Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ препаратов меди

    Анализ препаратов меди [c.202]

    Метод окисления. Из методов окисления наиболее удобен при определении пестицидов йодометрический метод (йодометрия), который используется для количественного анализа арсенитов и арсенатов, препаратов меди (АБ, хлорокиси меди), формалина, хлорной извести. [c.51]

    Первая работа по распределительной хроматографии на целлюлозе была выполнена еще в 1949 г. [122] в процессе анализа сплавов, содержащих никель, кобальт, медь и железо. Тогда же был разработан метод отделения ртути от меди, висмута, свинца н кадмия. В дальнейшем Ф. Бар-стелл с сотрудниками [123] применил хроматографию на целлюлозе для выделения урана из руд. Впоследствии разработанная ими методика была использована для получения препаратов урана спектральной чистоты, для очистки урана от продуктов деления. [c.174]


    Выполнение анализа. Навеску вещества 0,1—0,2 г в зависимости от содержания азота, взвешенную с погрешностью не более 0,0002 г, помещают в колбу Кьельдаля вместимостью 150—200 мл, прибавляют сульфат меди и селен (оба препарата на кончике ножа), приливают 20 мл концентрированной серной кислоты и кипятят раствор в колбе на электроплитке до обесцвечивания, затем продолжают нагревание еще 1 ч. [c.69]

    К 50—100 мл анализируемого раствора прибавляют достаточное количество комплексона и подщелачивают аммиаком. Затем осаждают медь 1 %-ным раствором купраля, прибавляя его в небольшом избытке. Образующуюся муть встряхивают с Ъ мл этилацетата. После отделения органического слоя водный слой сливают в другую делительную воронку и снова экстрагируют. Соединенные экстракты, обычно мутные вследствие захваченной воды, делают прозрачными добавлением 2—5 мл этанола и в мерной колбе емкостью 25 мл разбавляют растворителем до метки. Раствор переносят в кювету фотоколориметра (лучше через сухой фильтр) и определяют светопоглощение. Для измерения авторы применили зеленые светофильтры и кюветы шириной 20 мм. Можно установить содержание меди в количестве 10—500 мкг в 25 мл растворителя. Другие элементы, кроме висмута в больших концентрациях, образующего тиокарбамат, окрашенный в желтый цвет, не мешают определению. Метод пригоден для определения следов меди в различных солях. Так, например, в сульфате никеля для анализа фирмы Мерк с максимальным содержанием меди 0,005% было найдено в различных образцах 0,0004, 0,0004 и 0,0009% Си. Содержание меди в подобных препаратах можно установить с точностью 0,0001% Си. [c.121]

    Безуглый В. Д. и Измайлов Н. А. Применение полярографического метода анализа к контролю лекарственных препаратов цинка. [Определение следов свинца и кадмия в препаратах цинка с использованием в качестве фона солей цинка. Определение цинка в различных лекарственных смесях] Мед. пром-сть СССР, 1951, № 3, с. 31—36 Библ. 14 назв. 3064 [c.128]

    Больщое значение ионный обмен имеет в агрохимии, процессах жизнедеятельности и химическом анализе. Метод ионообменной сорбции применяют для умягчения или обессоливания воды (например, для опреснения морской воды), удаления солей из сахарных сиропов, молока, вин, растворов фруктозы, дубильных веществ, продуктов гидролиза сельскохозяйственного сырья, растворов лекарственных препаратов (антибиотиков, витаминов, алкалоидов), для удаления ионов кальция из плазмы крови перед ее консервацией, для очистки от минеральных ионов растворов органических реагентов, для очистки сточных вод от фенола и тяжелых металлов, а также для извлечения (концентрирования) ценных ионов, находящихся в микродозах в растворе (например, редкоземельных элементов). Ионный обмен широко применяют в гидрометаллургии — для извлечения благородных, цветных и редких металлов из сбросных растворов (например, ионов из стоков гальванических цехов), для улавливания и концентрирования радиоактивных ионов и ионов меди из стоков медноаммиачного производства искусственного шелка [4]. [c.167]


