Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Развитие метаболических реакций

    Принцип последовательной адаптации основан на достаточно изученных фактах гетерохронизма (разновременности) биохимических изменений в организме, возникающих при тренировке. Так, при развитии срочного тренировочного эффекта на однократное действие физической нагрузки наиболее быстрые адаптационные изменения в отдельных энергетических системах обнаруживаются со стороны алактатной анаэробной системы, затем — в системе анаэробного гликолиза, а наиболее замедленная реакция отмечается со стороны процессов митохондриального дыхания и окислительного фосфорилирования. В период восстановления после окончания упражнения наиболее быстро достигается суперкомпенсация содержания креатинфосфата в мышцах, затем — гликогена и, наконец, — липидов и белков, образующих субклеточные структуры. В процессе долговременной адаптации наиболее быстро изменяются показатели мощности биоэнергетических процессов, затем — энергетической емкости и лишь на заключительной стадии адаптации заметно улучшаются показатели метаболической эффективности. [c.414]


    В биологии существование термодинамического сопряжения необходимо для обеспечения возможности использования живыми организмами энергии, выделяемой в реакциях клеточного метаболизма. Необратимые химические процессы в клетке являются причиной деградации энергии Гиббса системы в теплоту и приводят к диссипации (рассеянию) энергии. Однако наличие сопряжения таких химических процессов с реакциями ассими-дяции пищевых веществ в клетке частично предотвращает эти потери энергии и тем самым обеспечивает возможность развития или жизнедеятельности клетки и запасания энергии, выделенной в ходе самопроизвольных метаболических реакций, в форме химических связей И клеточных структур живого организма. При этом скорость общего изменения энтропии для сопряжен- [c.302]

    В свою очередь, успехи в изучении антибиотиков оказали большое влияние на развитие смежных областей знания. Применение антибиотиков совершило настояш,ую революцию в медицине. Более быстро стали развиваться некоторые разделы биологической науки биохимия, физиология, систематика и экология микроорганизмов (в особенности актиномицетов). Одним из важных разделов молекулярной биологии сделалось исследование механизма действия антибиотиков. Они используются как весьма специфические ингибиторы некоторых метаболических реакций, что позволило в значительной мере выяснить такой важнейший общебиологический процесс, как механизм биосинтеза белка. Определение строения антибиотиков привело к созданию новых разделов органической химии р-лактамы, макролидные соединения, депсипептиды и т. д. Промышленное производство антибиотиков потребовало коренного изменения технологии микробиологического синтеза. Таким образом, выделение и изучение новых антибиотических препаратов представляет собой важную научную задачу. [c.299]

    Особого пояснения требует тот факт, что результаты биохимических исследований, проведенных на животных, во многих случаях могут быть перенесены и на организм человека. В молекулярных механизмах, обеспечивающих жизнь разных организмов, населяющих Землю, имеется много схожего. Такие фундаментальные процессы, как матричные биосинтезы, механизмы трансформации энергии, основные пути метаболических превращений и т. д., примерно одинаковы у всех организмов от бактерий до высших животных. Поэтому многие результаты исследований, проведенных с такой, казалось бы, элементарной клеточной культурой, как Е. соН, оказываются применимыми и к человеку. Подавляющую часть знаний в области биохимии человека ученые получают следующим образом исходя из известных биохимических процессов у животных, строят гипотезу о наиболее вероятном механизме данного процесса в организме человека, а затем проверяют эту гипотезу прямыми исследованиями клеток и тканей организма. Такой подход позволяет проводить исследования на небольшом количестве биологического материала, что является одним из самых главных требований. Чаще всего в гуманных целях и с точки зрения экономичности используют ткани, удаляемые при хирургических операциях, клетки крови (эритроциты и лейкоциты), а также клетки тканей человека, выращиваемые в культуре in vitro. Развитие методов клинической биохимии (см. главу 21) для диагностики различных заболеваний и контроля за их течением также способствует более глубокому исследованию обмена веществ и позволяет открывать новые биохимические реакции. Например, изучение наследственных нарушений, в частности врожденного дефекта фермента, позволяет открывать новые ферменты и реакции, имеющие жизненно важное значение для организма. [c.340]


