Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Долговечность микротрещинами

    Прочность и долговечность являются важнейшими свойствами полимерных материалов. Прочность реальных материалов не является материальной константой, так как зависит от многих факторов — времени или скорости действия нагрузки, температуры, вида напряженного состояния и др. Можно назвать две основные причины этого. Первая — существование во всех реальных материалах структурных дефектов и прежде всего микротрещин. Вторая — термофлуктуационный механизм разрыва химических связей. Соответственно этому возникли два подхода к прочности твердых тел механический и кинетический. Механический подход имеет свои достоинства и недостатки. Так, механика разрушения является основой инженерных методов расчета прочности деталей и конструкций, находящихся в сложнонапряженном состоянии. Математическая теория трещин, позволяющая рассчитывать перенапряжения вблизи микротрещины, является большим достижением механики разрушения. В то же время механический подход оставляет в стороне физические атомно-молекулярные механизмы разрушения и физическую кинетику разрушения в целом. Кинетический подход исходит из термофлуктуационного механизма разрушения, общего для всех твердых тел, в том числе и для полимеров. Суть этого механизма заключается в том, что химические связи в полимере разрываются в результате локальных тепловых флуктуаций, а приложенное напряжение увеличивает вероятность разрыва связей. [c.331]


    Уравнение долговечности (11.32) на рис. 11.5 представлено сплошной кривой, линейный участок которой АВ приближенно выражается более простым уравнением (11.28), где С в соответствии с формулой (11.25) является сложной величиной, зависящей от длины начальной микротрещины /о, частоты колебаний атомов vo, температуры, напряжения и молекулярных констант оэ и X. Из-за слабой по сравнению с экспонентой зависимости от ст и Г величину С можно внутри интервала (сто, СТк) считать практически постоянной. При ст=стц, если экстраполировать уравнение (11.28) на эту верхнюю границу интервала напряжений, долговечность получается равной Тд С. Однако точное значение критической долговечности, следующее из уравнения (11.32), есть Тк = /ук. Это объясня ется тем, что термофлуктуационный механизм перестает действовать, когда экспонента практически становится равной единице, а предэкспоненциальная функция ф(а, Т) стремится к нулю вблизи [c.306]

    Расчет долговечности при атермическом разрушении для образца-полоски с краевой микротрещиной Zo- L приводит к уравнению (/о О) [c.309]

    В отдельных местах полимера в результате слияния микротрещин появляются макротрещины, которые растут ускоренно. Закономерности роста таких магистральных, макроскопических трещин наиболее обстоятельно изучены на полимерах. Исследования кинетики сквозных магистральных трещин проводились на тонких пленках из полимеров (производные целлюлозы), где время роста магистральной трещины составляло большую часть долговечности полимера. Развитие магистральной трещины является ускоренным [c.325]

    Освещен комплекс вопросов по прогнозированию долговечности магистральных трубопроводов. Показаны характерные внешние проявления опасного вида разрушения магистральных газопроводов - коррозионного растрескивания металла катодно-защищенных труб и современные представления о механизме его возникновения. Рассмотрены вопросы прогнозирования коррозионного растрескивания и диагностики очагов растрескивания прогнозирования коррозионно-усталостных разрушений магистральных нефтепродуктопроводов, эксплуатирующихся в условиях циклического нагружения прогнозирования долговечности магистральных трубопроводов в условиях механохимической коррозии. Описан производственный опыт работ по ликвидации свищей и микротрещИн на магистральных конденсатопроводах предприятия Сургутгазпром . Приведена методика определения количества вытекшего продукта из свищей. [c.2]

    К начальному периоду разрушения обычно относят активированные циклическими механическими напряжениями процессы, связанные с адсорбцией среды на поверхности металла или оксидных пленок, избирательным анодным растворением, наводороживанием катодных участков и другие процессы, приводящие к образованию питтингов или микротрещин глубиной, достаточной для заметной концентрации механических напряжений. Второй период связывают с подрастанием коррозионно-усталостной трещины до критических размеров. В третьем периоде происходит ускоренный долом. Первые два периода являются определяющими для долговечности изделия их можно разделить еще на отдельные стадии. На ха- [c.38]


