Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Структура полимеров разрушение

    Это явление можно объяснить изменением плотности сетки зацеплений при средних и больших скоростях течения. При таких числах Деборы перемещающиеся молекулы сопротивляются разрушению сетки зацеплений сильнее, чем в естественном состоянии, и в результате в структуре полимера возникают избыточные напряжения, появление которых и приводит к экстремуму на зависимости напряжений от времени. Равновесная плотность сетки зацеплений достигается лишь по истечении значительного времени после прекращения течения, т. е. упомянутые выше структурные изменения обратимы. [c.139]


    Используя спектроскопические методы исследования, автор рассматривает вопросы идентификации спектров свободных радикалов, образующихся при механических воздействиях. Для анализа структуры полимеров и явлений, происходящих в них под нагрузкой, применяются хорошо зарекомендовавшие себя методы электронного парамагнитного и ядерного магнитного резонансов, современной голографии, а также электронная микроскопия, масс-спектрометрия и малоугловое рентгеновское рассеяние. Совокупное применение этих методов показало, что механическое разрушение полимеров происходит при совместном действии внешней силы и теплового движения. [c.5]

    Прочность — важная техническая характеристика полимера. Во многих случаях ее относительно просто измерить с помощью известных, чаще всего стандартных методик, но гораздо труднее понять механизм разрушения или закономерности связи прочности со структурой полимера. [c.194]

    Как отмечалось в гл. I, в большом мас-. штабе времени структура полимеров хорошо описывается моделью хаотически переплетенных цепей. Молекулярная сетка, обусловленная переплетениями макромолекул, отчетливо проявляется в опытах по вытяжке полимеров, например полиметилметакрилата, причем плотность сетки повышается с понижением температуры. В процессе течения в узлах происходит проскальзывание цепей, разрушение узлов и образование новых. [c.181]

    Размеры структурных элементов существенно влияют на механические свойства полимеров, при этом чем они больше, тем больше напряжение рекристаллизации, больше хрупкость образца и меньше его удлинение [23]. Наилучшие механические свойства достигаются при достаточно малых размерах сферолитов. Естественно, что процесс разрушения структуры полимера при приложении внешней силы, как и процесс ее образования, носит многоступенчатый характер. Это особенно существенно при изучении закономерностей деформации полимеров. При любом малом и кратковременном приложении внешней силы происходит разрушение каких-либо ступеней структуры полимера, которые в различной степени перестраиваются и вновь образуются как в процессе деформирования, так и после его прекращения. Поэтому под процессом рекристаллизации следует понимать любые преобразования как первичной, так и вторичной кристаллической структуры [19]. [c.21]

    Влияние молекулярной ориентации более или менее четко заметно для полимеров только при малых напряжениях сдвига, когда процесс перестройки надмолекулярной структуры еще слабо развит, и для олигомеров, когда молекулярная масса столь мала, что не образуется пространственной надмолекулярной структуры. Существенное проявление высокоэластической составляющей деформации наблюдается в возникновении нормальных напряжений. Хотя они и сопоставимы по значению с тангенциальными, влияние те.х и других на физические свойства вязкого потока полимерной системы существенно различно. Тангенциальное напряжение вызывает вязкое течение и приводит к разрушению надмолекулярной структуры полимеров, тогда как нормальное напряжение приводит лишь к небольшому изменению гидростатического давления в потоке и практически его влияние на изменение структуры и вязкость полимерной системы несущественно. Уменьшение вязкости в процессе течения, наблюдаемое при относительно больших напряжениях, может быть объяснено изменением исходной надмолекулярной структуры полимера, если установлено, что его молекулярная масса при этом остается неизменной. [c.166]


    Структуру эластомеров можно представить также состоящей из свободных сегментов (тепловое движение которых квазинезависимо) и распределенных по всему объему областей молекулярной упорядоченности в виде микроблоков. Между обеими структурными составляющими наблюдается подвижное равновесие, сдвиг которого происходит при изменении как Т, так и Р. При снижении Т упорядоченность структуры полимера возрастает, причем этот процесс протекает во времени. Если выбрать малое Р, чтобы практически не происходило разрушения сформированной надмолекулярной структуры, то в процессе медленного течения полимера его надмолекулярная структура должна успевать восстанавливаться. [c.168]

