Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбенты графит

    Газо-адсорбционная хромато графия. Примером может быть разделение газообразных углеводородов па твердых адсорбентах (гиперсорбция), а также разделение газов иа молекулярных ситах. [c.15]

    Получение шихты. Данная стадия также осуществляется с применением комбинированного реактора. В реактор на поверхность горячих шаров из смесителей СР-1,2 подается суспензия исходных реагентов. Выходящая из реактора шихта шнековым транспортером ШТ-1 направляется на досушку в барабанную сушилку БС-1. Туда же из бункера Б-3 через дозатор Д-3 подается в заданной пропорции графит, а из бункера Б-4 через дозатор Д-4 - адсорбент (модификатор). Выходящая из бункера шихта собирается в бункере Б-5. [c.152]


    Сущность работы. Для полной характеристики адсорбента необходимо прежде всего определить его физические параметры истинную, кажущуюся и насыпную удельную массу пористость Знание этих величин необходимо для правильного выбора адсор бента, расчета его количества для поглощения какого-либо ве щества, а в случае применения адсорбента для целей хромате графии — и для правильного расчета параметров хроматографи ческой колонки. [c.121]

    ПирО углерод, полученный при пиролизе газообразных углеводородов на нагретых поверхностях, не имеет пор, химически стоек, обладает резко выраженной анизотропией тепловых, электрических и оптических свойств, большой плотностью, твердостью и высокой механической прочностью. В пленках пироуглерода атомы углерода располагаются в гексагональных сетках, подобно их расположению в графите. Рассмотренное в лекции 1 отложение пироуглерода на непористых частицах саж и в зазорах между ними можно использовать и для модифицирования других термостойких макропористых адсорбентов, прежде всего макропористых кремнеземов. На [c.87]

    Методы хроматографии преимущественно применяют при анализе смесей и определении (а также выделении) примесей. Общий метод разделения газовых смесей, открытый русским ботаником М. С. Цветом (1903 г.), получил в настоящее время очень широкое применение и называется хроматографией. М. С. Цвет, изучая окраску различных растительных вытяжек красящим веществом хлорофиллом (сложный растительный пигмент), впервые применил для разделения окрашивающих пигментов растений своеобразный метод, который назвал хроматографией (греческое хромое — цвет, графо — пишу). В этом методе смесь (жидкий раствор, смесь газов) движется под влиянием какого-либо воздействия по адсорбенту. Так как различные [c.195]

    Так, типичные неполярные адсорбенты — уголь, графит, сажа, парафин, полиэтилен, тефлон — образуют поверхностные (хемосорбционные) соединения с кислородом воздуха или воды, либо адсорбируют ПИ (ОН , Н+ и др.) из раствора. Вопросы ионного обмена, составляющего лишь один из разделов учения о двойном электрическом слое, оказываются в некоторых отношениях более широкими и выходят за рамки представлений о существовании границы раздела фаз и ДЭС. Дело в том, что основные закономерности ионного обмена не изменяются с ростом дисперсности и сохраняются не только при частичном вырождении понятия поверхности раздела (активные угли, цеолиты), но и при переходе к студням ВМС (типично гомогенным системам), где представления о поверхности раздела и ДЭС теряют физический смысл. Здесь [c.172]


    Все адсорбенты можно разбить на два основных типа гидрофильные, хорошо смачивающиеся водой, и гидрофобные, которые не смачиваются водой, но смачиваются неполярными органическими жидкостями. К гидрофильным адсорбентам относятся силикагель, глины, пористое стекло. Их не- следует применять при адсорбции растворенных веществ из водных растворов, так как они лучше адсорбируют растворитель — воду. Эти адсорбенты целесообразнее использовать при адсорбции из неводных растворов. Гидрофобные адсорбенты — активный уголь, графит, тальк — хорошо адсорбируют вещества из водных растворов. [c.169]

    Когда пористая среда сложена из зерен с гидрофобной поверхностью, полярная группа молекул обращается в сторону воды, гидрофобная же часть — в сторону адсорбента. Поэтому гидрофобные вещества (уголь, графит, тальк) лучше адсорбируют ПАВ из водных растворов. [c.19]

    Подобно хроматографии на бумаге, при тонкослойной хромато графии также проводят разделение в двух направлениях под пря мым углом друг к другу. В одном направлении, как правило проводят электрофорез в электрофоретической камере с малым объемом для испарения контакт между слоем адсорбента и электрод ными отсеками в этих камерах обеспечивают фитили из фильтровальной бумаги. Из-за низкой теплопроводности стекла и связанным с этим слабым тепловым рассеянием может возникать проблема охлаждения хроматографической пластинки. Для снижения образования тепла рекомендуется работать на стеклянных пластинках минимальной толщины и применять буферные растворы по возможности минимальной ионной силы. [c.234]