    Белки тем или иным образом контролируют все метаболические процессы, в том числе реакции образования нуклеотидных предшественников нуклеиновых кислот и реакции, приводящие к полимеризации аминокислот и нуклеотидов. Таким образом, поток информации от ДНК к белкам представляет собой лишь часть большей петли метаболических процессов, причем сам процесс репликации ДНК происходит с высокой степенью точности. Поток генетической информации всегда направлен от ДНК в клетку, и копии с первичного шаблона передаются от поколения к поколению почти в неизменном виде. Простая концепция, выраженная уравнением (15-1), быстро привлекла к себе внимание ученого мира и привела к стремительному развитию биохимической генетики. [c.184]

    Развитие метаболических реакций [c.23]

    В биологических системах представлены как хромофоры (рис. 7), выработанные в ходе эволюционного развития для улавливания и утилизации света (фотосинтетические пигменты, фитохром, родопсин), так и хромофоры, являющиеся участниками обычных метаболических реакций и вместе с тем способные претерпевать фотохимические превращения (белки, нуклеиновые кислоты, коферменты, витамины). [c.31]

    Исследования, проведенные в ряде стран, показали, что металлы, широко применяемые в промышленности и распространенные в окружающей среде, могут оказывать на организм человека не только токсикологическое, но и канцерогенное воздействие [935, 987]. К химическим канцерогенам относят такие металлы, как бериллий, хром, никель потенциальными канцерогенами являются кобальт, кадмий, свинец и некоторые другие металлы [931]. Понятие канцерогенность металла относится не к элементу как таковому, а к его определенному физико-химическому состоянию. Например, канцерогенность хрома может быть объяснена следующим образом. Этот элемент в виде хромат-аниона с помощью сульфатной транспортной системы проникает через клеточную мембрану, тогда как катион хром(П1) сквозь нее не проходит. Клеточная метаболическая система восстанавливает хромат до хрома(П1), который в отличие от оксоаниона хрома(VI) образует прочные комплексы внутри клетки с нуклеиновыми кислотами, протеинами и нуклеозидами, вызывая повреждения ДНК, которые в свою очередь ведут к мутации, а следовательно, и к развитию рака [931]. Согласно концепции Мартелла канцерогенность металла связана со степенью его электроположительности. Ионы электроположительных металлов образуют лабильные комплексы и большей частью не канцерогенны. Ионы же металлов с низкой электроположительностью образуют высококовалентные связи с донорными группами биолигандов и способны подвергаться только очень медленным обменным реакциям с другими лигандами, находящимися в биологических системах, что в конечном счете обусловливает канцерогенное действие этих катионов [931]. [c.500]

    В ходе индивидуального развития имеют место не только количественные, но и глубокие качественные изменения в общем характере метаболических реакций организма. Именно последние и составляют основу всех переломных этапов в жизненном цикле растения. С ними непосредственно связана способность растительного организма к непрерывному образованию качественно новых клеток, тканей и органов — способность, в которой заключено основное отличие онтогенеза высшего растения от такового животных организмов. [c.633]

    Наследственные болезни чаще всего связаны с недостатком одного или нескольких ферментов в результате подавления их синтеза. Это приводит к нарушениям тех или иных обменных процессов и, как следствие, развитию различных заболеваний. Из-за отсутствия какого-либо фермента определенные звенья метаболических путей, состоящих из последовательно протекающих реакций, оказываются блокированными. При этом метаболиты, образованные до дефектного звена, накапливаются в патологических количествах, а метаболиты, синтез которых связан с последующими этапами, не образуются вовсе. Это вызывает развитие физиологически не обоснованных биохимических реакций, затрагивающих многие жизненно важные функции живого организма. Рассмотрим отдельные примеры. [c.88]

    Предположение о том, что сначала появились ферменты, а затем. нуклеиновые кислоты, кажется вполне разумным. Ведь именно ферменты, а не нуклеиновые кислоты катализируют метаболические реакции и таким образом обеспечивают развитие живых систем функция нуклеиновых кислот — хранить и воспроизводить информацию о структуре ферментов и других белков. Нельзя забывать, что биохимические реакции, в которых участвуют нуклеиновые кислоты, также катализируются ферментами. Хотя о нуклеиновых кислотах часто говорят как о самореплицирующихся молекулах , их репликация осуществляется, как было показано в гл. И, при участии ферментов [c.139]

    Применение методов термодинамики необратимых процессов является оправданным в случае сравнительно простых и частных реакций клеточного метаболизма, для которых суш ествует соответствуюш ее кинетическое описание, но не в случае такого рода явлений, как рост и развитие организма, включаюш их всю совокупность метаболических реакций. [c.142]