    Анализ имеющегося материала по закономерностям разрушения резин в агрессивных средах и в их отсутствие показывает, что коррозионное растрескивание следует рассматривать как явление своеобразной статической усталости. Об этом свидетельствуют черты сходства между этими двумя процессами. Однако коррозионное растрескивание имеет свои особенности. Сходство процессов основано на том, что акт развития микротрещин в обоих случаях принципиально одинаков. Развитие происходит за счет разрушения связей, внешне оно проявляется в одинаковом качественном и количественном влиянии величины напряжения, а также равномерности его распределения на процесс растрескивания и время до разрыва. Это сходство, кстати, позволяет успешно использовать для объективной характеристики коррозионного растрескивания такой основной показатель статической усталости, как долговечность. [c.268]

    Для многих деталей машин и инженерных конструкций, которые имеют различные поверхностные трещиноподобные дефекты металлургического, технологического или эксплуатационного происхождения, стадия зарождения усталостной трещины может не лимитировать общую длительность процесса разрушения и в этом случае долговечность изделия будет определяться временем роста микротрещины до критических размеров. Изучение закономерности роста усталостных трещин с учетом влияния различных физико-химических факторов позволяет более глубоко понять механизм усталостного разрушения и вскрыть процессы, не выделяемые при испытании гладких образцов. Применение образцов с заранее выведенной трещиной ужесточает условия испытания и позволяет обнаружить влияние даже очень слабо-активных сред. Количественные данные о влиянии коррозионных сред на скорость роста усталостных трещин могут быть использованы для расчетов изделий с трещинами. [c.86]

    В 20 %-ном растворе Н2 304 анодная поляризация нормализованной стали 45 повышает долговечность до зарождения трещины вследствие растворения вершины концентратора и зарождения множества микротрещин., При плотности анодного тока 650 А/м трещина не зародилась даже после 7 Ю цикл нагружения, а вершина концентратора подвергалась сильному растворению. Однако скорость роста предварительно созданной трещины возрастала с увеличением плотности тока. С ростом катодной поляризации наблюдается монотонное уменьшение числа циклов до зарождения трещины и увеличение скорости ее роста. Это свидетельствует об интенсивном наводороживании стали и без наложения катодного тока. [c.196]

    Низкая теплопроводность эмалевого покрытия неблагоприятно влияет на термостойкость аппарата, долговечность которого зависит от термостойкости покрытия. При резких изменениях температуры в эмалевом покрытии возникают микротрещины, которые со временем создают сколы и являются очагами местной коррозии. [c.16]

    В хрупких материалах наиболее опасные дефекты обычно представляют собой микро- или субмикротрещины, существующие до приложения нагрузки. Прорастание одной или нескольких наиболее опасных микротрещин на первой стадии разрушения определяет долговечность образца из хрупкого материала. [c.45]

    Непосредственное наблюдение за состоянием образцов ацетата целлюлозы, находящихся под нагрузкой, проводилось с помощью установки для микросъемки. В отличие от скоростной кинофотосъемки, описанной ранее, в этом случае применялась замедленная киносъемка для изучения медленных процессов разрушения, протекающих при испытании на долговечность. Наблюдение показало, что в соответствии с данными других авторов [51, с. 127 494, с. 241 ] на развитие микротрещин расходуется основная часть времени до разрыва. [c.230]

    Наиболее опасными дефектами в полимерных материалах, испытывающих хрупкое разрушение, являются микротрещины и субмикротрещины, которые существуют до приложения внешнего напряжения. Очевидно, что прорастание таких микротрещин, которое происходит на первой (медленной) стадии процесса разрушения, и определяет долговечность материала. Рассмотрим разрыв межатомной связи в вершине микротрещины. Для того чтобы его осуществить, необходимо преодолеть потенциальный барьер высотой и (рис. 64). Выше уже говорилось о том, что наряду с разрывом связей между атомами возможен н процесс восстановления связей. Для того, чтобы последний осуществился, необходимо преодолеть потенциальный барьер и, величина которого меньше и 11 <и), если полимер находится в нена-груженном состоянии. На рис. 64 представлена зависимость потенциальной энергии атомов в вершине микротрещины в зависимости от расстояния между ними. Минимум потенциальной энергии, расположенный слева, соответствует равновесному положению атомов вдали от трещины второй минимум, расположенный справа, соответствует равновесному положению атомов, которые после разрыва оказались на свободной поверхности образца. Поверхностная потенциальная энергия твердого тела, отнесенная к двум атомам, между которыми разорвана связь, равна разности  [c.295]


    При рассмотрении механизма хрупкого разрушения Бартенев исходит из установленного факта двухстадийного разрушения. Прорастание одной или нескольких наиболее опасных микротрещин на первой стадии разрушения определяет долговечность образца из хрупкого материала. На второй стадии скорость разрушения очень велика и примерно соответствует скорости распространения упругих звуковых волн в материале. Рост каждой трещины рассматривается как последовательный разрыв химических связей в элементарном объеме в ее вершине под действием механических напряжений и тепловых флуктуаций. В вершине трещины [c.113]

