Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Переходы излучательные

    Флуориметрический метод анализа основан на возбуждении электронных спектров испускания молекул определяемого вещества при внешнем УФ-облучении и измерении интенсивности нх фотолюминесценции. Для возникновения явления люминесценции молекулы вещества необходимо перевести из основного состояния в возбужденное с длительностью его существования, достаточной для осуществления излучательного электронного перехода из возбужденного состояния в основное. Это возможно для молекул с относительно устойчивым возбужденным состоянием. [c.94]


    В 1943 г. А. Н. Теренин выдвинул гипотезу о том, что фосфорес-центное состояние молекул является триплетным. Годом позже Г. Льюис и М. Каша показали, что фосфоресценция органических молекул, наблюдающаяся в твердых матрицах, обусловлена испусканием света из самого нижнего возбужденного состояния этих молекул и имеет мультиплетность, равнук> трем. Еще в 1936 г. А. Яблонский предложил диаграмму энергетических уровней молекул, введя третий метастабильный уровень. Трехуровневая система объясняла существование трех видов люминесценции флуоресценцию, замедленную флуоресценцию и фосфоресценцию. После возбуждения в нижнее возбужденное синглетное состояние молекула может или испустить нормальную флуоресенцию, или вернуться в основное состояние на высокий колебательный уровень путем внутренней конверсии, или претерпеть интеркомбинадионную конверсию, перейдя в триплетное состояние. Попав в триплетное состояние, молекула оказывается в ловушке , так как излучательный переход в основное синглетное состояние запрещен, а чтобы вернуться в возбужденное синглетное состояние, молекула должна приобрести тепловую энергию, равную АЕ (Т— 5 ). Поэтому молекула остается в триплетном состоянии, пока в ней не произойдет один из следующих процессов 1) испускание запрещенного излучения — фосфоресценции 2) тепловая активация в состояние 5 с последующей замедленной флуоресценцией 3) интеркомбинационная конверсия в основное синглетное состояние. [c.158]

    Зависимость флуоресценции от температуры. В отсутствие тушителей эффективность флуоресценции фф определяется относительными скоростями излучательного процесса кф, с одной стороны, и безызлучательных процессов интеркомбинационной и внутренней йд конверсии, с другой. Скорость излучательного процесса не зависит от температуры, поэтому изменения фф отражают изменения кк и йд. Последние увеличиваются с ростом температуры, поскольку на верхние колебательные уровни состояния попадает все большая часть молекул и вероятность перехода через область пересечения потенциальных поверхностей возрастает. При пони ке-нии температуры обе константы скорости стремятся к предельным значениям, соответствующим интеркомбинационной или внутренней конверсии с самого нижнего, колебательного уровня Слабо флуоресцирующее вещество может стать при низкой температуре сильно флуоресцирующим. Зависимость выхода флуоресценции от температуры можно представить уравнением [c.62]

    Спонтанная люминесценция включает переход (излучательный, а чаще безызлучательный) на энергетический уровень, с которого происходит излучение (рис. 180, б). Этот вид люминесценции характерен для сложных молекул в парах и растворах и для примесных центров в твердых телах (см. гл. V). Особый случай представляет люминесценция, обусловленная переходами из экситонных состояний (см. рис. 175, а). [c.432]


    Обозначены константы скорости переходов излучательных (сплошные линии), безызлучательных (волнистые линии) и переноса (пунктир) [c.119]

    Замедленная флуоресценция. Два излучательных процесса — флуоресценция и фосфоресценция — отличаются друг от друга, во-первых, длительностью испускания и, во-вторых, энергией уровня, с которого происходит испускание. Однако существует еще один вид испускания, который спектрально расположен в области флуоресценции, но имеет длительность, характерную для фосфоресценции. В отличие от обычной, быстрой флуоресценции ее называют замедленной флуоресценцией, поскольку перед тем как испустить квант света, молекула некоторое время пребывает в триплетном состоянии. Механизм перехода из состояния Т] в состояние 5] может быть различным, и в зависимости от этого различают замедленную флуоресценцию типа Е и типа Р. [c.54]

    Эффективность и время затухания фосфоресценции. Фосфоресценция— это излучательный переход с триплетного уровня Т на синглетный 5о- Эффективность фосфоресценции в первую очередь определяется концентрацией триплетных молекул. Фосфоресценция наблюдается в основном в твердой фазе, когда процессы диффузионного тушения триплета замедлены. Эффективность образования триплетов фт — это число триплетных молекул, образующихся на один поглощенный квант возбуждающего света. В отсутствие фотохимических реакций или же интеркомбинационной конверсии из высших синглетных состояний скорость заселения нижнего возбужденного синглетного состояния равна скорости поглощения /п, а скорость образования триплетных молекул /пфт- По методу стационарных концентраций определяют выход триплетов  [c.62]

