Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение магния силикатах

    К сухому остатку приливают соляную кислоту и нагревают до полного растворения безводных сернокислых солей. Полученный раствор содержит сернокислые и хлористые соли всех металлов, входивших в состав силиката. В случае необходимости этот раствор можно использовать для определения суммы полуторных окислов, железа, титана, кальция и магния обычными методами, описанными выше, а в фильтрате после отделения магния определить щелочные металлы. [c.470]


    При определении 25—100 мкг Mg/50 мл в присутствии 1—20 мг Са стандартное отклонение составляет 6 отн. %. Метод использован для определения магния в золе растений, в силикатах и известняках после отделения Ге, А1, Т1, Мп и Р. [c.161]

    ТОЛЬКО ту его часть, которая взвешивается вместе с пирофосфатом магния (только для введения поправки при определении магния). Определение марганца в отдельной навеске пробы особенно легко выполнимо при анализе карбонатных горных пород, которые легко можно перевести в раствор в течение нескольких минут без сплавления и отделения кремнекислоты. При анализе силикатов это требует большого труда, но само колориметрическое определение дает такие же точные результаты, какие получаются при анализе карбонатных пород. [c.963]

    Пропадиен. Наиболее совершенным методом определения считается хроматографический, причем в качестве насадки разделительной колонки можно использовать силикат магния, диэтил-формамид и другие вещества. Предельная концентрация пропа-диена в пропилене определяется чувствительностью метода анализа. [c.19]

    О комплексонометрическом определении магния в силикатах с использованием триэтаноламина в качестве маскирующего вещества см. также в [281, 710, 731, 900]. [c.199]

    Для придания герметикам определенных свойств, а также для их удешевления используются волокнистые (асбест различной степени волокнистости) и дисперсные минеральные наполнители (активные сорта углеродистой и белой саж, тальк, окись цинка, мел, литопон, барит, каолин, диатомит, сланцевая мука, графит, зола,- слюда, кварц, окись магния, силикаты кальция и алюминия и др.). Их содержание в герметиках составляет 50— 75% и более. Упрочняющее действие наполнителей чаще всего увеличивается с повышением степени их дисперсности. [c.142]

    Описанный метод проверяется с целью фотометрического определения магния в водах, силикатах п других объектах. [c.108]

    В настоящем руководстве приведены методы анализа, не только проверенные или разработанные в лаборатории авторов, но и описанные в литературе и по возможности не требующие применения систематического анализа. Некоторые из этих методов, без сомнения, длительны и нуждаются в усовершенствовании. В первую очередь это относится к определению кремневой кислоты в силикатах. Вместо весового метода желательно применение объемного или колориметрического. К сожалению, все известные подобного рода методы не дают достаточно надежных результатов при наличии- больших количеств 51 0 . Объемное определение алюминия в виде оксихинолината приводит к хорошим результатам, если содержание определяемого элемента не превышает 10%. Метод определения магния с 8-оксихинолином также требует дальнейшего усовершенствования. [c.68]


    Как было показано выше (стр. 878), весовое определение марганца нередко приводит к большим ошибкам, даже если его проводят очень тщательно. Это происходит от различных причин от неполноты отделения алюминия и железа, неполного осаждения марганца сульфидом аммония и загрязнения осадка другими веществами. Так как определяемые количества марганца обычно очень малы, то относительная величина этих ошибок может быть весьма значительной и нельзя быть уверенным, что они будут компенсировать друг друга. Поэтому лучше определять общее содержание марганца в отдельной навеске, а в главной навеске определять только ту его часть, которая взвешивается вместе с пирофосфатом магния (только для введения поправки при определении магния). Определение марганца в отдельной навеске пробы особенно легко выполнимо при анализе карбонатных горных пород, которые легко молено перевести в раствор в течение нескольких минут без сплавления и отделения кремнекислоты. При анализе силикатов это требует большего труда, но само колориметрическое определение дает такие же точные результаты, какие получаются при анализе карбонатных пород. [c.881]