    II), могут улетучиваться лишь в незначительных количествах, если отгонка проводится при соблюдении требуемых условий однако ни один из них в таких количествах не мешает колориметрическому определению мышьяка. Для восстановления пятивалентного мышьяка до трехвалентного применяют такие восстановители, как гидразинсульфат, хлористую медь, сернистокислое железо, сернистую, йодистоводородную или бромистоводородную кислоты. Недостатком этого метода является то, что отгонка малых количеств мышьяка не применима при анализе веществ, образующих легколетучие хлориды. Данный метод успешно применен для определения следовых количеств мышьяка в нержавеющей стали [7], металлической сурьме [8] и других препаратах с малым содержанием мышьяка [9]. [c.184]

    Таким образом, были найдены общие условия для одновременного определения Ре, Mg, А1, Мп, Т1, Си, Сг, N1 и 51 в металлическом гафнии и его препаратах. При анализе металлический гафний или его сплавы предварительно переводятся в окислы прокаливанием при температуре 1000° С в нагретой струе кислорода. Полученную двуокись смешивают с хлористым серебром и порошком серы в отношении 4 2 1 (по массе). Смеси в количестве 35 мг помещают в кратер предварительно прокаленного графитового электрода с наружным диаметром 6 мм, диаметром и глубиной кратера 3,8 и 7 мм соответственно и проводят регистрацию спектра в течение 45 сек. В качестве стандартных образцов используются синтетические смеси двуокиси гафния, хлористого серебра и серы, приготовленные в таком же соотношении. Аналитические графики строятся в координатах lg /л ф — lg С. Поскольку температура кипения хлористого кальция выше, чем хлористого серебра, испарение кальция начинается лишь после испарения хлористого серебра, что невыгодно, поэтому рекомендуется применять в качестве реагента бромистую медь. Температура кипения бромида кальция (800° С) ниже температуры кипения бромистой меди (1366° С), вследствие чего реакция проходит более полно, и чувствительность определения повышается. Спектры регистрируют на кварцевых спектрографах ИСП-22, ИСП-28 или КСА-1. [c.429]

    Но последний случай оказывается особенно желательным в случае качественного анализа со снимками, полученными высокочастотным методом, так как он помогает быстро ориентироваться относительно связи спектральных линий с препаратом или противоположным электродом. На рис. 16 приведен снимок внутренности яблочной косточки, полученный высокочастотным методом с золотой проволокой в качестве противоположного электрода. Снимок этот получен с большим спектрографом Ц е й с с а при фокусном расстоянии от чечевицы коллиматора в 40 см, расстоянии искры от щели 5 см и без отображающей чечевицы. С первого же взгляда бросается в глаза группа спектральных линий в нижней части спектра и другая группа их в верхней части. Только самые сильные линии переходят — правда, с все убывающей интенсивностью — в другую половину спектра. Эта интенсивность, проходящая через весь спектр сверху до низу, обусловлена равномерным освещением щели разницы в интенсивности возникают из-за названного выше неясного изображения самого источника света на щели, потому что расстояние между чечевицей и источником света лишь на 12% больше, чем фокусное расстояние чечевицы. Таким образом сейчас же можно определить, какие спектральные линии исходят от золотого электрода и какие От препарата (Мд, Ре, Мп, 51, Р, В). Это может иметь и очень большое принципиальное значение. Нам придется еще и в других местах упоминать, что никогда нет гарантии в полной чистоте противоположного (второго) электрода. Так чистейший золотой электрод всегда еще содержит следы меди, серебра, а также свинца и других элементов. Уже и сама по себе слабая интенсивность основных линий второго электрода предполагает тем более слабую интенсивность спектральных линий его примесей. [c.23]

    ОПРЕДЕЛЕНИЕ ВИСМУТА, МЕДИ И СВИНЦА В АЗОТНОКИСЛОМ КОБАЛЬТЕ. Ю. А. Давыдовская. Методы анализа химических реактивов и препаратов, вып. 18, М., ИРЕА, 1971, стр. 142 [c.214]

