Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сжигание свойства

    В элементах третьей группы работа ХИТ осуществляется благодаря подаче компонентов электрохимической реакции к электродам. Такие элементы могут работать без перерыва длительное время, лимитируемое потерей каталитических свойств элект )одов. Обычно на один из электродов (отрицательный) подается топливо, на другой (положительный)—окислитель, и в элементе происходит холодное электрохимическое сжигание топлива в виде двух расчлененных реакций иа одном электроде окисляе ся топливо, на другом — восстанавливается окислитель. Такие электрохимические системы называются топливными элементами. [c.208]


    Количество пара, необходимого для бездымного сжигания газа, зависит главным образом от свойств сжигаемой газовой смеси и возрастает с увеличением молекулярной массы ее компонентов и содержания в смеси непредельных углеводородов. [c.229]

    Следует отметить, что во многих случаях при сравнительно высоких температурах сушки в качестве теплоносителя необоснованно применяют воздух, образующий с высушенным материалом взрывоопасные пылевоздушные смеси. Иногда воздух применяют даже для сушки материалов, взрывоопасные свойства смесей пыли которых с воздухом не изучены. Часто для нагрева воздуха применяют топочные газы от сжигания природного газа или других углеводородов, которые при соответствующем избытке воздуха и дополнительной очистке могли бы быть использованы для безопасной сушки материала. [c.281]

    Для характеристики фотометрических свойств осветительных керосинов при сжигании их в лампах и нагревательных приборах применяют метод определения максимальной высоты некоптящего пламени по ГОСТ 4338—48. [c.204]

    Существуют два принципиально различных способа сжигания горючей смеси. Первый основан на свойстве пламени самопроизвольно распространяться по горючей смеси, если в ней с помощью какого-либо поджигающего устройства создан элементарный очаг пламени. Второй способ — когда объем предварительно испаренной горючей смеси нагревают до температуры, превышающей температуру ее самовоспламенения. После некоторого индукционного периода смесь самовоспламеняется и мгновенно сгорает (взрывное сгорание, сгорание вследствие самовоспламенения).  [c.113]

    Тепловые свойства нефтепродуктов имеют не только теоретический, но и большой практический интерес, особенно при сжигании нефти как топлива, а также при подсчетах тепловых балансов процессов нефтеперегонного дела. [c.58]

    Ниже представлены калильные свойства нагаров, образующихся при сжигании углеводородов, компонентов и товарных автомобильных бензинов [96]  [c.81]

    Оценка детонационных свойств бензина производится сравнением производимого в моторе сту- деления содержа-ка при сжигании образца в опытном двигателе ия воды в нсф-со смесью двух индивидуальных углеводоро- [c.213]

    Для сжигания газа в печах и иа других огневых установках применяют разнообразные типы и конструкции горелок, выбор которых определяется свойствами газов, размерами печей и установок, характером технологических процессов 1г др. [c.340]


    Сжигание — термотехнологический процесс осуществления реакции горения горючих исходных материалов для получения новых продуктов заданного химического состава и физико-химических свойств, освобождения химической энергии материалов и термического обезвреживания отходов, загрязняющих окружающую среду. [c.28]

    Процесс горения капли серы зависит от условий сжигания (температура в камере горения и относительная скорость газового потока) и физико-химических свойств жидкой серы (наличие в сере твердых зольных примесей, битумов и др.) и состоит иэ следующих последовательных стадий 1) смешение капель жидкой серы с воздухом 2) прогрев капель серы и их испарение 3) термическое расщепление паров серы 4) образование газовой фазы и воспламенение ее  [c.39]

    Газовая печная среда, образующаяся при горении природного газа в рабочей камере печи, имеет высокое парциальное давление водяных паров. Химический ее состав, температура и давление зависят от режима сжигания. При неконтролируемой среде возможно протекание ряда сопутствующих физических и химических процессов, которые отрицательно влияют на качество получаемых продуктов. Например, ири выплавке алюминия и его сплавов происходит насыщение расплава газами, которое ведет к образованию газовых раковин, резко выраженной пористости, появлению неметаллических включений, являющихся концентраторами напряжения, снижающими прочность и предел усталости, к снижению пластических свойств металла, к образованию дефектов типа окисных плен, име ющих большую твердость и нулевую пластичность, к появлению пузырей при окончательной термообработке готовых изделий, что ухудшает механические свойства при закалке и старении сплавов. [c.76]