    Условия, при которых защита силикатами возможна или оптимальна, не совсем ясны. Очевидно, что определенную роль играют растворенные соли кальция и магния, причем некоторый защитный э(Й)ект можно получить даже благодаря только щелочным свойствам силиката натрия. В присутствии силиката пассивность железа достигается при pH = 10 и сопровождается уменьшением скорости коррозии до 0,1—0,7 г/(м -сут) [131. Гидроксид натрия при чуть больших значениях pH (10—11) также вызывает пассивность с соответствующим падением скорости коррозии. При других условиях (например, при pH = 8) образуется создающая диффузионный барьер защитная пленка, которая, вероятно, состоит из нерастворимого силиката железа, но содержит и 5102. Лабораторные исследования в дистиллированной воде при 25 °С показали уменьшение скорости коррозии железа на 85—90 % при добавлении силиката натрия (5 мг/л в расчете на ЗЮа), обеспечивающего pH = 8 [13]. Однако в водопроводной воде г. Кембриджа (содержание Са 44 мг/л, Mg 10 мг/л, С1" 16 мг/л pH = 8,3) при той же концентрации в ней ЗЮа ингибирующего эффекта не наблюдалось. Если ввести в воду большие количества силиката натрия для достижения значений pH = Юч-П, при которых наступает пассивность железа, то наблюдается заметное уменьшение скорости коррозии. [c.279]

    При анализе глин, гранитоидов и других силикатных пород с различным содержанием основных компонентов кремния, алюминия, железа, кальция и магния и содержанием натрия от 0,5 до нескольких десятков процентов установлено, что кинетика испарения натрия из пробы в дуге переменного тока 5 А, положение градуировочных графиков и точность определения не зависят от валового состава пробы [89]. Не обнаружено также взаимного влияния натрия и калия. При относительно малом содержании щелочных металлов в состав буфера вводят карбонат лития, оксид меди и угольный порошок. При определении натрия в силикатах с содержанием щелочных металлов свыше 8% применяют метод ширины спектральных линий. [c.99]

    Определение кальцпя в силикатах и карбонатах. При определении кальция в силикатных и карбонатных породах наибольшее распространение получили комплексонометрические методы. Можно рекомендовать два варианта определения окислов кальция и магния, предлагаемых в инструкции по унифицированным методам ускоренного анализа силикатных горных пород с применением комплексоиометрии [593а]. [c.191]

    Работа описанными выше методами.довольно длительна. Много времени затрачивается на многократное удаление аммонийных солей, так как присутствие последних мешает количественному отделению кальция и магния. Значительно быстрее можно выполнить определение следующим образом. Силикат разлагают плавиковой кислотой (без приливания серной кислоты). При выпаривании досуха большая часть кремния удаляется в виде щелочные металлы остаются в виде кремнефтористых солей, а остальные—в виде фтористых солей. Остаток обрабатывают водой и гидроокисью кальция. При этом кремнефтористые соли щелочных металлов превращаются в гидроокиси  [c.474]

    Методы термогравиметрического определения кальция используются при исследовании смесей солей щелочноземельных металлов [890, 976], оксалатов кальцпя, магния [1547] и других металлов [1054], а также прп анализе мартеновских и основных шлаков, силикатов и доломитов [868, 1433[. Предложен газоволюметрический метод определения кальция в присутствии стронция и бария [37]. [c.156]


    Определение путем перманганатометрического титрования осадка нитрокобальтиата калия очень часто применяется при анализе минералов и силикатов [57, 140, 1331], почвы [2, 9, 23, 42, 105, 147, 197, 293, 316, 430, 431, 579, 703, 726, 1686, 1890, 2023, 2281, 2456, 2542, 2610, 2630, 2701, 2727, 2818, 2895], стекла [31], цемента [1417], магния и его сплавов [417], удобрений [1100, 2750], растительных объектов [622, 1669, 2701, 2899], золы растений [789, 957, 2023], пищевых веществ [2044], воды и рассолов [41, 83, 281, 1999, 2296], биологических объектов [43, 143, 259, 590, 778, 834, 1020, 1049, 1061, 1172, 1579, 1706, 1780, 1864, [c.71]