    Прогресс в какой-нибудь одной области часто зависит от развития соседних областей знания. В науке очень редко можно решить центральную проблему, строго следуя намеченному плану, каким бы обоснованным и детальным он ни был. Подчеркивая некоторые особенности в исследовании биологического окисления жирных кислот, мы пытались показать, как формировались наши представления о механизме этого процесса здесь были использованы всевозможные экспериментальные подходы от цитологического исследования клето млекопитающих до изучения биохимии анаэробных бактерий или от изучения совсем другой, но тем не менее родственной метаболической системы (цикла трикарбоновых кислот) до выяснения химических свойств кофакторов ферментативных реакций. [c.20]

    Изотопная методика с применением позволила выяснить направление многих метаболических путей и составить метаболические карты, иллюстрирующие последовательность биохимических и, как правило, биокаталитических реакций. Обычно объектом исследований служили бактерии, но важнейшие этапы метаболизма сходны у организмов, стоящих на различных ступенях развития. [c.215]

    Ка к только на рубеже этого века для лечения болезней, вызываемых бактериями, стали использовать лекарственные препараты, сразу заметили, что воздействие на бактериальную культуру того или иного лекарственного препарата часто приводит к тому, что чувствительная к этому препарату культура превращается в форму, устойчивую к нему. Лекарственный препарат, взятый в таких количествах, которые наверняка убили бы исходных, чувствительных бактерий, не оказывал влияния на культуру устойчивых бактерий. С началом широкого использования сульфамидных препаратов (в 30-х годах) и антибиотиков пенициллина и стрептомицина (в 40-х годах) развитие у бактерий устойчивости к лекарственным препаратам превратилось в явление обычное и стало (и все еще остается) проблемой огромной практической важности. При попытках объяснить природу этого явления исходили из широко распространенного тогда мнения, что бактерии приобретают устойчивость к лекарствам только после того, как последние на них подействуют. Одним из наиболее выдающихся защитников этого взгляда был Сирил Хиншельвуд, который развил в своей книге Химическая кинетика бактериальной клетки негенную теорию адаптации к лекарственным препаратам. Хиншельвуд считал, что в тех немногих устойчивых бактериях, которые пережили воздействие лекарственного препарата, это лекарство вызвало сдвиг равновесного состояния метаболических реакций с обычного уровня на новый, уже менее подверженный влиянию этого препарата. Книга Хиншельвуда вышла в свет в 946 г., через три года после того, как Лурия и Дельбрюк уже показали спонтанное происхождение устойчивых к фагу мутантов бактерий. Поэтому казалось бы естественным сделать допущение, что наблюдаемое у бактерий изменение от чувствительности к лекарственному препарату к устойчивости также возникает в результате спонтанного мутирования небольшой части популяции чувствительных к лекарству бактерий. В присутствии лекарственного препарата происходит, по-видимому, жесткий отбор таких устойчивых мутантов, так как они могут расти в этих условиях, тогда как все чувствительные клетки дикого типа погибают. Но на Хиншельвуда флуктуационный тест не произвел впечатления, и он опубликовал несколько правдоподобных критических разборов его интерпретации. Он был настолько уверен в правильности своей кинетической теории адаптации, что даже уже в 1953 г. писал Путем, подобным тому, который предполагается рассматриваемой [кинетической] моделью, адаптационные изменения должны происходить настолько легко, что если бы это было не так, то трудно было бы уклониться от вопроса, почему это не так . Авторитет Хиншельвуда в области химической кинетики придавал вес его взглядам, и это, вероятно, на несколько лет задержало развитие генетики бактерий на его родине, в Великобритании. [c.148]

    В экономически развитых странах употребление спиртных напитков в последние 25 лет возросло столь значительно, что этанол стал вносить существенный вклад в суммарную калорийность пищи даже у не страдающих алкоголизмом взрослых людей вклад спирта в общую калорийность пищи может достигать 12% (табл. 26-8). Этанол обладает высоким запасом энергии-при окислении 1 г этого спирта выделяется 7 ккал энергии данная величина лежит между калорийностями углеводов и жиров. Более того, вьщеляемая при окислении этанола в организме энергия может по хорошо изученным метаболическим путям запасаться в виде АТР. В печени под воздействием цитозольного фермента алкоголь дегидрогеназы этанол окисляется до ацетальдегида акцептором ионов водорода в этой реакции служит NAD  [c.821]