    Осуществление термотехнологических процессов. При разработке осуществления физических и химических превращений исходных материалов в печи рассматриваются следующие вопросы количество исходных материалов, подлежащих переработке, их вид, химический состав, химические и физические свойства, фазовые состояния, вид химических и физических превращений, количество получаемого продукта (целевых и побочных) и отходов, их химический состав, химические и физические свойства, фазовые состояния, температуры кинетика процессов, продолжительность термотехнологических процессов, температуры процессов, совместимость термотехнологических процессов с процессами сжигания топлива, необходимая печная среда. Выдаются рекомендации по материалам огнеупорного слоя рабочей камеры футеровки. [c.134]

    Для печей с экзотермическим источником теплоты определяется способ сжигания горючего исходного материала, топлива, количество, химический состав, химические и физические свойства, давления перед сжигательными устройствами и т. д. Для печей с электротермическим источником теплоты способ преобразования электрической энергии в тепловую, необходимая мощность, напряжение и сила тока, диаметр электродов, тип нагревателей, концентраторов, их количество и расположение и т. д. Для печей с гелиотермическим источником теплоты необходимая мощность, оптическая система концентрации энергии и т. д. Для печей со смешанным источником теплоты все вопросы, связанные с каждым видом источника теплоты в совокупности. [c.134]

    Сжигание стоков группы А. Принципиальная технологическая схема сжигания стоков приведена на рис. 64. Возможность применения в схеме котла-утилизатора зависит также и от свойств минеральных солей, определяющих степень заноса солями поверхности нагрева котельного агрегата. Высокие температуры процессов сжигания при жидком шлакоудалении значительно уменьшают занос золой конвективных пучков котла. Если зола имеет высокую (порядка 1500° С) температуру плавления, то для организации жидкого шлакоудаления следует предварительно подогревать воздух до 250—300 С. [c.102]

    Прн переработке твердых и жидких углеводородов можно получать так называемые низкокалорийные газы, которые, как правило, имеют теплоту сгорания 889—4000 ккал/м (3720— 16 700 кДж/м ) и которые нельзя строго относить к газам, характеризуемым в нашей работе как заменители природного газа, теплота сгорания которых, по крайней мере, не должна быть ниже 7120 ккал/м (29 850 кДж/м ). Некоторые вопросы производства таких газов заслуживают внимания. Основное достоинство как ЗПГ, так и низкокалорийных газов заключается в том, что они являются малосернистыми видами топлива, при сжигании которых образуются чистые продукты сгорания. В связи с этим их можно применить на взаимозаменяемой основе в большинстве, хотя и не во всех, промышленных процессах, особенно там, где часто применяется ограниченное число горелок исключительно большой единичной мощности, работа которых не всегда лимитируется специфическими свойствами сжигаемого газа. При необходимости горелки могут быть легко переделаны и приспособлены для сжигания газа изменившегося состава. В том случае, если свойства газа остаются неизменными при колебаниях его состава, необходимость в переделке и приспособлении горелок отпадает. [c.217]


    Кеннельские угли обязаны своими особыми свойствами довольно низкой степени метаморфизма и очень высокому содержанию экзинита (30—40%). Эти угли в такой степени плавкие и богатые летучими веществами, что дают губчатый, с пенкой кокс, не удовлетворяющий требованиям коксового производства. Но эти угли ранее ценили на коксогазовых заводах из-за высокого выхода газа и бензола, используемого во вторичном крекинге смол. Пламя при сжигании их газа было особенно светлым. [c.91]

    Коксовая мелочь обычно является побочным продуктом, т. е. остатком, получающимся в результате грохочения кокса на сите с отверстиями около 10 мм. Недостаток коксовой мелочи вынуждает иногда измельчать мелкие классы кокса для ее получения. Можно также производить коксовую мелочь путем коксования в кипящем слое. Лишь в данном процессе имеется в виду коксование при частичном сжигании с воздухом. Для производства коксовой мелочи, температуру следует доводить, по крайней мере, до 800° С. Варианты зависят от того, каким образом уголь сушат, нагревают или иногда окисляют, возможно за счет рекуперации тепла реакций. Выбор варианта влияет на издержки производства кокса, но практически никак не влияет на его свойства. [c.255]