    Далее рассмотрены фононная концепция разрушения, методы определения перегрузки полимерных цепей, ангармонические эффекты прочности и долговечности, а также понятие о предельной или предельно достижимой прочности реальных твердых тел и методы ее расчета. Этот материал занимает три первые главы, в которых полимеры с микротрещинами не рассматриваются. [c.8]

    Ангармонизм может быть разделен на силовой, когда к энгармонизму приводят большие внешние силы, и температурный, когда к энгармонизму приводят большие тепловые колебания. Силовой ангармонизм влияет на постоянную у, а температурный— на предэкспоненту в уравнении долговечности Журкова. Уравнение долговечности (2.3) для полимеров в высокопрочном состоянии (без микротрещин) может быть записано в более общем виде  [c.37]

    Кинетический подход, основателем которого является акад. С. Н. Журков [11.10 61], отличается тем, что основное внимание обращается на атомно-молекулярный процесс разрушения и разрыв тела рассматривается как конечный результат постепенного развития и накопления микроразрушений или как процесс развития микротрещины на молекулярном уровне. Основным фактором в этом подходе является тепловое движение в полимерах. Выяснение природы этого термофлуктуационного процесса разрушения, зависимости скорости процесса и долговечности от температуры, напряжения и других факторов является основой современной физической теории прочности и базой для дальнейшего развития теорий предельного состояния в механике разрушения. Эти подходы будут в дальнейшем рассмотрены подробней. [c.287]

    Предполагается, что кинетика термофлуктуационного разрушения бездефектных стекол состоит из двух стадий. На первой стадии, которая в основном определяет долговечность образца, происходит зарождение первичной субмикротрещины на одном из относительно слабых участков структуры стекла. На второй стадии происходит рост субмикротрещины. Так как перенапряжение в вершине субмикротрещины быстро достигает критического значения, то в дальнейшем субмикротрещина, а затем и микротрещина растет катастрофически. [c.53]

    Важнейшей характеристикой прочностных свойств является долговечность т (время, в течение которого нагруженный образец не разрушается), отражающая кинетический характер процесса разрушения. В инженерной практике используются понятия кратковременной и длительной прочности. Кратковременная прочность, или разрывное напряжение сгр, обычно определяется на разрывных машинах при заданных режимах скорости нагружения, которые соответствуют т= 1-5-10, с. Длительная прочность обычно определяется при нагружении статистическими или переменными напряжениями, малыми по сравнению с ар. Прочность полимеров значительно ниже теоретической прочности материала с идеальной структурой (гл. 1). Причина низкой прочности реальных материалов заключается в наличии микротрещин и других слабых мест (дефектов) структуры, вблизи которых под действием внешних или внутренних напряжений возникают локальные концентрации напряжений. Трещины в упругом твердом теле приводят к разрушению. [c.60]

    Так как наиболее типичные размеры образцов, применяемых в исследованиях долговечности, составляют несколько миллиметров, то для конкретных расчетов примем L = 3 мм. Кроме того, для упрощения расчетов начальной длиной микротрещины как малой величиной мы пока пренебрегаем и нижний предел интегрирования полагаем равным нулю. [c.97]

    В дальнейшем анализ экспериментальных данных, полученных для реальных полимеров с микротрещинами, будет проводиться с привлечением уравнения долговечности в форме (5.3). [c.108]

Рис. 5.5. Полная кривая долговечности ПММА при 20 °С начальной краевой микротрещиной длиной 200 нм (образец и внде полоски) Рис. 5.5. <a href="/info/8983">Полная кривая</a> долговечности <a href="/info/164935">ПММА</a> при 20 °С <a href="/info/107096">начальной краевой</a> микротрещиной длиной 200 нм (образец и внде полоски)
    Уравнение долговечности для коротких трещин (микротрещин) [c.157]

    Случай I наиболее важен для практики, поэтому рассмотрим вначале долговечность для полимеров с микротрещинами. Формула (6.11) для 1о порядка X, не имеет строгого математического обоснования. Механика разрушения приводит к формуле (для краевой трещины в образце-полоске)  [c.157]