    Согласно правилу Гунда, триплетные уровни лежат ниже, чем соответствующие им синглетные уровни. Излучательный переход из нижнего триплетного состояния в основное называется фосфоресценцией. Излучательные переходы между состояниями разной мультиплетности, например между синглетами и триплетами, теоретически запрещены. В действительности, вследствие спин-орби-тального взаимодействия такие переходы наблюдаются, хотя они И менее вероятны, чем синглет — синглетные или триплет — триплетные переходы. Триплетные молекулы легко теряют свою энергию в различных безызлучательных процессах. Они могут дезактивироваться молекулами с неспаренными электронами, например [c.53]

    Эффективность пересечения двух электронных состояний может быть настолько низкой, что в этом случае предиссоциация не приводит к уменьшению интенсивности полос испускания. Даже в отсутствие таких процессов, как физическое тушение, излучательные потери приводят к тому, что большинство возбужденных частиц не претерпевает химических превращений. Такая низкая эффективность внутримолекулярного обмена энергией для двух пересекающихся состояний обычно возникает при действии запрещения безызлучательного перехода. Существуют, однако, ситуации, когда эффективность безызлучательного перехода зависит от внешних условий. Столкновения с другими частицами, наличие электрического или магнитного поля могут приводить к снятию запрета на оптические переходы. Подобное явное нарушение правил отбора наблюдается и для безызлучательных переходов — правила действуют лишь для невозмущенных молекул. Увеличение вероятности пересечения соответствующих состояний приводит К увеличению относительного вклада предиссоциации, так как молекула возмущена влиянием внешних воздействий. Предиссоциация, эффективно протекающая лишь при наличии некоторого внешнего возмущения, называется индуцированной. [c.54]

    Перенос энергии по механизму обменного взаимодействия эффективен в случае адиабатического процесса, в то же время наличие разрешенных оптическими правилами отбора излучательных переходов в донорных и акцепторных молекулах никак не влияет на эффективность переноса по этому признаку можно различать обменное и дальнодействующее кулоновское взаимодействия. Например, при возбуждении триплетных состояний в результате обменного взаимодействия с триплетом бензофенона эффективность переноса энергии примерно одинакова для нафталина и 1-иоднафталина, В предыдущей главе (с. 107) было показано, что излучательный переход 7"i- 5o по крайней мере в 1000 раз более вероятен в замещенной молекуле, так [c.124]

    Безызлучательные переходы наиболее характерны для сложных молекул, что объяснялось в начале разд. 3.3, и процессы, включающие подобный внутримолекулярный обмен энергией, являются наиболее вероятным путем фотодиссоциации. Обменные процессы подробно обсуждаются в гл. 4 и 5, так как меж- и внутримолекулярные процессы обмена энергией изучаются в основном по излучательным (эмиссионным) явлениям, описываемым в гл. 4. Однако процессы предиссоциации и индуцированной предиссоциации были рассмотрены нами на примерах очень простых молекул, и необходимо убедиться, сохраняются ли те же закономерности фотохимической диссоциации для более сложных частиц. [c.56]


    КОЙ СПИНОВОЙ мультиплетности в продуктах сенсибилизированных реакций. Проблема в том, что спин Рассела — Саундерса 5 не может быть точным квантовым числом, даже для изолирован ных участников реакции, поскольку имеют место излучательный и безызлучательный триплет-синглетные переходы, хотя можно предположить, что 8 является достаточно хорошим квантовым числом для исключения запрещенной по спину столкновительной реакции. Однако часто все же делается допущение о сохранении спина, и, так как экспериментальные результаты иногда соответствуют такому допущению, мы будем его придерживаться. В этой связи более определенно можно говорить об экспериментах, в которых из-за энергетических ограничений может заселяться только триплетное состояние (см. рис. 5.2 и обсуждение сенсибилизированной фосфоресценции). [c.140]