    Существует огромное множество неорганических веществ, которые, как кажется с первого взгляда, могли бы выполнять функции ионообменников в определенных экстремальных условиях. К ним относятся прежде всего многочисленные природные минералы с силикатным скелетом, включающие в свой состав наряду с такими типичными для них катионами, как алюминий, кальций, железо, магний и т. д.-, катионы щелочных металлов, чаще всего натрия и калия, наиболее способные к ионному обмену. Не меньшее значение имеют силикаты, в которых способные к обмену ионы водорода находятся в форме гидроксильных групп или ионов гидроксония. [c.5]

    Схема определения кремневой кислоты, алюминия, общего содержания железа, кальция и магния. Эти компоненты определяют из одной навески последовательно. Определение основано на разложении силикатов соляной кислотой. При этом выделяется кремневая кислота. Если исследуемое вещество полностью разлагается кислотами, его обрабатывают соляной кислотой. Если вещество не разлагается кислотами, то его предварительно сплавляют со смесью карбонатов натрия и калия, а затем полученный плав обрабатывают соляной кислотой  [c.299]

    Применяют для фотометрического определения магния-1 в присутствии больших количеств титана (1 2000). Воз- можна фотометрия при содержании в растворе до 10 % пероксида водорода или до 15 % гипохлорита натрия (Na lO). Феназо вдвое более чувствителен к Mg +, чем титановый желтый или магнезон ХС, и менее чувствителен ] к карбонат- и силикат-ионам.  [c.216]

    КомШексонометрические методы определения магния. Из ком-плексонометричес1 их методов наибольшего внимания заслуживают те, которые позволяют определять магний без предварительного отделения мешающих элементов. Залесский и др. [1295— 1297] при определении магния в гранитах, сланцах, шпатах, цементах. и в других природных и искусственных силикатах маскируют А1, Ре и Т1 триэтаноламином и винной кислотой. [c.199]

    Из опубликованных работ следует, что практически пригодным приемом, устраняющим влияние фосфат-ионов, является добавление к анализируемым растворам солей стронция и лантана [3—5]. Однако мы не встретили в литературе, опубликованной до 1965 г.. работ, в которых для этой цели применялся бы кальций. Имеется лишь указание [7], что в присутствии кальция влияние фосфат-иона на атомное поглощение магния несколько ослаблено. Обнаружено и практически использовано положительное влияние добавки кальция при атомно-абсорбционном определении магния в присутствии болыпих количеств алюминия [2, 8], а также в присутствии силикатов [7]. [c.164]

    Атомно-абсорбционным свойствам и методам определения магния посвящено большое число работ. Описаны методики определения магния в углях [1], силикатах [2], цинковых сплавах [3], уране [4], золе углей [5], растительных материалах [6]. В работе [7] изложены методики определения магния в солях натрия и алюминия с использованием его экстракции метили-зобутилкетоном (чувствительность определения 3-10 %). [c.91]

    Важнейшие соединения этого класса — алюмосиликаты (например, нефелин Na [AlSi04]). От алюмосиликатов следует отличать силикаты алюминия, в которых алюминий не входит в каркас и имеет обычно октаэдрическую координацию, например гранат АЬСаз [3104]з. Структура силикатов определяет их свойства. Слоистые силикаты — слюды легко раскалываются на тонкие пластины, т. е. обладают спайностью. Каркасные алюмосиликаты с широкими каналами в структуре называются цеолитами и служат в качестве молекулярного сита, пропускающего молекулы только определенного размера. Кроме того, они играют роль ионообменников — легко обменивают содержаш ийся в них ион натрия на кальций и магний. В этом качестве они прекрасное средство уменьшения жесткости воды. При истощении обменной способности цеолита он может быть регенерирован обработкой 5—10%-ным раствором поваренной соли. [c.139]