    При малых Р течение полимера происходит практически с неразрушенной структурой, так как в процессе медленного течения надмолекулярные образования успевают восстанавливаться. В соответствии с этим при малых Р скорость деформации 7 монотонно уменьшается. При больших же Р распавшиеся микроблоки не успевают полностью восстанавливаться и течение происходит в условиях частично разрушенной структуры полимера. Процесс разрушения идет тем быстрее и дальше, чем больше Р. С увеличением Р процесс разрушения надмолекулярной структуры и связанный с ним эффект уменьшения вязкости являются главными, вследствие [c.168]

    Теоретическая прочность существенно зависит от структуры полимера и, в частности, от степени молекулярной ориентации. Для предельно ориентированного полимера при малых молекулярных массах, когда разрушение идет не за счет разрыва химических связей, а путем относительного сдвига полимерных цепей и преодоления межмолекулярных сил, теоретическая прочность зависит от молекулярной массы. При больших молекулярных мас сах разрушение происходит путем разрыва полимерных цепей. Расчеты прочности последних сделаны пока для полиэтилена и капрона [5]. Для этих полимеров в предельно ориентированном состоянии теоретические прочности в направлении ориентации соответственно равны 3,52-Ю и 3,00-10 МН/м2, а в поперечном направлении — 0,26-10 МН/м (для капрона). [c.282]

    Химическое травление не является универсальным методом выявления структуры полимеров ввиду того, что не для каждого исследуемого соединения удается подобрать необходимый травящий агент. При нанесении агента на поверхность возможно набухание внутренних слоев, перекристаллизация и изменение структурного рельефа материала. Проникновение агента на значительную глубину в пол.имер приводит к почти одинаковой скорости разрушения кристаллических и аморфных областей. [c.111]

    Таким образом, причиной аномалии вязкости является не разрушение надмолекулярной структуры полимера при течении, поскольку полимер с узким молекулярно-массовым распределением обладает такой же надмолекулярной структурой, как и полимер с широким молекулярно-массовым распределением, но не обладает аномалией вязкости. Причина аномалии вязкости полимера с широким ММР состоит в постепенном выведении из процесса сегментального течения макромолекул с все меньшей молекулярной массой, что ведет к снижению затрат энергии иа поддержание потока, т. е. к снижению вязкости с ростом напряжения сдвига. [c.165]

    Увеличение напряжения облегчает преодоление энергетического барьера механодеструкции (см. гл. 17). Произведение уо как раз и есть величина энергии, на которую снижается энергетический барьер разрыва связи под действием напряжения а, где V — структурный коэффициент, характерный для данного полимера и зависящий от химического строения макромолекул и от надмолекулярной структуры полимера. Структурный коэффициент как бы определяет эффективность действия напряжения, приводящего к снижению активации процесса разрушения полимера. Чем больше микронеоднородностей в полимере, играющих роль концентраторов напряжения, тем больше у. [c.202]

    Широкое распространение для исследования структуры полимеров получил метод сколов . По этому методу образец полимера, охлажденный до температуры ниже температуры хрупкости, раскалывают, после чего с поверхности скола снимают реплику, которую и исследуют в электронном микроскопе. При этом предполагается, что при раскалывании полимера трещина распространяется по наиболее слабым местам, поэтому рельеф поверхности разрушения отражает морфологический характер структурных элементов. [c.175]

    Разрыв макромолекул приводит к образованию макрорадикалов, которые служат началом реакционной цепи и могут дальше взаимодействовать с макромолекулами полимера, вступать в реакции рекомбинации или диспропорционирования. В результате этих реакций могут изменяться молекулярная масса и структура полимера. При механической деструкции в присутствии кислорода воздуха возникающие свободные радикалы могут инициировать цепной процесс окислительной деструкции, что приводит к еще более глубокому разрушению полимера. Таким образом, все процессы, вызывающие старение полимеров, связаны с возникновением свободных радикалов при разрыве молекулярных цепей и с изменением молекулярной массы и структуры полимера при последующих реакциях этих радикалов. Если в полимер ввести вещества, связывающие свободные радикалы, то цепной процесс, приводящий к дальнейшему снижению молекулярной массы или изменению структуры, не будет развиваться и срок службы материала увеличится. [c.296]


    Кривые зависимости вязкости материала от времени процесса при различных температурах показали продолжительный участок — условно постоянной вязкости, на котором она возрастает весьма незначительно (рис.. 18). Реальное время окончания процесса должно находиться между 1 и приближаясь к последнему. Это обеспечивает максимальную полноту превращений сырьевых компонентов, а следовательно, меньшее количество не подвергшихся совмещению с битумом макрочастиц эластомеров, улавливаемых на сетчатом фильтре при сливе дисперсии. Истинным временем окончания процесса должно, однако, считаться такое — при котором вязкость системы наиболее близка к предельной, но заметной деструкции еще не происходит. Однако, разрушение структуры полимера при получении материала может привести к ощутимой его деструкции при применении, даже несмотря на специально вводимые стабилизаторы. [c.124]