    В ряде работ микроанализ газов сводится к измерению их объемов в капиллярных трубках и к последующему поглощению отдельных компонентов газовой смеси различными абсорбентами. На этом принципе в Институте химической физики АН СССР [53] был разработан прибор для микроанализа газов, дающий возможность измерять количества газа порядка 0,5 мл с ошибкой, не превышающей 1 %. Для устранения растворения газов в воде, были применены сухие поглотители, которые в виде крупинок помещали в платиновую петлю, впаянную в стеклянную палочку. В отдельных случаях применяли жидкие поглотители, которыми пропитывали кусочки пористого стекла. Пары воды поглощались фосфорным ангидридом, двуокись углерода — слегка влажным КОН. Этилен поглощался нанесенной специальным методом на кусочки пористого стекла серной кислотой, содержащей 25% ЗОз по окончании поглощения, которое длится 5 мин., в смесь газов вводили кусочек КОН для удаления паров 80з. Поглощение ацетилена производили пастой, приготовленной из однохлористой меди и гидрата окиси калия полное поглощение ацетилена этой пастой происходит в течение 2—3 минут. Кислород определялся желтым фосфором, который плавился в специальной ложечке, погруженной в нагретую до 50° воду после этого в ложечку вводили платиновую петлю. Обливая ложечку холодной водой, получали фосфор в виде застывшего на петле шарика. Окись углерода окислялась, а затем поглощалась активной окисью серебра, осажденной из раствора А КОз крепким раствором КОН. Осадок тщательно промывали и фильтровали. Слегка влажную окись серебра хранили в склянке с притертой пробкой, а перед анализом препарат прессовали и укрепляли на платиновой проволочке с помощью капли концентрированного раствора жидкого стекла. Горючие компоненты газовой смеси сжигали в микронипетке, схематически изображенной на рис. 73. Основная часть микропипетки для сожжения 1 закрыта сверху капиллярным краном 2, а снизу — обыкновенным краном 3, на стеклянную оливку [c.189]


    В одних случаях необходимо установить общее содержание элементов, ионов или наиболее простых соединений, входящих в состав материала. При анализе хлористого магния определяют содержание магния и хлора в препарате. При аиализе бронзы определяют общее содерукание меди, олова, фосфора и т. д. При анализе глины определяют содержание двуокиси кремния, окиси железа, окиси алюминия и других компонентов. При анализе природных вод определяют содержание катиоиов Са % Ма , а также анионов НС0 7, 50 и СГ. Задачи такого рода решает общий химический анализ. [c.13]

    Существуют специальные микрополярографы, на которых можно определить 10 ° г вещества в 0,01 мл раствора. Полярографический анализ широко применяется в анализе лекарственных веществ, в биохимии, фармации и клинических анализах. Полярографически определяют следы примесей в химико-фармацевтических препаратах и химических реактивах, например, присутствие меди в растворах лимонной кислоты, чистоту хирургического эфира, содержание формальдегида в таблетках. Кроме металлов, многие органические соединения способны восстанавливаться на ртутном капельном электроде, например, хингидрон, оксигемоглобин, никотиновая кислота, пиридин, ацеталь-дегид, ацетон. [c.512]

    Важнейшие проблемы современной Р. следующие 1) развитие методов подготовки ядерного горючего для ядерных реакторов АЭС и переработки облученного ядерного горючего 2) разработка эффективных методов радионуклидной диагностики производств, и исследоват. систем, особенно с применением короткоживущих радионуклидов, быстрый полный распад к-рых обеспечивает безвредность последующего использования соответствующих в-в 3) получение широкого ассортимента фармакологич. и иных мед. препаратов, содержащих радионуклиды типа Тс для диагностики и лечения разл. заболеваний 4) обеспечение безопасных методов обращения с отходами, особенно высокорадиоактивными, и перевода высокорадиоактивных отходов в формы, пригодные для длительного безопасного захоронения в спец. колодцах, геол. формациях и т. д 5) развитие методов радиохим. анализа и непрерывного контроля (мониторинга) радиоактивности окружающей среды. Авария в Чернобыле (1986) стимулировала работы по новым эффективным методам радиохим. дезактивации и др. радио-экологич. вопроса.м. [c.173]

    Красное окрашив ние дитизоната одновалентного таллия позволяет определять его малые количества. Метод применен для определения таллия в фармацевтических препаратах [282] и при токсикологическом анализе [580, 600]. Одновалентный таллий определяют также экстрагированием в виде диэтилдитиокарбамината бледно-желтый или почти бесцветный экстракт при обработке солью меди приобретает бурую окрас- [c.119]

    Около 0,1 г препарата (точная навесча) помещают в колбу Кьельдаля емкостью 100 мл, прибавляют растертую в порошок смесь из 1 г сульфата калия, 0,3 г сульфата меди и 0,5 г глюкозы, приливают 10 мл концентрированной H2SO4 и сжигают до обесцвечивания раствора. Далее поступают, как описано в анализе ацетонитрила. Параллельно ставят контрольный опыт на реактивы. [c.192]