    Определению магния с феназо мешают железо, алюминий, медь, цинк, никель, марганец, титан. Присутствие растворимых карбонатов и силикатов оказывает незначительное влияние, что позволяет определить магний в карбонатсодержащих природных водах, а также применять реактив при анализе многих сплавов, требующих для своего растворения едкий натр, которой может содержать примеси карбонатов или силикатов. [c.35]

    При изучении влияния на результаты определения кальция и магния в воде и 1 и. растворе хлористого аммония со стороны фосфатов, алюминия и силикатов установлено 1) NH4 I ослабляет влияние силикатов при определении кальция, но почти не устраняет влияния со стороны фосфатов и алюминия 2) влияние со стороны фосфатов, алюминия и силикатов при определении магния значительно меньше, чем при определении кальция 3) присутствие кальция при определении магния значительно ослабляет влияние силикатов и несколько уменьшает степень влияния фосфатов 4) малые концентрации сульфатов и бикарбонатов (до 400 мкг/мл иона бикарбоната) не оказывают влияния при определении кальция от 8 до 40 мкг/мл и магния от 4 до 20 мкг/мл, но влияние сульфатов имеется. [c.138]

    Замаскировать А1 можно также с помощью сульфосалициловой кислоты, если титруют торий при pH = 1,6 [60(70)] или редкоземельные металлы при pH = 7—8 [62(89)] с арсеназо в качестве индикатора. Сьерра [62(15)] при определении цинка с эриохромом черным Т в растворе с pH = 7 маскирует А1 тартрат-ионами. Сайо в короткой заметке указывает на возможность маскирования алюминия пирофосфат-ионами [56(98)]. Об интересном способе маскирования алюминия сообщают Галаш и др. [61(64)], которые применяли для этой же цели кремнекислый натрий при определении магния в сплаве электрон. Содержание M.g определяют обратным титрованием избытка ЭДТА раствором цинка или титрованием в щелочной среде с эриохромцианином К. При таком маскировании часто образуется нерастворимый силикат алюминия. [c.187]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Этот метод определения магния пригоден для решения различных задач, особенно для анализа силикатных пород. Силикаты с высоким содержанием магния почти всегда можно растворить в разбавленной соляной кислоте (1 1) при нагревании. Полученный после вскрытия пробы раствор ( 20 мл) разбавляют до 150 мл, нейтрализуют аммиаком, сразу же фильтруют и осадок промывают 2%-ным раствором NH4 I. В фильтрате осаждают кальций 2%-ным раствором оксалата аммония. После этого можно провести определение магния, используя оксин [1406а, 1767а]. [c.180]

    Подготовка к сплавлению. Определение кремневой кислоты, окислов железа, титана, алюминия, кальция и магния, а также сульфата, ведут из одной общей навески. Для этого отвешивают на часовом стекле 1,0000 г размельченной высушенной пробы. Затем взвешивают на технических весах 6 г безводной соды или углекислого калия-нат-рия (смесь К2СО3 и Na Oj). Небольшое количество взвешенной соды насыпают в платиновый тигель так, чтобы его дно было покрыто тонким слоем соды. Навеску силиката ссыпают теперь с часового стекла в тигель, сметая кисточкой отдельные крупинки силиката, оставшиеся на стекле. Для удаления последних следов порошка стекло споласкивают содой соду насыпают небольшими порциями на стекло, а затем сметают кисточкой в тигель. [c.462]

    Для определения пркмеси алюминия в силикате. магния навеску силиката магния 0,2 г сплавили с содой и после обработки кислотой довели объем раствора водой до 200 мл. Для приготовления коло-риметрируемого раствора аликвотную часть 20 мл после добавления алюминона довели до 50 мл. Оптические плотности этого раствора и раствора с добавкой 5 мл 5-10" Л1 раствора А1С1з, измеренные относительно дистиллированной воды в кювете с толщиной слоя 2 см, были соответственно равны 0,25 и О.,55. [c.65]