    Мы рассмотрели развитие семени, покой семян и различные факторы, которые могут нарушить состояние покоя. Обратимся теперь к реакциям обмена веществ при прорастании. Прежде всего вспомним, что прорастающее семя состоит из многих тканей, функции и назначение которых чрезвычайно различны. Обычно делепие клеток происходит только по оси корень — стебель. Эндосперм и семядоли являются по преимуществу, если не исключительно, резервными тканями, которые стареют и отмирают после короткого периода метаболической активности. Поэтому, для того чтобы [c.477]

    Развитие метаболических реакций 23 Цианобактерии способны фиксировать СО2И N2 26 [c.508]

    Многообразие обменных процессов, необходимых для синтеза различных веществ и роста клеток, требует их хорошей координации. Каждый метаболический путь включает несколько ферментативных реакций. Процессы метаболизма обеспечивают получение энергии в биологически доступной форме, синтез простых структурных компонентов и сложных макромолекул, а также редупликацию клетки. Необходимость вьщержать конкуренцию с другими живыми существами привела к развитию механизмов, которые, с одной стороны, дают возможность приспосабливаться к меняющимся условиям внешней среды, а с другой-оптимально согласовывают между собой различные метаболические процессы. Объектами такой оптимизации могут быть ферментные белки, их синтез и функционирование. Регуляция клеточного метаболизма происходит на двух уровнях-на уровне синтеза ферментов и на уровне изменения их активности. [c.472]

    Принципиальным отличием подхода Хиншельвуда к рассмотрению кинетики роста микробной популяции является развитие концепции определяющего этапа цепи метаболических процессов. Распространенные представления об узком месте как звене, в котором реакция протекает с наименьшей скоростью и тем самым определяет кинетику всего процесса в целом, являются справедливыми для линейных последовательных реакций. Когда процесс в целом определяется протеканием реакций, соединенных в циклы и образующих пространственную сетку последовательных переходов, предполагающих альтернативные пути метаболизма в зависимости от конкретных условий, Хиншельвуд, развивая концепцию узкого места, предлагает принцип наибольшей скорости реакции. Суть этого принципа заключается в том, что при наличии различных маршрутов реакций основное значение в общем процессе метаболизма приобретает тот путь, по которому реакция может развиваться при данных условиях с наибольшей скоростью. Любое изменение условий роста приводит не к изменению локальной стадии микробиологического синтеза, а к перераспределению кинетических параметров всей системы. Ограничение общей скорости процесса в сетке химических реакций внутриклеточного метаболизма не обязательно определяется наиболее медленной стадией, а зависит от соотношения констант скоростей ряда отдельных реакций. При этом соотношение ферментов различных этапов процесса микробиологического синтеза, их разрушение, расход, образование и диффузия определяют поведение популяции в целом. Основное уравнение кинетики процесса микробиологического синтеза, по мнению Хиншельвуда, должно иметь следующий вид  [c.93]

    Требования к питательным веществам. Типы сред. Микробная клетка содержит в среднем, % по массе углерода — 50, азота — 14, фосфора — 3 и другие элементы. Для роста и развития микроорганизмов как в лабораторных условиях, так и в природе необходимо наличие питательных веществ для энергетических и конструктивных реакций. Требования разных групп микроорганизмов к источникам энергии и химическим элементам определяются их метаболическими возможностями. [c.71]

    В самом деле, считывание филогенетической информации, записанной в ДПК, приводит к биосинтезу первичной аминокислотной последовательности на рибосомах. Па втором этапе происходит самосворачивание белковой глобулы, развитие ферментативных реакций и самоорганизация живой системы. Характер этих процессов и, в частности, возникающих диссипативных структур, зависит от значений конкретных управляющих параметров метаболизма (гл. IV). Итак, окончательная реализация наследственной информации происходит путем динамического считывания параметрически заданной информации о метаболических процессах, лежащих в основе морфогенеза. [c.165]

    Температура играет роль фактора, лимитирующего рост и развитие растений, так как влияет на скорость деления клеток, интенсивность фотосинтеза и другие метаболические процессы. От температуры зависят темновые (независимые от света) реакции фотосинтеза, а они в свою очередь дают начало различным метаболическим путям, описанным в гл. 7. Интенсивность фотосинтеза и накопление достаточных количеств питательных веществ, необходимых для завершения полного жизненного цикла, — таковы факторы, определяющие географическое распространение растений. [c.404]