    Препарирование поверхностей разрушения механически испытанного образца с обязательным выявлением сверхтонкой структуры полимера (матрицы в композите) для исследования в растровом электронном микроскопе. Рекомендуется химическое или ионное травление в кислородной плазме исследуемой поверхности с последующим нанесением тонкого слоя (10-15 нм) токопроводящего покрьггия (золота) методом ионного напыления. [c.358]

    Действительно, что касается высокоэластических материалов, то надо учитывать, что до своего разрушения они претерпевают громадную высокоэластическую деформацию, сопровождающуюся разворачиванием полимерных цепей и по существу изменением структуры полимера. А это значит, что лимитирующими, определяющими долговечность, должны быть процессы релаксации структуры, а не процесс разрыва связей, что и подтверждается тем фактом, что энергии активации разрушения каучуков и резин близки к энергиям активации вязкого течения, а не разрушения химических связей. [c.373]

    Согласно данным Соголовой (см. гл. П), присутствие химически неактивных наполнителей и некоторых пластификаторов, а также большие деформации не изменяют кристаллическую структуру полимера, обнаруживаемую рентгенографически, но существенно изменяют надмолекулярные структуры и влияют на механические свойства полимеров. Одной из важных причин изменения механических свойств является разрушение одних надмолекулярных структур и образование других в результате больших деформаций. Свойства кристаллических полимеров можно варьировать в широких пределах, изменяя различными приемами их надмолекулярную структуру при сохранении химического строения. Так, надмолекулярные структуры весьма чувствительны к тепловой и механической обработке полимера. [c.132]

    При анализе кинетики релаксационного разрущения необходимо учитывать некоторые специфические микро-процессы. Известно, что структура полимеров состоит из агрегатов с различной степенью подвижности. Поэтому в процессе нарастания вязких деформаций может оказаться, что соседние молекулярные сегменты перемещаются с различной скоростью. Это явление непосредственно связано с наличием релаксационного спектра. В таких условиях действующие между элементами цепей межмолекулярные силы, суммируясь, вызывают концентрацию напряжения и разрушение отдельных валентных связей. Таким образом в структуре изделия появляются микродефекты. В условиях релаксации, когда напряжение в материале непрерывно убывает, они могут и не привести к нарушению сплошности. Критерием здесь оказывается скорость релаксации, которая зависит от физической природы материала, напряжения, температуры и других внешних факторов. [c.211]

    Сейчас уже стало общепризнанным определяющее влияние специфического изменения структуры полимеров в процессе их разрушения, сформулированное автором в работах 1951—1964 гг. Все больше сторонников приобретает концепция, развитая автором в 50-х годах, в которой существенная роль в механизме разрушения полимеров отводится разрыву межмолекулярных связей. [c.6]

    При вязком течении происходит непрерывный процесс разрушения и перестройки его надмолекулярной структуры. Разрушение ее идет тем быстрее и дальше, чем больше Р и скорость вязкого течения. В процессе течения надмолекулярная структура полимера обратимо разрушается, причем тем сильнее, чем выше напряжение сдвига. При этом разрушение структуры происходит так, что сегменты полимерных цепей, входящие в надмолекулярные образования, отрываются по одному и энергия активации U перехода сегментов в свободное состояние равна энергии активации течения полимера. Отрыв сегментов от структурных микроблоков происходит под действием теплового движения, так как Р недостаточно велико, чтобы существенно влиять на процесс отрыва, поэтому в некоторой области изменения напряжений i/= onst. [c.165]

    При изменении Р вязкость линейных полимеров (в частности, ПИБ) меняется по закону т1 = г оехр(—аР) (где т]о и а — константы), При а = 0 реализовалось бы ньютоновское течение, однако для полимеров обычно афО и течение, строго говоря, не является ньютоновским. Структурно-чувствительный параметр а обычно не зависит от Т, но возрастает с увеличением М полимера и при неизменном его химическом строении зависит от характера надмолекулярных образований. Снижение т], происходящее при увеличении Р, обусловлено разрушением элементов структуры полимеров. Так как среднее число микроблоков, играющих роль прочных физических узлов, с понижением М полимера непрерывно уменьшается, при определенных условиях течение уже не будет связано с их разрушением. Уменьшение ti с увеличением Р имеет максимальное значение при P-vO, так как dii/dP = —т]оаехр(—аР). [c.170]