    Минеральную часть топлива составляют карбонаты, силикаты, фосфаты, сульфаты, сульфиды металлов — железа, кальция, магния, алюминия, калия, натрия и др. При сжигании или газификации топлива минеральные вещества остаются в виде золы при этом многие из них подвергаются разложению с образованием оксидов. При пиролизе зола находится в твердом остатке топлива (см. табл. 1). Примесь серы сильно влияет на свойства топлива и качество получаемых при его переработке продуктов. [c.30]

    Для характеристики эксплуатационных свойств котельных топлив используются следующие показатели плотность, вязкость, те.м-пература вспышки, зольность, содержание серы. Вязкость характеризует условия распыливания тс плива, полноту его сгорания. Руководствуясь данными о вязкости мазута, принимают те или иные меры для обеспечения слива топлива и подачи его к месту сжигания. Вязкость котельных топлив не должна превышать 6— 16°ВУ (прн 80°С), а флотских мазутов 5 —12°ВУ (при 30°С). [c.348]

    Факельная система НПЗ предназначена для максимального улавливания технологических выбросов огне- и взрывоопасных паров и газов. Факельная система состоит из общей факельной системы предприятия и отдельных факельных систем, обслуживающих специальные производства и предназначенных для утилизации или сжигания газов и паров со специфическими свойствами (аммиака, сероводорода и т.п.). [c.279]

    Точность определения теплоты сгорания топлив сжиганием в калориметрической бомбе, указываемая в различных стандартных методах, колеблется от 120 до 545 кДж/кг (от 30 до 130 ккал/кг). Стремление повысить точность определения этого основного показателя свойств топлива как источника энергии привело к созданию сверхточных прецизионных методов оценки теплоты сгорания [3, 24, 25]. Повышение точности достигается путем совершенствования самого калориметра, системы замера температур, приемов сжигания навески и др., а принцип метода и основная процедура те же. [c.49]

    Всю систему соединяют короткими резиновыми трубками, адсорберы погружают наполовину в ледяную ванну, и систему в течение 15 мин продувают воздухом. К концу продувки перекрывают вход в адсорберы, удаляют их из ванны, выдерживают не менее 30 мин, чтобы привести к комнатной температуре, открывают на короткое время для выравнивания давления и взвешивают с точностью до 1 мг. Время, пока адсорберы выдерживаются, используют для подготовки лампочки. Устанавливают фитиль в горелку, вводят пипеткой в резервуар лампочки 5 мл образца, помещают горелку в лампочку и закрывают ее стеклянным колпачком, а ввод в лампочку — резиновой трубкой с пробкой. Характеристики горения в лампочке зависят от потока воздуха, свойств испытуемого образца, толщины и положения фитиля в горелке. Два последние фактора могут быть установлены заранее, с тем, чтобы во время испытания горение регулировать только потоком воздуха. При сжигании легколетучих образцов лампочку необходимо помещать в ванну СО льдом на весь период сгорания, а при сжигании слишком нелетучих образцов ее приходится иногда нагревать. [c.55]

    Тепловая энергия используется для различных целей. Энергия высокого потенциала (более 623°К) применяется для высокотемпературной обработки сырья (обжиг и др.) и интенсификации химических реакций. Ее получают за счет сжигания различных видов топлива непосредственно в технологических устройствах. Тепловая энергия среднего (373—623°К) и низкого (323—423°К) потенциала используется в производственных процессах, связанных с изменением физических свойств материалов (нагрев, плавление, дистилляция, выпаривание), для нагрева компонентов при химических процессах, а также для проведения некоторых химических процессов. [c.57]

    Штраус [824] предложил другой тип активированного угля, обладающего аналогичными свойствами. Такой уголь изготовляют экструзионным гранулированием пламенного угля. Последний получают из каменноугольной омолы, к которой до- ее сжигания в строго контролируемых условиях добавляются активирующие добавки. [c.178]

    Процессы с целенаправленным или неизбежным изменением свойств или размеров (или того и другого) зерен твердой фазы (сжигание, газификация, обжиг, грануляция при обезвоживании растворов, сушка, отравление катализаторов, исчерпание емкости сорбентов и т. п.) требуют для непрерывного проведения создания потока твердой фазы через аппарат. Не рассматривая ниже перемещения неподвижно лежащей твердой фазы через аппарат с помощью специальных механических приспособлений (вагонеток, транспортеров, конвейеров) отметим, что такое движение может быть организовано сплошным потоком или пересыпанием из [c.203]