    На рис. 11,2 приведены изотермы адсорбции ксенона на таком расщепленном графите [51]. Обращение начала изотермы выпуклостью к оси давления пара р ксенона и резкий подъем изотермы адсорбции в средней части свидетельствуют о значительной однородности этого образца. Аналогичные кривые получены на графите [52]. Однако в области завершения плотного монослоя наблюдается еще вторая небольшая ступень, появление которой было объяснено кристаллизацией двухмерного конденсата на поверхности адсорбента [51, 52]. Возможно, однако, что вторая ступень вызывается адсорбцией на оставшихся призматических гранях, расположенных но периметру листочков или частиц графита. [c.41]

    В работах [8, 10—16, 21] было получено удовлетворительное согласие с опытом термодинамических характеристик адсорбции благородных газов на графите, рассчитанных на основании свойств адсорбата и адсорбента, взятых в отдельности. При этом параметр сил притяжения Сх, как и вьппе, оценивался по формуле Кирквуда — [c.294]

    Константа Генри Ку и изменение внутренней энергии адсорбата при адсорбции AUi определяются главным образом потенциальной энергией взаимодействия молекулы с адсорбентом вблизи главного потенциального минимума Фо- Поэтому эти термодинамические характеристики адсорбции удобны для исследования межмолекулярного взаимодействия при адсорбции. Расчеты К у и AUy для адсорбции углеводородов на графите производились в работах (2—4, 7—14, 16—18]. Изменения энтропии AS и теплоемкости АС у адсорбата при адсорбции определяются только зависимостью потенциальной энергии Ф взаимодействия молекулы адсорбата с адсорбентом от координат поступательного и вращательного движения молекулы, но не зависят от абсолютной величины потенциальной энергии Ф. Поэтому эти термодинамические характеристики адсорбции удобны для изучения зависимости Ф от положения молекулы положения центра масс и ориентации молекулы по отношению к поверхности адсорбента. Эта зависимость определяет состояние адсорбированных молекул ири нулевом заполнении поверхности, т. е. характер их поступательного и вращательного движения. Расчеты Д5Г и АС у для адсорбции углеводородов на графите производились в работах [1, 3—6, 10, И, 13, 16—18]. [c.305]

    Рассчитанные зависимости 1п Ку от ИТ (см. рис. Х,1) и А1]у от Т (см. рис. Х,2) лежат заметно выше соответствующих экспериментальных значений. Основной причиной этого расхождения результатов расчета с опытом, по-видимому, являются, как и в рас-мотренном в разд. 4 гл. IX случае адсорбции благородных газов, неточности параметров атом-атомных потенциальных функций межмолекулярного взаимодействия С (алкан).. . С(графит) иН (алкан).. . С (графит), оцененных на основании свойств адсорбата и адсорбента,, взятых в отдельности. [c.311]

    Уточнение параметров атом-атомных потенциалов взаимодействия атомов С (алкан). .. С (графит) и И (алкан). .. С (графит).. В работах [9, 10, 17] было принято, что оцененные выше на основании свойств адсорбата и адсорбента, взятых в отдельности, значения [c.311]

    Использование в качестве адсорбента сажи графой показало, что здесь природа растворителя практически не влияет на изотерму адсорбции. При весьма малых концентрациях изотерма достигает плато, высота которого почти не зависит от примененного в опытах растворителя (рис. 153). Поэтому весьма вероятно, что это плато соответствует завершению образования моно- [c.321]

    Масс-спектрометрический метод с полевой ионизацией позволяет изучать адсорбционный слой, взаимодействие адсорбированных атомов (молекул) с поверхностью металла и между собой, образование поверхностных соединений, поверхностную диффузию, различные гетерогенные реакции, кинетику таких реакций и другие поверхностные процессы в широком интервале температур вплоть до самых низких. В качестве эмиттера-адсорбента могут использоваться только твердые вещества с высокой электропроводностью — металлы, сплавы, графит. Метод ограничен величиной давления газовой фазы (менее 10 Па). Кроме того, высокая напряженность электрического поля у поверхности острия может оказывать значительное влияние на поверхностные процессы. Обзор работ с применением данного метода приведен в работах [7, 15, 16]. [c.51]