    Семейства повторяющихся последовательностей как регуляторы экспрессии генов. Напомним, что в отличие от прокариот, у которых родственные гены, имеющие отношение к определенным метаболическим реакциям, обычно сцеплены и регулируются с помощью одного оперона (разд. 3.11), родственные эукариотические гены обычно диспергированы. Например, гены а- и Р-глобинов расположены на разных хромосомах, но должны экспрессироваться согласованно. Другими словами, весь набор диспергированных генов в конкретной ткани или на определенной стадии развития организма должен экспрессироваться одновременно. Такая координация возможна, если у всех членов генного кластера имеется общий регуляторный элемент. В таком случае включать или выключать весь набор генов может одна эффекторная молекула, взаимодействующая с одинаковыми диспергированными регуляторными элементами. Контроль за экспрессией генов может осуществляться на уровне ДНК путем регуляции транскрипции или же на уровне РНК. Например, в гетерогенной ядерной РНК, по-видимому, сохраняется картина распределения повторов, характерная для геномной ДНК, и тогда координация регуляции может осуществляться с помощью контроля созревания первичных транскриптов с образованием мРНК. В то же время копии повторяющихся последовательностей могут содержаться и в зрелых мРНК, и тогда регуляция генной экспрессии будет происходить на уровне трансляции. [c.205]

    Типичная митохондрия имеет почти такие же размеры, как клетка Е. oli, но вообще форма и размеры этих органелл могут быть весьма различны. Во всех случаях митохондрия образована двумя замкнутыми мембранами наружной и внутренней) каждая толщиной 5—7 нм (рис. 10-9). В печени внутренняя мембрана развита слабо и основная часть пространства заполнена матриксом, а в митохондриях сердечной мышцы внутренняя мембрана имеет значительно больше складок и скорость окислительного фосфорилирования там выше. Ферменты, катализирующие реакции цикла трикарбоновых кислот, тоже более активны в митохондриях сердечной мышцы. Более того, ввиду высокой метаболической активности сердечной мышцы почти треть ее общей массы приходится на долю митохондрий. Типичная митохондрия сердечной мышцы имеет объем 0,55 мк на каждый кубический микрон объема митохондрии приходится 89 мк поверхности внутренних митохондриальных мембран [62]. [c.392]

    Прямым следствием недостаточности витамина В, является дефицит его коферментньгх форм. Это приводит к блокированию реакций декарбоксилирования и накопления избыточных количеств пировиноградной кислоты, что может привести к нейротоксикозам. Весьма вероятно, что в условиях дефицита тиамина, а значит, и снижения скорости транскетолазной реакции снижается синтез НАДФН и рибозо-5 -фосфата — продуктов пентозофосфатного пути. Метаболические нарущения приводят к развитию различных патологических состояний, например болезни бери-бери. При этом заболевании имеют место патологии нервной, сердечно-сосудистой и пищеварительной систем. Кроме того, недостаток тиамина приводит к нарущениям водного обмена и функций кроветворения. [c.109]

    Ароматические и гетероциклические гидроксисоединения имеют в1ажное значение в биогенных и метаболических системах. Однако развитие электрохимии их анодных реакций затруднено осложняющими эффектами, связанными с накоплением полимерных продуктов на электроде. В работе [20, с. 248] исследовано около 30 производных фенола, гидрохинона и резорцина на вращающемся графитовом электроде. Большинство одноатомных фенолов окисляется по одноэлектронному механизму с участием одного протона. к-Замещенные диоксибензолы окисляются значительно легче л-диоксибензола, фенола и их производных. Введение алифатического радикала в орто- и пара-положение к фенольной группе и увеличение числа электроположительных ме-тильных групп в бензольном кольце снижают потенциал окисления. Введение нитрогруппы облегчает окисление. Окисление бис-фенолов протекает аналогичным образом [20, с, 249]. [c.111]

    Возможно, что в силу этих причин основная функция стероидных и тиреоидных гормонов в организме сводится не к регуляции метаболических реакций, а к контролю над процессами роста, развития и дифферен-цировки. [c.60]