    Обобщен опыт по технологии производства, подготовке, физико-химическим свойствам сжиженных нефтяных газов (СНГ), теории и практике их сжигания, транспорту и хранению, а также рациональному использованию СНГ в коммунально-бытовом секторе, сельском хозяйстве и многих отраслях промышленности. Приведены методы контроля качества СНГ, а также правила по технике безопасности при работе со сжиженными нефтяными газами. [c.4]

    Авторы приводят исчерпывающие сведения практически по всем аспектам использования как существующих, так и потенциальных СНГ. В первой части книги основное внимание они уделяют собственно СНГ, рассматривают их особенности, химический состав и методы очистки. Описание авторами физических и химических свойств данных газов является всеобъемлющим. Ими установлены основополагающие критерии, которыми следует руководствоваться при решении практических задач, возникающих при переработке и хранении жидких и эффективном сжигании газообразных углеводородов. Исчерпывающие сведения по термодинамическим свойствам компонентов СНГ могут быть в одинаковой степени полезны как студентам и исследователям, так и специалистам-прак-тикам. Рассмотренные в начале работы вопросы горения, в основе которого лежат реакции окисления углеводородов, логично подводят читателя к установлению характеристик горения СНГ, а затем и к конструированию соответствующих горелочных устройств. Первая часть книги заканчивается рассмотрением вопросов распределения, переработки и хранения (включая весьма важные вопросы техники безопасности) СНГ при их использовании в ком- [c.5]

    При проектировании н эксплуатации предприятий особое внимание должно уделяться системам сжигания ацетилена и ацетиленсодержащих газоз. Ацетилен, являясь эндотермическим соединением, легко разлагается п при определенных условиях способен к взрывчатому разложению в отсутствие кислорода. Эта характерная особенность, а также широкий диапазон концентрационных пределов воспламенения с кислородом делают ацетиленсодержащие газы особенно опасными и требуют соблюдения дополнительных мер безопасности при их сжигании на факелах. Однако характерные особенности взрывоопасных и детонационных свойств ацетилена не всегда учитываются. Поэтому при эксплуатации производств, связанных с получением и переработкой ацетиленсодержащих газов, происходит большое число аварий. Взрывы ацетиленовоздушных смесей происходили в аппаратуре и трубопроводах факельных систем. Известны случаи разложения ацетилена со взрывом в факельном стволе и прогара ацетиленопроводов на участках между стволом и огнепреградителем. Отмечены случаи загорания н разложения со взрывом в системе, приводившие к разрыву шпилек и отрыву штуцеров в верхней части огнепреградителя. [c.212]

    Численное значение отношения СО СО в газах регенерации зависит не только от избытка воздуха и условий процесса сжигания кокса, но и от свойств катализатора, а также степени его отра-. ботанности для естественных алюмосиликатных катализаторов оно выше, чем для синтетических. Отношение СО СО увеличивается с ростом температуры, избытка воздуха, концентрации кокса на катализаторе и содержания в не железа. [c.162]

    В производстве ацетилена могут происходить периодические выбросы газовых смесей ацетилена-концентра-та, газов пиролиза или крекинга, синтез-газа. Обычно наибольшие выбросы производятся в период пуска агрегатов и при нарушениях технологического режима производственного процесса. Непосредственный отвод перечисленных газовых смесей в атмосферу не разре- иается, что обусловлено горючими и токсическими свойствами этих газов и недопустимостью проникания ацетилена в блоки разделения воздуха, которые вместе с производством ацетилена обычно входят в состав химического предприятия. В связи с этим некондиционные ацетиленсодержащие газы передаются на соответствующие факелы для полного сжигания. [c.130]

    В связи с этим образование дыма предотвращается путем создания во всех точках пламени достаточной концентрации кислорода. При сжигании перечисленны.х вын е газовых смесей в производстве ацетилена это достигается разбавлением их паром, в результате чего кислород более равномерно распределяется в смеси. Количество пара, необходимого для бездымного сжигания газа, зависит главным образом от свойств сжигаемой газовой смеси и возрастает с увеличением молекулярного веса ее компонентов и содержания в смеси не-прелельных углеводородов. [c.132]