    Адсорбция. При адсорбционном методе в качестве поглотителя применяются твердые мелкопористые тела с высокоразвитой активной поверхностью — адсорбенты (активированный уголь силикагель, активированная глина, графит и т. д.). [c.215]

    Углеродные адсорбенты можно подразделить на непористые и пористые. К первым относятся некоторые сажи — графитированная, ацетиленовая и др., а также графит ко вторым — активные угли — существенно различающиеся по характеру пористости, что отражается на их адсорбционных свойствах. Вследствие широкого использования активных углей в технике изучение особенностей адсорбции на активных углях, несмотря на исключительную сложность теоретического анализа экспериментальных данных, уже давно привлекает внимание многих исследователей. [c.55]

    Исследования адсорбции различных типов ПАВ, прямых красителей и других веществ, образующих в растворе мицеллы, на непористых углеродных (ацетиленовой саже, графите) и полярных (окись алюминия, аэросил) адсорбентах количественно подтвердили, что учет факторов ассоциации в обеих фазах достаточен для того, чтобы полностью компенсировать все отклонения изотермы от изотермы адсорбцип невзаимодействующих частиц [250-252]. [c.151]

    Известно, что между степенью адсорбции вещества и его растворимостью в используемом растворителе существует следующее соотнощение чем менее растворимо вещество, тем более оно склонно к адсорбции. Так, Хансен и Крэйг [14] нащли, что изотермы членов одного и того же гомологического ряда жирных кислот и спиртов можно совместить друг с другом, если число граммов адсорбированного вещества, приходящееся на грамм адсорбента, представить в виде зависимости от приведенной концентрации С21С, где С — растворимость адсорбата в растворителе. Хансен и Крэйг использовали в качестве растворителя воду, а в качестве адсорбентов — графой (углеродный материал с довольно однородной поверхностью, полученный путем частичной графитиза- [c.313]

    В случаях, когда > X,, т. е. энергия взаимодействия адсорбент — адсорбат больше энергии взаимодействия адсорбат — адсорбат, изотерма адсорбции выпукла и относится к типу II или IV (например, адсорбция I4 на силикагеле). Если же энергия взаимодействия адсорбат — адсорбат больше теплоты адсорбции (X > д,), например, при адсорбции воды на графите, ТО изотерма адсорбции вогнута и относится к типу III или V. [c.222]

    Важнейшие представители высокодисперсных систем с непористыми частицами — обычная сажа, графитированная сажа, частично перешедшая в графит в результате термической обработки, белая сажа, представляющая собой высокодисперсный 5102, получаемая путем гидролиза 51014 или 51р4 в атмосфере водяного пара. Гидролиз в особых условиях приводит к образованию дыма, состоящего из сферических частиц размером 10 нм. от дым, оседая, образует тончайший порошок, так называемый аэросил. Такие порошки широко используют в качестве адсорбентов, катализаторов, а также наполнителей в полимерных материалах. [c.175]

    Активированным углем называется уголь с высокой адсорбционной способностью. Это пористый адсорбент, скелет которого состоит из сеток шестичленных углеродных колец, менее упорядоченных, чем в графите, и ковалентно связанных с углеродными радикалами, водородом, а иногда и с кислородом. Активированные угли хорошо адсорбируют углеводороды и их производные, хуже—аммиак, низшие спирты и особенно плохо воду. Активированные угли обладают неоднородной поверхностью и высокой пористостью. У активированных углей имеются микропоры размером 1—2 нм с сильноразвитой удельной поверхностью (до 100 м г), поры размером 5—50 нм с поверхностью 100 м г и макропоры размером более 100 нм и малой удельной поверхностью 1 м 1г. Макропоры служат как бы транспортными каналами, подводящими молекулы адсорбируемого вещества к внутренним частям зерен активированного угля в порах средних размеров (5—50 нм) происходит адсорбция групп молекул (полимолекулярная адсорбция) и капиллярная конденсация паров и, наконец, наиболее сильная адсорбция идет в микропорах. [c.234]

    Аморфный глерод (сажа, древесный и животный уголь), мелкокрист. фюрмы граф ита с дефектами в стр.. d - 1.8-ким. наиболее акт., адсорбент ж. и г. [c.54]

    На рис. 2,18 представлена изотерма адсорбции метиленовой сини на саже сферой из водного раствора при 20 °С [30]. По величине адсорбции, соответствующей горизонтальному участку, легко определить удельную поверхность адсорбента, если известен размер площадки, приходящейся на одну молекулу красителя. При горизонтальной ориентации на поверхности молекула метиленовой сини должна занимать площадку 135 А , при вертикальной — 75 А . В действительности площадка, приходящаяся на одну молекулу метиленовой синп, при адсорбции на углеродистых поверхностях (графите, графитированной, и неграфитиро-ванной саже) колеблется от 78 до 130 А . [c.54]