    Титрование раствором иодида калия. Из неорганических реагентов чаще всего применяется ирдид калия. Титрование проводят в аммиачной [426, 481] или щелочной среде в присутствии 4-сульфо-амидобензойной кислоты [845]. В качестве индикаторных электродов служат серебряный или другие электроды. При анализе вторичных сплавов, содержащих палладий и платину, серебро вначале осаждают в виде хлорида, осадок растворяют в аммиаке (1 1) и титруют иодидом калия [426]. При анализе медицинских препаратов — протаргола и колларгола — железо, медь и свинец связывают винной кислотой [482]. Посредством иодида калия можно определять ультрамикроколичества серебра [755, 1141, 1445, 1669]. [c.96]

    В агрохимических лабораториях титриметрические методы используют при определении содержания азота в аммиачных и аммиачно-нитратных удобрениях (в том числе и по методу Кьельдаля), карбонатной и общей жесткости природных вод, слабых органических кислот в растительном материале, карбоната кальция в известковых удобрениях, примесей магния в калийных удобрениях. Титриметрия используется также в анализе гербицидных препаратов для определения содержания 2,4-дихлорфеноксиацетата и трихлорацетата натрия, цинка в цинебе, меди в хлороксиде меди(П) и т.п. [c.229]

    Очевидно, что с помощью внутренней мишени можно облучать образцы небольших размеров, получая при этом препараты с высокой удельной активностью. Например, при облучении кусочка меди размером 5x1x10 мм (вес 0,4 г) до насыщения по радиоактивному изотопу Си получили активность, равную 1 мкюри [117]. Полученная удельная активность образца оказалась примерно в 500 раз выше, чем при облучении на внешнем пучке бетатрона. Некоторые недостатки применения внутренней мишени — малый размер образцов, необходимость тщательного установления образца в строго определенное положение и трудность контроля интенсивности излучения, проходящего через образец. Все эти недостатки обусловлены малыми размерами пучка тормозного излучения при облучении с помощью внутренней мишени. Общим следствием этих" недостатков в случае применения внутренней мишени для фотоактивационного анализа является трудность обеспечения необходимой точности анализа. Эта трудность усугубляется 4 83 [c.83]

    Анализ вольфрама повышенной чистоты и его препаратов (вольфрамовый ангидрид, вольфрамовая кислота, паравольфра-мат аммония) на содержание олова, висмута, свинца, кадмия, сурьмы, меди, мышьяка, цинка, никеля, хрома, титана, магния, кремния, железа и алюминия возможен по методике, описанной в работах [307—309]. По указанной методике пробу превращают в вольфрамовый ангидрид прокаливанием на воздухе при 600— 650° С (примеси при этом не теряются). Эталоны готовят синтетически на основе чистого вольфрамового ангидрида и окислов примесей. Пробы и эталонные образцы смешивают с угольным порошком в соотношении 4 1. В угольный порошок предварительно вводят носитель, — веихество, улучшающее отгонку примесей [106, 170]. Наиболее доступными носителями являются ио-дистый калий (вводится 5% от веса угольного порошка) и фтористый натрий (1%). Смесью в количестве 100 мг набивают угольные электроды специальной формы (см. гл. П, рис. 3). В качестве источника возбуждения можно применять дугу постоянного или переменного тока. В последнем случае чувствительность определений хрома, никеля, меди, алюминия, магния, железа и кремния примерно на порядок ниже, однако во многих случаях она достаточна. Питание постоянным и переменным током поджиг дуги постоянного тока осуществляются по схеме, приведенной на рис. 9. При использовании дуги постоянного тока проба включается анодом (межэлектродный промежуток 3 мм). [c.122]

    Салицилаламины в анализе 557, 558, 560—562 Салицилалкиламины, физико-хи-мич. и аналитич. параметры в ряду гомологов салицилалкиламинов 561 Салицилальдоксим, для определения меди 6288 Салицилат натрия, определение 5971, 5972 Салициловая кислота качественные реакции салициловых препаратов 6761 комплексы в системе ион металла — пиридин — салицилат 377, 480 комплексы с алюминием 385 с железом 364, 365, 484 с медью 372, 375 [c.384]