    Вязкостные свойства влияют на качество распы-ливания топлива и на однородность рабочей смеси. При сжигании топлива малой вязкости обеспечивается более совершенное его рас-пыливание, быстрое испарение, лучшее перемешивание с воздухом и хорошее сгорание. Высокая вязкость топлива снижает качество его распыливания, ухудшает процесс сгорания, снижает экономичность двигателя и приводит к дымному выпуску. Определяется по ГОСТ 33—66 и 6258—52. [c.14]

    Основное различие - в строении молекул. Нефть - эго смесь сотен веществ, обладающих двумя важными общими свойства и. Зо-первых, они богаты энергией, которая высвобождается в результат. сжигания. На этом свойстве основано использование нефти в качестве тсплива. Во-вторых, эти молекулы можно химически связать друг с другом ил тр.тсформировать самым различным образом и получать при этом громадное множество полезных веществ. На этом основано использование нефти и качестве сырья. [c.174]

    Совершенно иначе обстоит дело в случае необходимости определить раздельное содержание непредельных и ароматических углеводородов. Йодные числа в этом случае неприменимы в виду постоянного присутствия диэтиленовых углеводородов. Способ нитрования смеси, заключающей непредельные углеводороды, также неприменим, нотому что с одной стороны невозможно рассчитать количество ни-труюш ей смеси, частично расходуемой и на сжигание непредельных углеводородов и на нитрование их, с другой стороны предварительное удаление непредельных соединений без риска удалить часть ароматических—невозможно или невьшолнимо с достаточной аналитической точностью. Близость некоторых свойств непредельных и ароматических углеводородов не позволяет танже рассчитывать на возможность применения какого-либо раствор1ггеля с избирательной способностью. [c.165]

    Выбор типа печи, конструктивные решения по отдельным узлам, материальное оформление, система сжигания топлива, оснащение приборами контроля и автоматического управления и другие вопросы прорабатываются на стадии проектирования печей с учетом свойств углеводо1)одных сред и рабочих условий эксплуатации.  [c.6]

    Расход топлива зависит от его качества, совершенства способов сжигаиня и рационального использования полученного тепла. Качество жидкого топлива обусловливается его элементным составом, теплотой сжигания и физико-химическими свойствами. Жидкое топливо, применяемое для горелок печен, состоит из горючей массы и балласта (золы и влаги). [c.111]

    Вязкость жидких топлив является одним из ва кнепших свойств в практике их использования. Для достижения хорошей текучести, необходимой при перекачке топлива по трубопроводу, и хорошего распыления в горелках нулсно, чтобы вязкость топлива была невысокой. Для большинства тяжелых жидких топлив, сжигаемых в печах нефтезаводов, это обеспечивается подогревом. При недогреве жидкого топлива ухудшаются условия его транспортировки и сжигания перегрев топлива можег вызвать интенсивное парообразование и вспенивание, что приводит к пульсации факела и может быть причиной пожара. [c.112]

    От конструкции печей и режима сжигания горючего и сырья зависит свойство получаемой сажи. Сырьем для получения сажи служит зеленое, масло (керосино-газойлевая фракция 190—360 °С, продукт пиролиза крекинг-керосина) коксовый дистиллят (остаточная фракция продуктов коксования нефтяных остатков) тярмо- газойль (газойлевая фракция 200—460 °С термического крекинга, [c.169]

    Существует классификация, разработанная экспериментальной станцией Мариено. Коксование и сжигание не одинаково используют свойства углей и поэтому не удивительно, что классификация, принятая для одного процесса, непригодна для другого. Тем не ме- -нее из принятых параметров классификации, такие, как показатель выхода летучих веществ и вспучиваемость AFNOR, могут быть использованы во всех случаях потому, что они достаточно хорошо характеризуют качество угля. Это означает, что можно сохранить общее представление для различных категорий углей. Именно это было проверено на экспериментальной станции Мариено и конкретизировано в табл. 4, которая, для каждой из категорий, определяемой по значениям двух параметров классификации, дает другие характеристики из наиболее известных, в том числе  [c.69]