    Наблюдаемые эффекты тушения люминесценции являются обычно результатом конкуренции радиационных и бимолекулярных столкновительных процессов дезактивации электронных энергетических уровней, поскольку колебательная релаксация протекает настолько быстро (особенно в конденсированной фазе), что излучательные переходы практически всегда начинаются с основного колебательного уровня возбужденного электронного состояния эти особенности будут предметом нашего обсуждения в следующем разделе. Простейший процесс возбуждения с последующей дезактивацией, не включающий процессов внутримолекулярной безызлучательной релаксации, имеет вид [c.85]

    Ступенчатая столкновительная релаксация колебательных возбуждений является относительно эффективным процессом, сечения рассеяния для одноквантовой дезактивации лежат в пределах 1—100% от газокинетических сечений для многих тушащих газов. Поэтому резонансная флуоресценция не наблюдается при давлениях, для которых кинетическая частота столкновения существенно превышает скорость спонтанной эмиссии например, для Л 10 с наблюдение резонансного излучения ограничивается давлениями ниже 1 мм рт. ст. (или меньше, если Л<10 с ). Нижние колебательные уровни верхнего электронного состояния заселяются переходами с уровня V, заселяемого поглощением, и при умеренных давлениях, при которых излучательные процессы и процессы тушения за счет колебательной релаксации еще конкурируют, излучение будет происходить со всех колебательных уровней верхнего состояния вплоть до V. Например, спектр флуоресценции МОг при низких давлениях, хотя его отдельные линии и не разрешаются, по мере возрастания давления в системе все более сдвигается в длинноволновую область. [c.93]

    Д5=0) по-прежнему остается в силе. Как и при излучательных процессах, переходы с Д5= 0 появляются в результате спин-орбитального взаимодействия в молекуле, а вероятности интеркомбинационных переходов подчиняются той же схеме, [c.101]

    Для излучательных переходов существуют правила отбора, определяемые также величиной момента перехода. В приближении Борна—Оппенгеймера полную энергию молекулы можно выразить в виде суммы электронной, колебательной и спиновой энергий  [c.122]

    Флуоресценция — это излучательный переход между двумя состояниями одинаковой мультиплетности. Флуоресценция наблюдается в жидкой, твердой и газовой фазах. При комнатной температуре практически все молекулы находятся на нулевом колебательном подуровне основного состояния, поэтому поглощение [c.124]

    Согласно правилу Гунда, триплетные уровни лежат ниже, чем соответствуюшие им синглетные уровни. Излучательный переход между состояниями разной мультиплетности называется фосфоресценцией. Переходы между состояниями разной мультиплетности теоретически запрещены. В действительности такие переходы наблюдаются вследствие спин-орбитального взаимо- [c.126]

    Существенными являются стадии (3.18) и (3.19), где при взаимодействии возбужденных триплетов одна молекула образуется в возбужденном состоянии 5 а другая переходит в основное состояние. Излучательный переход из состояния 5 и приводит к возникновению замедленной флуоресценции. Хотя флуоресценция из 5] (стадия 3.21) имеет ту же константу скорости kf, что и быстрая флуоресценция, общая скорость затухания в этом случае меньше, так как процесс идет через реакции (3.18) и (3.19). [c.129]

    Денных синглетов, которые затем претерпевают излучательный переход в основное состояние  [c.131]

    Скорости переходов. При изучении фотолюминесценции необходимо знать временные характеристики излучательных и конкурирующих с ними безызлучательных процессов дезактивации возбужденных состояний. Для излучательных процессов характерны следующие времена. Поглощение света происходит за время порядка одного колебания световой волны, т. е. около 10 с. Флуоресценция из самого нижнего возбужденного синглетного состояния происходят от 10 с (для я —я-переходов) до 10 (для я —п-переходов). Излучательные времена триплетных состояний лежат в пределах от 10 2 до с. Безызлучательные переходы из верхних возбужденных состояний происходят за время порядка 10 2 с. Скорость внутренней конверсии с нижнего возбужденного синглета в основное состояние часто сравнима со скоростью флуоресценции. Интеркомбинационная конверсия из нижнего синглетного состояния протекает за время порядка излучательного времени жизни флуоресценции. Р1нтеркомбинационные переходы из триплета в основной синглет происходят сравнительно медленно (Ю — 10 с в зависимости от условий). [c.57]