    Исследование структуры полимеров с помощью злектронных микроскопов можно проводить непосредственно а образцах полимера, приготовленных в виде ультрато,нких срезов, или на специально изготовленных образцах для растровых микроскопов (прямые методы), либо на слепках-репликах с поверхности полимера (косвенные методы). Применение косвенных методов вызвано разрушением полимера в электронном луче, что искажает картину структурного рельефа, роме того, применение косвенного метода позволяет получить высокое разрешение (до 0,3 нм). В то же время косвенные методы трудоемки и требуют специальной подготовки поверхности полимера. [c.111]

    Одна из возможных схем перестройки кристаллической структуры полимера в результате частичного разрушения кристаллической структуры и перемещения обломков кристаллитов показана на рис. 12.12. На начальной стадии, до возникновения шейки, идет смещение ламелей друг относительно друга по аморфным прослой- [c.185]

    В сетчатых полимерах макромолекулы связаны поперечными химическими связями. Всякая попытка разделить такие полимеры на отдельные частицы приводит к разрушению структуры полимера. Поэтому пространственные полимеры не могут быть переведены в раствор или расплавлены при нагревании. Понятие молекула для таких полимеров старшвится условным. Макромолекулами в этом случае обычно называют основные линейные цепи главных валентностей, не включая это понятие поперечные связи , соединяющие цепи. Условность такого определения и несоответствие его с общепринятым понятием молекула совершенно очевидны. По-видимому, для полимеров пространственного строения должны быть введены некоторые новые понятия и термины, однако это возможно лишь на основе тщательных исследований химического строения и структуры пространственных полимеров. [c.30]

    Надмолекулярной структурой полимера определяются следующи специфические особенности течения псевдопластичность, обусловлен ная разрушением глобулярной структуры агрегатное течение, связан Ное с неполным плавлением микроглобул химическое течение, т.е непрерывное протекание процессов термомеханодеструкции [3, 37, 56] зависимость вязкости от термомеханической предыстории образцо [44, 45]. [c.186]

    При механодеструкции полимеров преимущественно разрушаются наиболее лабильные званья в структуре, причем разрушение может сопровождаться изменением химического состава полимеров. Например [275], на)блюдалось резкое снижение содержания цистина при механодеструкции кератина, т. е. именно тех звеньев, пр которым о бразованы поперечные связи иространственной сетки белка и на которых, естественно, в первую очередь возникают критические напряжения, вызывающие механокрекинг. Одновременно в продуктах деструкции кератина содержание такой лабильной аминокислоты, как триптофан, понижается с 1,8% до нуля [276, 278], а содержание азота — с 15,37 до 14,51%. Кроме того, уменьшается содержание азотсодержащих компонентов, осаждаемых трихлоруксусной кислотой. [c.97]

    Общей причиной аномального поведения полимеров при течении является одновременное развитие всех видов деформации [см. уравнение (1.1)] и их релаксационный характер. В первой области скорость накопления высокоэластической деформации меньше скорости релаксации, вследствие чего величина накопленной высокоэластической деформации незначительная и материал течет с постоянной ньютоновской вязкостью х . Увеличение напряжения или скорости деформации приводит к тому, что деформация не успевает релаксировать. Поэтому часть общей деформации носит высокоэластический характер. Увеличение скорости деформации приводит к тому, что между скоростью накопления высокоэластической деформации и скоростью ее релаксации устанавливается динамическое равновесие. Этому режиму деформации полимера соответствует свое значение сопротивления деформации, мерой которого обычно считают величину коэффициента эффективной вязкости. Таким образом, зависимость эффективной вязкости от скорости деформации определяется комплексом релаксационной структуры полимера. Кроме того, нужно иметь в виду изменения структуры полимеров в процессе течения, которые также являются причинами аномалии вязкости. Эти изменения предполагают уменьшение сил взаимодействия между соседними слоями, происходящее, в конечном счете, вследствие очень высоких значений молекулярной массы полимера. Изменение структуры материала может происходить в следующих направлениях анизодиаметричность макромолекул и возможность ориентации их в потоке, межмолекулярное взаимодействие и затраты сравнительно небольших усилий для его нарушения, разрушение [c.18]