    Из приведенных данных видно, что вычисляемое из смесей октановое число ацетиленовых углеводородов несколько выше, чем у соответственных олефиновых углеводородов. Еще более высокими оказались октановые числа диолефиновых углеводородов, вычисляемые из смесей с предельными углеводородами У гексадиеиа-2,4 октановое число смешения выше 200 и даже у такого высокомолекулярного и мало разветвлепного углеводорода, как 4-метилдекадиен-1,4, оно оказалось равным 84. Вышеприведенные факты, наблюдавшиеся нами еще в 1938 г., а также указания американской журнальной. литературы на то, что полимербензин при сжигании его в двигателе Вокеша в чистом виде имеет октановое число 80, а при смешении его с низкооктановыми предельными бензинами (с октановым числом 40—50) он ведет себя, как компонент с октановым числом 100—118, и побудили нас заняться изучением антидетонационных свойств смесей непреде.льных соединений с предельными углеводородами. [c.64]

    Слои со случайной упаковкой широко применяются в различных технологических процессах прн адсорбции, катализе, сжигании, фильтрации, сенарированин и во многих других случаях, когда требуется осуществить контакт жидкой и твердой фаз. Такие слои образуются нри произвольном способе заполнения объема частицами, и их осредненные свойства сильно зависят от технологии изготовления слоя (2 . Только слон бесконечного размера можно рассматривать как слои с действительно случайной упаковкой. Тем не менее если диаметр контейнера D и его длина L более чем в 10 раз превышают размер заполняющих его частиц, то такой слой с хорошей степенью точности можно считать бесконечным [3]. Слои со случайной упаковкой просты и дешевы в изготовлении. [c.152]

    Печные топлива предназначены для сжигания в специальных печах бытового назиачеиия. Изготавливаются из дистиллятных фракций прямой перегонки и вторичных процессов по свойствам во многом аналогичны летнему дизельному топливу (Л). [c.330]

    Сжигание в факеле применялось для удаления органических тиофосфатов, обладающих лакримогенными свойствами, а также углеводородов [569]. В производстве таких веществ технологический вакуум достигается с помощью паровых эжекторов, и сброс направляется в сборники горячего конденсата, что приводит к возникновению внутрицеховых загрязнений. Однако газы, выходящие из сборника конденсата, обычно горючи и могут подаваться на факел. [c.184]

    В условиях пласта создаются благоприятные возможносш для формирования всех типов ССЕ (пора, пузырек, капля, ассоциат, кристаллит). Кроме того, при воздействии на пласт интенсивных методов (подземное сжигание части нефти, введение реагентов и т. д.) происходит разрушение коллекторов, попадание в них высокодисперсных частиц твердых механических иримесей, продуктов различных реакций (например, углеродистых частиц), способствующих структурообразованию и соответственно изменяющих физико-химические свойства флюидов. Флюиды в породе могут находиться в различном агрегатном состоянии (газы, жидкости), на которые по-разному влияют одинаковые внешние воздействия. [c.188]

    Наиболее важна и многообразна группа химических процессов, связанных с изменением химического состава и свойств веществ. К ним относятся процессы горения — сжигание топлива, серы, пирита и других веществ пирогенные процессы — коксование углей, крекинг нефти, сухая перегонка дереза электрохимические процессы — электролиз растворов и расплавов солей, электроосаждение металлов электротермические процессы — получение карбида кальция, электровозгонка фосфора, плавка стали процессы восстановления — получение железа и других металлов из руд и химических соединений термическая диссоциация — получение извести и глинозема обжиг, спекание — высокотемпературный синтез силикатов, получение цемента и керамики синтез неорганических сссд. 1п.е-ний — получение кислот, щелочей, металлических сплавов и других неорганических веществ гидрирование — синтез аммиака, метанола, гидрогенизация жиров основной органический синтез веществ на основе оксида углерода (II), олефинов, ацетилена и других сфга-нических соединений полимеризация и поликонденсация — получение высокомолекулярных органических соединений и на их основе синтетических каучуков, резин, пластмасс и т. д. [c.178]


Смотреть страницы где упоминается термин Сжигание свойства: [c.254]    [c.65]    [c.254]    [c.37]   
Переработка сульфатного и сульфитного щелоков (1989) -- [ c.92 ]




ПОИСК





Смотрите так же термины и статьи:

Сжигание



© 2025 chem21.info Реклама на сайте