    Если улавливание производить из потока газа, не содержащего кислород, поглощение сернистого ангидрида происходит по законам физической адсорбции и при десорбции активность адсорбента полностью восстанавливается. Изотермы адсорбции сернистого ангидрида на активном угле, но данным Анурова, характеризует рис, 14,2. Теплота адсорбции сернистого газа в среднем составляет (в кДж/моль) па силикагеле 23, на графите 30, на активном угле 44, на активцых полукоксах до 42 [2]. Однако реальные технологические и вентиляционные газы в подавляющем большинстве случаев — кислородсодержащие. [c.272]

    Особенность метода газотвердофазной (газоадсорбщюнной) фомато-графии (ГАХ) в том, что в качестве неподвижной фазы применяют адсорбенты с высокой удельной поверхностью (10—1000 м т" ), и распределение веществ между неподвижной и подвижной фазами определяется процессом адсорбции. Адсорбция молекул из газовой фазы, т. е. концентрирование их на поверхности раздела твердой и газообразной фаз, происходит за счет межмолекулярных взаимодействий (дисперсионных, ориентационных, индукционных), имеющих электростатическую природу. Возможно образование водородной связи, причем вклад этого вида взаимодействия в удерживаемые объемы значительно уменьшается с ростом температуры. Комплек-сообразование для селективного разделения веществ в ГАХ используют редко. [c.296]

    Адсорбенты по той же классификации, т. е. в зависимости от химического строения их поверхности, определяющего способность к тому или иному виду межмолекулярных взаимодействий, делятся на три типа. К первому типу относятся неспецифические адсорбенты, не несущие на своей поверхности ни ионов, ни каких-либо функциональных групп, связей или центров с локально сосредоточенными на периферии зарядами и не обладающие электронодонорными или электроноакцепторными центрами. На таких адсорбентах любые молекулы адсорбируются неспецифически. К адсорбентам этого типа можно отнести графитированные сажи, в особенности графити-рованную около 3000 °С термическую сажу, поверхность которой состоит в основном из базисных граней графита. Кроме графитированной сажи к неспецифическим адсорбентам относится чистый нитрид бора, молекулярные кристаллы благородных газов и насыщенных углеводородов, а также пленки из таких углеводородов и пористые углеводородные полимеры. Адсорбция на таких адсорбентах мало зависит от локального распределения в адсорбируемых молекулах электронной плотности, в частности, от наличия я-связей и неподеленных электронных пар. Различие в валентных состояниях атомов углерода в таких адсорбентах, как, например, графит, с одной стороны, и насыщенные углеводороды — с другой, сказывается на адсорбции незначительно, хотя и может быть выявлено в некоторых системах (подробнее см. разд. 1 гл. П и рис. 11,12) [90, 91]. [c.22]

    Кристаллическая структура нитрида бора BN подобна слоистой труктуре графита (рис. 1,1). В ней имеются плоские слои гексагональных колец. В каждом кольце три вершины (через одну) заняты атомами одного элемента, а остальные три вершины — атомами другого элемента. В отличие от структуры графита у нитрида бора кольца разных слоев расположены точно друг под другом. При этом вдоль оси третьего порядка, перпендикулярной базисной грани, атомы бора и азота чередуются. Параметры решетки нитрида бора а и с равны соответственно 2,50 и 6,66 А. Соседние атомы в одной плоскости находятся на расстоянии 1,45 A, а в соседних плоскостях на расстоянии 3,33 A- Ван-дер-ваальсовы размеры атомов бора и азота близки между собой.Нитрид бора не обладает такой высокой электропроводностью, как графит, поэтому весьма важно сравнение энергии адсорбцйи разных молекул на этих двух адсорбентах. [c.55]

    Так, весьма интересны результаты работ Киплинга и Райта по адсорбции стеариновой кислоты из растворов в различных растворителях. Киплинг и Райт [9] применили в качестве адсорбента два различных типа сажи — сферон 6 и графой. Оказалось, что изотермы, полученные для сферона 6, заметным образом зависят от природы растворителя (рис. 152). Эти авторы применили уравнение типа уравнения Ленгмюра и поэтому смогли вычислить по уравнению (4.9) значения емкости монослоя. Найденные таким образом значения Хт, как было отмечено, значительно различаются сообразно с природой растворителя. Если отвергнуть предположение о том, что ориентация молекул стеариновой кислоты на поверхности сажи сферон и, следовательно, площадь Ат Для молекулы стеариновой кислоты зависят от природы растворителя, то следует сделать вывод, что растворитель также заметно адсорбируется на саже сферон. [c.320]