    С другой стороны, нет уверенности в том, что применявшаяся в работе закись никеля представляла собой чистый препарат, обладающий свойствами полупроводника/)-тйна. Во всяком случае, наши данные показали, что никакого кинетического эффекта при полимеризации изобутилена нет, если реакцию проводить в присутствии добавок закиси меди (добавка / -типа). Конечно, в изучаемой проблеме многие вопросы остаются пока дискуссионными и требующими дальнейших всесторонних исследований. Однако несомненно, что полимеризация в присутствии твердых окислов протекает в жемосорбированном слое на поверхности соответствующих добавок. Эта 1<онцепция хорошо согласуется с данными других исследователей [28—30], показавших, что при адсорбции на окиси цинка как насыщенных, так и ненасыщенных углеводородов, в условиях радиации наблюдается резкое увеличение электропроводности адсорбента. Детальный анализ этого явления, проведенный в работах Мясникова [29, 30], приводит к выводу о том, что увеличение электропроводности окиси цинка п роисходит не за счет возникновения на поверхности положительных угле водородных ионов, а в результате отдачи электрона твердой добавке хемосорбированными на поверхности атомами водорода. [c.63]

    Существуют специальные микрополярографы, на которых можно определить 10 г вещества в 0,01 мл раствора. Метод полярографического анализа широко применен при анализе лекарственных веществ, в биохимии, фармации и клинических анализах. Полярографическим методом можно легко определить следы примесей в химико-фармацевтических препаратах и химических реактивах, например присутствие меди в растворах лимонной кислоты, чистоту хирургического эфира, содержание формальдегида в таблетках и т. д. Кроме металлов, многие органические соединения также способны восстанавливаться на ртутном капельном электроде, например, хингидрон, оксигемоглобин, никотиновая кислота, пиридин, ацетальдегид, ацетон и др. Восстановление органических соединений связано с выделением водорода in statu nas endi , и поэтому формула Нернста для расчета потенциалов неприменима для органических соединений. Такие вещества, как щавелевая кислота, могут быть восстановлены как из кислого, так и из нейтрального или -щелочного раствора. Кодеин и хинин восстанавливаются только из нейтрального или щелочного раствора. Очень хорошо полярографируются хино-идные вещества, например тиокол, алоин и др. [c.615]

    Ход определения. Требуемое количество анализируемой соли никеля (до 5 г) растворяют в малом количестве воды, прибавляют в достаточном количестве комплексон и подщелачивают аммиаком. Затем прибавляют в избытке нитрат кальция и 2 жл 2 %-ного раствора купраля и нагревают раствор до кипения. В течение этого времени образуется едва заметная муть диэтилдитиокарбамата кобальта, которую после охлаждения экстрагируют этилацетатом. Отделяют слой органического растворителя, промывают его один раз малым количеством воды и один раз водой с добавкой 1 мл 1 %-ного раствора сулемы. Колориметрируют описанным выше способом. Малые количества меди или железа определению ие мешают, так как тиокарбаматы этих металлов также вытесняются раствором сулемы. Этот очень быстрый метод можно применить для анализа никелевых руд, электролитического чистого никеля и для анализа никелевых солей, технических, чистых и чистых для анализа . Описанным методом было определено содержание кобальта в некоторых солях и было найдено в препаратах фирмы Кальбаум . (ШСО3, Ш804, МСу от 0,003 до [c.209]

    В литературе имеется ряд работ, посвященных определению примесей в металлическом хроме и его соединениях химическими методами [I—4]. Для одновременного определения нескольких элементов наиболее простым является прямой спектральный анализ. Этот способ был применен для определения малых количеств В1, Сс1, Зп, РЬ, 5Ь в препаратах окиси хрома и хромового ангидрида [5, 6]. Описан и более чувствительный химико-спектральный метод, основанный на предварительном выделении анализируемых элементов на сульфиде меди [7]. Однако работ по определению малых количеств примесей Ва, Си, Ре в соединениях хрома нет. Так как при спектральном анализе соединений хрома основа (хром) сильно влияет на интенсивность спектральных линий примесей, содержащихся в них, необходимо отделить примеси от основы для повышения чувствительности определения. Это достигнуто в разработанном нами химико-спектральном методе анализа микропримесей Ва, Ре, Сд и Си в хроматах натрия и калия. [c.67]