    Согласно теории Г. Селье, в адаптации организма к стрессовым факторам, в том числе к напряженной физической нагрузке, наиболее важную роль играют гормоны гипофиза и надпочечников. Развитие так называемого общего адаптационного синдрома контролируется гипоталамусом. Гипоталамус интегрирует информацию, полученную из всех частей тела, в том числе иЦНС, и запускает гормональный механизм поддержания относительного метаболического гомеостаза (рис. 106). В первую очередь усиливается секреция катехоламинов адреналина и норадреналина мозговым слоем надпочечников. Они активируют распад гликогена в печени и повышают уровень глюкозы в крови, а также распад жиров, т. е. мобилизуют энергетические резервы организма и улучшают энергообеспечение органов и тканей. Далее при повышении концентрации катехоламинов в крови усиливается синтез АКТГ в гипофизе, которые активируют синтез глюкокортикостероидов (кортизола) в коре надпочечников. Кортизол запускает реакции адаптивного синтеза ферментов, активирует процессы новообразования глюкозы в печени из веществ неуглеводной природы и мобилизацию жиров, а также снижает синтез белков в тканях, что ведет к повышению уровня аминокислот, необходимых для адаптивного синтеза веществ. Все это создает условия для поддержания высокой скорости энергообразования в условиях повышенной потребности тканей в энергии. Адреналин и кортикостероиды при стрессе работают однонаправленно и обеспечивают большую скорость катаболизма мобилизованных энергетических источников. Поэтому эти гормоны называются адаптивными. [c.273]

    Успехи, достигнутые с помощью различных экспериментальных подходов в изучении гликолиза, показывают, что прогресс в выяснении метаболических процессов зависит от развития методов, с помощью которых биохимические лоследовательности можно расчленить на отдельные звенья. Конечной целью такого подхода является выделение и кристаллизация ферментов, катализирующих каждую отдельную реакцию. Необходимость применения этих методов вытекает из наличия чрезвычайно сложного переплетения ферментативных процессов. Но именно это обстоятельство и создает парадоксальную ситуацию поскольку различные метаболические последовательности связаны друг с другом, функционирование любой из них может зависеть от остальных. Это значит, что мы не сможем полностью оценить физиологической роли [c.16]

    Изучение проблем, составляющих предмет современной биохимии, началось, по-видимому, около 200 лет назад. В течение последней половины XVIII в. и на протяжении XIX в. неоднократно предпринимались попытки — в том числе и довольно успешные — проникнуть в сущность процессов жизнедеятельности, уяснить себе их природу как в структурном, так и в метаболическом аспекте. Однако из-за очень большой сложности рассматриваемых проблем нельзя было надеяться получить достаточно глубокое представление о веществах, участвующих в этих процессах, и о химических реакциях, из которых эти процессы слагаются, до тех пор пока другие химические дисциплины, и в первую очередь аналитическая и органическая химия, не достигли должной ступени развития. [c.9]

    Биохимические механизмы патогенеза печеночной недостаточности. Повреждение печени приводит к нарушению ее метаболических функций, в том числе реакций обезвреживания. Призна1 и печеночной недостаточности 1) развитие желтухи (в острых случаях может наступить смерть до ее появления) 2) тяжелые нарушения обмена электролитов, в частности гипокалиемия, обусловленная вторичным гиперальдостеронизмом гиперальдостеронизм связан с нарушением инактивации альдостерона в печени 3) удлинение протромбинового времени и др>тие нарушения свертывания крови, так как основные белки системы свертывания крови синтезируются в печени 4) сни- [c.441]

    Диалог симбионтов с защитньши системами хозяина. При образовании симбиоза у бобовых растений индуцируется ряд процессов, весьма сходных с защитными реакциями, наблюдаемыми при внедрении патогенных микробов. Это синтез флавоноидов, фенолов, хитиназ, каллозы и пероксидаз. Однако в клубеньках эти реакции выражены не столь сильно, как при инфицировании патогенами, и их результатом является не инактивация микроорганизмов, а регуляция их размножения и метаболической активности. Это происходит потому, что в процессе развития симбиотической системы наблюдается тонко сбалансированное взаимодействие бактерий с защитными системами растений. [c.176]


Смотреть страницы где упоминается термин Развитие метаболических реакций: [c.467]    [c.216]    [c.165]    [c.227]    [c.8]    [c.104]    [c.160]    [c.228]    [c.450]    [c.189]    [c.288]    [c.126]    [c.70]    [c.5]    [c.436]    [c.212]   
Смотреть главы в:

Молекулярная биология клетки Т.1 Изд.2 -> Развитие метаболических реакций




ПОИСК





Смотрите так же термины и статьи:

Метаболические яды



© 2025 chem21.info Реклама на сайте