    Блэкборн, Киплинг, Тестер [148], сравнивая абсолютную адсорбцию жидких смесей бензола и циклогексана на пористом угле, ачесоновском графите и саже сферон-6, показали, что пористость адсорбента очень мало влияет на адсорбцию. На практическое совпадение адсорбционных изотерм не повлияло также и то обстоятельство, что поверхность угля была, как обычно, заметно окислена, тогда как поверхность графита приближалась к поверхности чистого углерода. Однако, поскольку размеры пор и молекул адсорбата примерно одинаковы, нельзя отождествлять свойства поверхности микропор, возникшей из-за отсутствия одного или нескольких гексагональных слоев в микрокристаллите угля, со свойствами внешней физической новерхности, разделяющей две равновесные макрофазы. Такое различие и лежит в основе теории адсорбции в микропорах, развиваемой М. М. Дубининым и его последователями на протяжении ряда лет. [c.58]

    Для многих веществ, адсорбированных преимущественно на пористых материалах, Надь и Шай приводят толщину адсорбционного слоя, примерно равную диаметру молекулы. Корнфорд, Киплинг и Райт [188] тщательно исследовали адсорбцию ряда бинарных систем, далеких от идеальности, на непористых адсорбентах (саже сфзрон-6 и графитированной саже графой) с точно определенной поверхностью и обнаружили во всех случаях, что толщина адсорбционного слоя примерно равна диаметру молекулы (от 0,98 до 1,13 d). Термодинамический анализ условий применения метода Надя и Шая, произведенный Корнфордом, Киплингом и Райтом, показал, что постоянство n и n с измене-ем г в идеальных системах возможно только в исключительных случаях однако в системах, далеких от идеальности (к которым относятся большинство растворов твердых веществ и разнородных по строению жидких смесей, должна существовать область равновесных концентраций, в которой величины п и изменяются настолько незначительно, что с достаточным приближением этими изменениями практически можно пренебречь. [c.84]

    По предложению А. В. Думанского, начиная с 1949 г., Ф. Д. Ов-чарекко систематически разрабатывает проблему лиофильности дисперсных систем на примере слоистых силикатов. В результате создано новое направление — физическая химия дисперсных минералов, которая кроме фундаментальных исследований в области коллоидной химии природных дисперсных минералов (слоистые силикаты, цеолиты, кремнистые породы, графит, гуминовые вещества и др.) приобрела огромный практический интерес. На основе дисперсных минералов разработаны и нашли применение в промышленности эффективные адсорбенты, наполнители полимерных и органических сред, загустители и структурообразователи нефтяных масел, лаков, красок, проявители капиллярной дефектоскопии, применяемые для выявления поверхностных дефектов, трещин, ответственных в эксплуатации деталей и узлов машин, термосолеустойчивые палыгорскитовые буровые растворы, носители лекарственных веществ и др. (Ф. Д. Овчаренко, [c.15]

    При адсорбции коллоидных электролитов на неполярных адсорбентах, подобных саже, наиболее вероятно взаимодействие вандерваальсового типа, которое в отличие от сил электростатического или хемосорбционного характера вызывает обратную ориентацию адсорбированных ионов — углеводородными цепями к поверхности твердого тела. В этом случае силы адсорбции недостаточны для формирования следующего слоя, и величина площади, приходящейся на молекулу додецилсульфата натрия или додециламмонийхлорида на поверхности сажи, действительно согласуется с предположением об образовании мономолекулярного слоя. Однако возможность многослойной адсорбции на угле нельзя исключить, так как на его поверхности имеются полярные участки, покрытые минеральными веществами золы. Этим же объясняется многослойная адсорбция масляной кислоты и других органических соединений на графите, установленная Бартеллом с сотрудниками [102]. [c.252]


Смотреть страницы где упоминается термин Адсорбенты графит: [c.327]    [c.256]    [c.166]    [c.353]    [c.454]    [c.730]    [c.140]    [c.12]    [c.103]    [c.64]    [c.247]    [c.236]    [c.614]    [c.65]    [c.80]   
Химия коллоидных и аморфных веществ (1948) -- [ c.84 ]




ПОИСК





Смотрите так же термины и статьи:

Графит

Графит графита

Графой

Графы



© 2025 chem21.info Реклама на сайте