    При производстве цемента содержащиеся в топливе сернистые соединения взаимодействуют с богатыми известняком компонентами сырья и переходят в цементный клинкер, поэтому в качестве топлива в данном случае можно использовать богатые серой уголь и мазут. Уголь — достаточно загрязненное топливо. К тому же на приобретение и установку дорогостоящего оборудования для размола, сортировки и транспортировки пылеугля требуются значительные капитальные затраты. По этой причине в большинстве стран при выборе вида топлива предпочтение отдается мазуту. Например, во Франции на долю мазута приходится 80 %, в ФРГ — 66%, Швеции — 78%, Швейцарии — 86 % от общего количества топлива, потребляемого в цементной промышленности. Даже в Великобритании с ее большими запасами угля и традиционным использованием его в тяжелой промышленности 76 % от всего потребляемого в производстве цемента топлива приходилось на долю мазута (по данным 1976 г.). В Нидерландах и Бельгии в цементной промышленности потребляется природный газ, добываемый на Гронингенском месторождении. В 1976 г. в Нидерландах на его долю приходилось 48 %, в Бельгии — 41 % от всего количества топлива, потребляемого в цементной промышленности. Следовательно, низкое содержание серы и низкая излучательная способность пламени не являются препятствием для перевода обжиговых печей с угля и мазута на газовое отопление. [c.295]

    Сказанное имеет отношение к электронной компоненте вероятности отдельных типов безызлучательных переходов. Экспериментальные наблюдения (о некоторых из них речь пойдет в дальнейшем) показывают, что вероятность переноса связана обратной зависимостью с разностью энергий двух состояний для данного типа электронного перехода. Этот результат может быть поясней с помощью принципа Франка — Кондона для безызлучательных переходов, обсуждавшегося для случая излс/-чательных переходов в разд. 2.7. Согласно этому принципу, ядра в молекуле неподвижны в течение всего электронного перехода, т. е. переходы вертикальны на энергетической диаграмме (см. рис. 2.3, а и б). При внутримолекулярных безызлучательных переходах сумма электронной и колебательной энергий должна оставаться постоянной в отличие от излучательного перехода, когда рождение фотона приводит к возникновению или изменению разности энергий начального и конечного состояний. Таким образом, в безызлучательном случае переход горизонтальный в той же мере, что и вертикальный , поэтому он ограничивается очень малой областью на энергетической кривой или поверхности. Перекрывание в этой области колебательных вероятностных функций для начального и конечного состояний будет определять эффективность переноса энергии при определенной фиксированной вероятности электронного перехода. На рис. 4.7 представлены три возможных случая данные кривые могут рассматриваться как кривые потенциальной энергии для двухатомной молекулы или как линии- пересечения энергетических поверхностей для более сложных молекул. На рис. 4.7, а показаны два состояния, X и У, сходной геометрии, но обладающие сильно различающейся энергией. Нижний колебательный уровень = 0 в состоянии X имеет то же значение энергии, что и верхний уровень V" в V. Вследствие характерного распределения колебательных вероятностных функций их перекрывание мало. На рис. 4.7,6 представлен случай, когда и разность энергий двух состояний, и разность квантовых чисел V и V" существенно меньше, что приводит к большему перекрыванию колебательных вероятностных функций. Таким образом, эффективность пересечения будет возрастать по мере того, как т. е. заселение уровня вблизи v" = Q благоприятст- [c.102]

    Независимость спектров люминесценции от длины волны возбуждающего света. Спектр люминесценции (его форма и положение) для сложных органических молекул в конденсированных средах не зависит от длины волны возбуждающего света, если эта длина волны лежит в пределах их электронного спектра поглощения. Это объясняется тем, что возбужденные молекулы, поглотивщие кванты различной величины, попадают на уровни разных возбужденных электронно-колебательных состояний. Затем за время, много меньше средней длительности их возбужденного состояния, они успевают растратить избыточную колебательную энергию безызлучательным путем, в частности, на взаимодействие с молекулами окружающей среды. После такого перераспределения избыточной энергии происходит излучательный переход с одних и тех же электронных уровней. Поэтому спектр люминесценции не изменяется. [c.91]

    В невозбужденном (нормальном, основном) состоянии /г = 1. При излучательных переходах в это состояние из любого другого получается набор Ай г-ь А з ],. .., А ц,-ь Возможны и другие переходы АЕз-2, а/ . . ., И т, п. Каждый набор дает серию спектральных л липп (рис. XXIX. 1). [c.340]

    Рассмотрим далее излучательные переходы возбужденных молекул. Переход из возбужденного состояния 5 в основное 5о обусловливает флуоресценцию. Для большинства органических молекул естественное время жизни флуоресценции лежит в интервале от 10 до 10" сек. Более медленным является излучательный переход -> 5о, обу-словливаюш,ий фосфоресценцию, время жизни которой лежит между 10 и 10 сек. [c.279]