    Приборы и реактивы. (Полумикрометод.) Прибор для определения электропроводности растворов. Стаканы на 50 мл. Сахар (порошок). Поваренная соль кристаллическая. Ацетат натрия. Хлорид аммония. Цинк гранулированный. Индикаторы лакмусовая бумага, спиртоной раствор фенолфталеина, метиловый оранжевый. Спирт метиловый. Глюкоза. Окись кальция. Полупятиокись фосфора. Растворы соляной кислоты (2 и 0,1 н.), серной кислоты (2 и 4 н., 1 1), уксусной кислоты (2 и 0,1 н., концентрированный), едкого натра (2 и 4 н.), трихлорида железа (0,5 н.), сульфата меди (II) (0,5 н.), дихлорида магния (0,5 н.), сульфата натрия (0,5 н.), силиката натрия (0,5 н.), хлорида бария (0,5 н.), хлорида кальция (0,5 н.), нитрата серебра (0,1 н.), иодида калия (0,1 н.), карбоната натрия (0,5 н.), хлорида аммония (0,5 н.), перманганата калия (0,5 н.), сульфата калия (0,5 н,), трихлорида алюминия (0,5 н.), хлорида цинка (0,5 н.), аммиака (0,1 н.), ацетата натрия (2 н.). [c.55]

    Имеет значение и требуемая точность анализа. Высокая точность достигается обычно за счет большого увеличения продолжительности анализа, обусловленного проведением многих дополнительных операций. Так, кальций в силикатах нередко определяют после осаждения в виде оксалата кальция в присутствии магния последний в большей или меньшей степени соосаждается с СаСг04. Рели высокая точность не нужна, тогда соосаждением небольших количеств магния можно пренебречь. Наоборот, при очень точных определениях следует уменьшить соосаждение магния, для чего осадок персосаждают, на это затрачивается дополнительное время. [c.36]

    В новом пламени — смеси этанола и воздуха — натрий можно определять сразу же после разложения силикатов смесью НР и Н2804, так как не обнаружено влияния железа, кальция и других элементов [99]. В пламени кислород—водород при определении натрия по линии 589,6 нм не наблюдалось влияние лития, магния, меди, бария, стронция, алюминия, циркония и ванадия [1207]. Влияние ванадия не наблюдали также при его содержании до [c.122]

    Избыток ионов бария после осаждения сульфатов в природных водах определяют пламенно-фотометрически [377] по линии 493 нм. Определение 500 мг 801"1л возможно с ошибкой 2,2%. Если сульфаты осаждают в виде PbS04, избыток ионов свинца определяют методом атомной адсорбции по линии РЬ 2170, 2833 А [1057], фосфаты, силикаты и сульфаты одновременно определяют косвенным титрованием солью магния в пламени Hj—войдух. Изменение поглощения происходит в силу связывания магния определяемыми ионами, кривая титрования имеет три характерные точки [1052]. [c.181]

    Кальций — широко расиространенный химический элемент — входит в состав почти всех природных и промышленных материалов. Содержание его в объектах колеблется в широких пределах от основы в известняках, доломитах и силикатах до следовых количеств (высокочистые металлы). Поэтому аналитическая химия кальция решает вопросы как определения сравнительно больших количеств кальция в присутствии магния и других сопутствующих элементов (в этом случае примеси не сказываются, как правило, на точности получаемых результатов), так и определения следов кальция в различных материалах, где точность результатов зависит от природы основы и в большей степени от количественного содержания и природы других примесных элементов. [c.5]


Смотреть страницы где упоминается термин Определение магния силикатах: [c.139]    [c.218]    [c.401]    [c.550]    [c.543]    [c.161]    [c.152]    [c.243]    [c.1033]    [c.193]    [c.101]    [c.16]   
Аналитическая химия магния (1973) -- [ c.178 , c.199 ]




ПОИСК





Смотрите так же термины и статьи:

Магний определение

Магния силикаты

Определение кал ция силикатах

Силикаты



© 2024 chem21.info Реклама на сайте