    При изучении экструзии полиэтилена было обнаружено, что структура полимера в поперечном сечении неодинакова. Ближе к оси перемещаются макромолекулы, ориентированные в потоке. У стенок, где тепловые потери больше и температура ниже, происходит перемещение надмолекулярных образований в виде плоскостей, сегменты в которых ориентированы перпендикулярно течению. С увеличением градиента скорости возрастают силы внутреннего трения и происходит разрушение упорядоченных групп макромолекул, что приводит к уменьшению размеров перемещающихся частиц и падению эффек тивной вязкости. [c.30]

    Для исследования релаксационных процессов, внутри- и межмолекулярных взаимодействий в полимерах большое значение имеют акустические методы, которые также могуг быть использованы для определения геплоемкости при температурах, близких к абсолютному нулю, прочности высокомолекулярных материалов, ориентации макромолекул, степени сшичания и т. Д. Наличие четкой зависимости химического строения, физической структуры, молекулярной подвижности и т. д. от 1аких параметров, как скорость и коэффициент поглощения звука, позволяет быстро и точно измерить Е" и tg ср в широком диапазоне частот и амплитуд без изменения структуры или разрушения изделия, что облегчает интерпретацию полученных результатов в случае акустических спектрометров эти измерения автоматизированы. Особо перспективно применение акустических методов в дефектоскопии полимеров и при неразрушающих испытаниях. См. [14]. [c.389]

    Исходя из представлений о пачечной структуре полимеров и о разнообразии высших морфологических структур, можно также предположить, что механокрекинг первоначально направлен по проходным цепям, соединяющим пачки, сферолиты или иные надмолекулярные структуры, а затем по мере их распада лри диспергировании — в соответствии с общими закономерностями. Дальнейшее уточнение этих представлений возможно после накопления экопериментальных данных о поведении надмолекулярных структур в процессе диспергирования. В настоящее время известно лишь, что разрушение застеклованных полимеров происходит яе только по границам надмолекулярных образований, но и непосредственно по элементам этих структур [180]. Ряд. работ последних лет [41—43, 77, 1 81 —189] позволил уяснить многие вопросы разрушения полимеров, например несоизмеримо большие затраты энергии на деформацию полимеров, предшествующую разрушению, чем собственно на раарушение и образование новой поверхности, некую корреляцию между плотностью упаковки — числом цепей, проходящих через единицу площади сечения, и прочностью, большую долю разрыва химических связей при большей ориентации, представление о том, что 00бщ = аг +ав, т. е. полное напряжение есть сумма энергетического и энтропийного эффектов, причем первым уменьшается во времени после нагружения, а второй возрастает и т. д. Показано также, что в зависимости от природы полимера разрыв может происходить преимущественно по проходным цепям (капрон) или по межмолекулярным связям (лав сан). Все это может быть учтено при обсуждении результатов в дальнейшем, но не может подробно рассматриваться в данном случае, К тому же следует заметить, что большинство данных относится к одноосной деформации — проблеме прочности, а статистический характер разрушения при механодиспергировании накладывает существенную специфику. [c.56]

    ВО втором—С разрушением межмолекулярнон и надмолекуляр-ной структуры полимера, а шейка образуется только в момент, предшествуюш,ий разрыву (на рис. 37 начало образования шей <и отмечено стрелкой). Ниже температуры Т , когда линейный полимер является высокоэластическим материалом, он растят вается до разрыва без течения, так как предел текучести в этом случае лежит выше предела прочности. Диаграмма растяжение линейного полимера в этой области сходна с диаграммой растяжения иространственно-структу рированиого полимера (рис. 38). [c.76]

    Хрупкое разрушение позволяет выявлять тип надмолекулярной структуры полимеров. Реплику с поверхности замороженного хрупкого полимера рассматривают под электронным микроскопом и таким образом устанавливают надмолекулярное строение полимера. С точки зрения оценки микроскопических свойств стеклообразные полимерные материалы, которые при достаточно высокой скорости нагружения разрушаются хрупко, ведут себя как твердое тело Гука. [c.96]


Смотреть страницы где упоминается термин Структура полимеров разрушение: [c.172]    [c.172]    [c.172]    [c.24]    [c.50]    [c.44]    [c.140]    [c.281]    [c.210]    [c.566]    [c.343]    [c.391]    [c.254]    [c.227]    [c.399]    [c.119]    [c.319]    [c.183]   
Высокомолекулярные соединения (1981) -- [ c.454 , c.457 ]

Высокомолекулярные соединения Издание 3 (1981) -- [ c.454 , c.457 ]




ПОИСК







© 2025 chem21.info Реклама на сайте