических свойств соединений металлов подгруппы цинка сказывается и на их каталитических свойствах. Так, кроме того, что они являются катализаторами ионных процессов, они способны катализировать и реакции окислительно-восстановительного типа гидрирования, дегидрирования, восстановления, окисления и др. Из металлов в качестве катализаторов применяются цинк, часто скелетный и в сплавах, кадмий, ртуть (в основном, в виде амальгам). [c.101]

    Активность этих катализаторов, как видно из таблицы, определяется фазовым составом исходных сплавов. Наибольшую каталитическую активность при гидрировании проявляют катализаторы, приготовленные из высших алюминидов PtAl4 и PdAls. С увеличением содержания платиноидов в исходных сплавах удельная активность и адсорбционная способность катализаторов резко снижаются. [c.302]


Смотреть страницы где упоминается термин Каталитическая способность сплавов: [c.381]    [c.133]    [c.31]    [c.22]    [c.55]    [c.21]    [c.317]    [c.480]    [c.26]    [c.239]    [c.273]    [c.170]   
Смотреть главы в:

Кинотехнический метод физико-химического анализа -> Каталитическая способность сплавов




ПОИСК







© 2022 chem21.info Реклама на сайте