    Для одновременного определения следов различных тяжелых металлов в солях (и в других твердых веществах) намн разработан химико-спектральный способ анализа, основанный на обработке испытуемого раствора диэтилдитиокарбаматом натрия и сероводородом в присутствии угольного порошка или сульфида меди в качестве коллектора примесей. Этот метод был применен нами для определения микропримесей тяжелых металлов в хлоридах калия и натрия и в винной кислоте [8]. Определение следов Со, Си, РЬ, В1, Сс1, N1, Н , Мп, 5Ь, А1 порядка 1 10 % каждого в мочевине производили следующим образом. Растворяли 5 г препарата в 50 мл дважды пе регнанной воды, подкисленной соляной кислотой до pH 2, 5, добавляли 0,05 г спектрально чистого угольного порошка и перемешивали. Затем в раствор пропускали в течение 5 минут сероводород и оставляли на 1 час. После этого прибавляли 1 мл 1 %-ного водного раствора диэтилдитиокарбамата натрия, перемещивали и после 30-минутного-стояния фильтровали осадок на воронке Бюхнера с отсасыванием через обеззоленный плотный фильтр (с синей лентой) диаметром 1,5 см. Осадок промывали 3—5 мл сероводородной воды с pH 2,5. Фильтр с осадком высушивали при 80 —90°С и осадок подвергали спектральному анализу. Одновременно проводили глухой опыт на применяемые реактивы и воду. Спектральный анализ осадка проводили в тех же условиях, которые применялись для концентратов кислот (см. выше), подмешивая предварительно 2,5 мгр спектрально чистого хлористого натрия. На одной фотопластинке снимали по два—три раза спектры концентратов из испытуемой пробы и глухого опыта и угольных эталонов, приготовляемых обычным синтетическим путем. К эталонам также добавляли 5% хлористого натрия. Применяли способ трех эталонов. Калибровочные кривые строили в координатах 5пр — 5фо и Использовались те же аналитиче- [c.306]

    Этот способ применяли для расчета определяемого минимума меди прн анализе иодида натрия особой чистоты 167, 80]. Различное содержание меди в иодиде натрия получали, смешивая в необходимых соотношениях раствор препарата с содержанием меди 8.10" % с раствором препарата, практически полностью очищенным от меди масса Nal в каждОхМ опыте составляла 10 г. Определение меди в Nal проводили фотометрированием хлороформных экстрактов диэтилдитиокарбамината меди 1205]. Оптическую плотность исследуемых растворов измеряли относительно раствора холостой пробы (не содержащей иодида натрия). Использованные в расчетах значения оптической плотности представляли средние арифметические величины из трех отсчетов на приборе, исправленные на собственное поглощение кювет. [c.325]

    С. А. Балезин и В. П. Баранник для защиты металлических изделий от атмосферной коррозии предложили вводить в упаковочную бумагу и в консистентные смазки карбонат моноэтаноламина (препарат МЭАК). Производство карбоната моноэтаноламина и пропитанной им бумаги освоено Ваковским химическим заводом. Карбонат моноэтаноламина и предложенный нами позже бензоат моноэтаноламина по защитному действию практически не отличаются от применяемых за рубежом ингибиторов типа УРЛ и имеют тот же недостаток защищая черные металлы, вызывают коррозию меди, никеля и их сплавов. Описание способа изготовления, применения и анализа бумаги, пропитанной препаратом МЭАК, приведено в работе К. А. Несмеяновой н [c.159]

    ОПРЕДЕЛЕНИЕ ПРИМЕСЕИ МЕДИ, СВИНЦА, СУРЬМЫ, КАДМИЯ И BИ .M TA В ЧЕТЫРЕХБРОМИСТЫХ ГЕР.МАНИИ И. КРЕМНИИ. Ю. И. Вайнштейн, К. Я. Гинзбург. Методы анализа. имическн. реактивов и препаратов, вып, 1,8. А1., ИРЕ.4, 1971, стр. 145 [c.215]


Библиография для Анализ препаратов меди: [c.323]    [c.204]    [c.204]    [c.215]   
Смотреть страницы где упоминается термин Анализ препаратов меди: [c.200]    [c.122]    [c.152]    [c.28]    [c.71]    [c.284]    [c.362]    [c.50]    [c.362]    [c.278]    [c.202]    [c.228]   
Смотреть главы в:

Анализ инсектицидов и фунгицидов -> Анализ препаратов меди




ПОИСК





Смотрите так же термины и статьи:

Препараты меди



© 2024 chem21.info Реклама на сайте