    Прямыми линиями показаны излучательные переходы, волнистыми линиями — безызлу нательные переходы. 1 — внутренняя конверсия, ISO — интеркомбинационная кон-верснн, /iv —флуоресценция, /iV фосфоресценция. [c.313]

    Скорость запрещенных по спину переходов может быть существенно изменена под влиянием внешнего окружения. Такое воздействие можно наблюдать при добавлении парамагнитных молекул в растворитель. Хотя О2 и N0 уменьшают выход фосфоресценции вследствие своего участия в эффективном бимолекулярном тушении, они вызывают одновременно рост скоростей оптического перехода и IS . Поглощение при переходе T l- -So также возрастает по интенсивности в тех случаях, когда присутствуют парамагнитные соединения. Например, поглощение при переходе Ti- -So в бензоле ( 310—350 нм) практически исчезает, когда удаляются последние следы кислорода. Наиболее драматическую картину поглощения 7- -S представляют растворы пирена, которые в обычном состоянии бесцветны, но приобретают насыщенный красный цвет в присутствии кислорода при высоком давлении. Тяжелые атомы в своем окружении способствуют также росту вероятности излучательных и безызлучательных переходов путем индуцирования заметного спин-орбитального взаимодействия в растворе. Так, растворы антрацена и некоторых его производных начинают слабее флуоресцировать при добавлении бромбензола, тогда как интенсивность триплет-триплетного поглощения возрастает в результате усиления IS Si T i. Как мы отмечали ранее, эти процессы наиболее значительны для переходов, включающих возбужденные состояния (л, л ). Спин-орбитальное взаимодействие всегда пренебрежимо мало в симметричных ароматических соединениях, и именно здесь изменение скоростей переходов под воздействием окружения наиболее заметно. В то же время сильное спин-орбитальное взаимодействие всегда существует в состояниях (п, л ), и в этом случае воздействие внешнего возмущения более слабое. Эти эффекты наблюдаются как в твердых, так и в жидких растворах. Например, фосфоресцент-ное время жизни в бензоле, растворенном в стеклообразной матрице при 4,2 К, уменьшается от 16 с в СН4 или Дг до 1 с в Кг и до 0,07 с в Хе отношение <рр/ф1 возрастает, и все процессы IS Si T i, T,- So+hv и Ti So протекают быстрее в растворителе с большей атомной массой. [c.107]

    И является одной из наиболее известных хемилюминесцентных реакций. Зелено-голубое свечение испускает ион аминофталата. Во многих окислительных реакциях с участием органических пероксидов или пероксида водорода испускается узкая линия излучения при Х = 634 нм. Та же линия испускается в реакции гипохлорита натрия и Н2О2. Показано, что эта линия соотвёт-ствует бимолекулярному излучению, в котором участвуют две возбужденные молекулы кислорода, находящиеся в состоянии Ав. Излучательный переход строго запрещен при [c.111]

    Согласно правилу отбора спина А5 = 0, дальнодействующий кулоновский перенос энергии невозможен для любых процессов, протекающих с изменениями мультиплетности, и поэтому дальнодействующий триплет-триплетный перенос энергии должен быть исключен. Однако, поскольку спин-орбитальное взаимодействие допускает электрические дипольные оптические переходы с Д8 0 в сложных молекулах, кулоновский перенос может происходить по с1с1-механизму. Похоже, что этот перенос является более медленным, чем обменные процессы, в которых переходы для донора и акцептора полностью разрешены, но, так как реальное излучательное время жизни триплетных состояний также велико, дальнодействующий перенос энергии может все еще иметь значение наряду с излучением. Отсюда следует, что дальнодействующее взаимодействие, видимо, осуществляется только в системах, в которых тушение или интеркомбинационная конверсия не являются основными процессами потери три-плетпой энергии донора. Интересно, что процесс типа [c.131]


Смотреть страницы где упоминается термин Переходы излучательные: [c.67]    [c.158]    [c.613]    [c.615]    [c.196]    [c.615]    [c.35]    [c.102]    [c.103]    [c.105]    [c.143]    [c.122]    [c.125]   
Молекулярная биофизика (1975) -- [ c.321 ]

Основы квантовой химии (1979) -- [ c.402 , c.405 ]

Молекулярная фотохимия (1967) -- [ c.15 ]

Химическая кинетика и катализ 1985 (1985) -- [ c.316 ]




ПОИСК







© 2025 chem21.info Реклама на сайте