    Дня повышения долговечности долот и забойных двигателей буровой раствор должен обладать высокими смазочными и противоиз-носными свойствами. При этом уменьшатся потери энергии в узлах трения, большая часть энергии реализуется вооружением долота, уменьшится отрицательное влияние тепла трения на износостойкость рабочих элементов долота, будет обеспечена лучшая защита поверхностей трения от износа адсорбционными пленками среды. Поверхностно-активные молекулы среды, адсорбируясь на обнажениях породы забоя и проникая в микротрещины зоны предразрушения, способствуют повышению буримости горных пород. Высокие смазочные свойства раствора необходимы и для уменьшения затяжек, предотвращения прихвата бурильной колонны в скважине. В процессе проводки скважины не исключены также внезапные прекращения циркуляции бурового раствора (отключение элекгроэнергии, неисправность насоса). Поэтому раствор должен удерживать шлам в скважине во взвешенном состоянии. В прог ивном Случае образуется шламовая пробка в затруб-ном пространстве, что может привести к затяжкам и прихватам колонны. В то же время очень важно, чтобы буровой раствор легко освобождался от шлама и газа на поверхности, так как при его неудовлетворительной очистке возрастает абразивный износ оборудования и инструмента, работающих в растворе, ухудшается разрушение горных пород [c.30]

    В течение времени Х1 происходит образование микротрещин на слабых местах структуры, а за время п происходит прорастание микротрещин, приводящее к разрыву образца. В зависимости от соотношения времен Т] и Т2 полимер будет вести себя как высокопрочный или как низкопрочный. В высокопрочных материалах время Т1 Т2, поэтому долговечность определяется временем ть В низкопрочных материалах соотношение обратное Т[ -С тг, и долговечность определяется прорастанием одной или нескольких наиболее опасных микротрещин. Для полимерных материалов первого типа более пригодна теория Чевычелова, а для материалов второго типа — флуктуационная теория Бартенева, учитывающая кинетику роста микротрещин, рассматривающегося как последо- [c.209]

    Термофлуктуационный механизм является наиболее общим механизмом разрушения твердых тел, так как связан с фундаментальным явлением природы — тепловым движением. В наиболее чистом виде он реализуется при хрупком разрушении, а при других видах разрушения ему сопутствуют релаксационные процессы, которые по мере увеличения температуры играют все большую роль. При хрупком разрушении (ниже температуры хрупкости Тхр) очагами разрушения обычно являются микротрещииы, причем долговечность определяется ростом наиболее опасной микротрещины, которая в своем развитии переходит в магистральную трещину, приводящую к разрыву образца. Разрыв напряженных химических связей происходит под действием флуктуаций, возникающих при неупругом рассеянии фононов относительно высокой энергии. Растягивающее напряжение увеличивает вероятность разрыва связей. [c.294]

    Рассчитаем значение температурного коэффициента энергии активации <7, исходя из формулы (11.30). Здесь постоянная А зависит от сг, Г и /о, но значительно слабее, чем долговечность тд через экспоненту. Так как напряжение а находится в пределах от Оо до ак, то коэффициент А в этих пределах изменяется всего в несколько раз. Температура в опытах находится в интервале 200—500 К, что изменяет А в 2—3 раза. Характерные размеры начальных микротрещин от 10 до 10 см, следовательно, Т/ /о и Л могут варьироваться на два порядка. В логарифмической шкале (1ёЛ) и в логарифмических координатах (рнс. 11.9) эти отклонения несущественны, так как находятся в пределах ошибок определения lgтд. Для расчета выберем некоторые значения су и Г, характерные для полимеров, например а=50 Мн/м и Т=300К, я также среднее значение 1с=10- м и Л = 10 3 с, из экспериментальных данных [61]. Кроме того, учтем значения а и X для неориентированного некристаллического полимера. Так, значение со зависит от того, разрывается при каждой [c.304]

    Изучение магистральных трещин интересно тем, что именно в районе вершины такой трещины и развертываются те явления, которые определяют долговечность всего тела. По закономерностям роста магистральной трещины и по особенностям рельефа поверхности разрыва образца (фрактография) можно установить наличие начального локального разрыва и оценить его размеры. Кроме того, изучение магистральных трещин позволяет конкретизировать роль субмикро- и микротрещии в процессе разрушения путем исследования этих мелких трещин в области вершины растущей микротрещины или же их следов на поверхности разрыва тела. Иногда обнаруживается повышенная концентрация субмикротрещин перед растущей магистральной трещиной, так что макротрещина продвигается уже через насыщенную разрывами зону полимера. Рост же магистральной трещины в процессе слияния ее с вырастающими ей навстречу микротрещииами сопровождается появлением характерных следов на поверхности образца — гипербол, анализируя которые можно найти скорости роста трещин, их относительную опасность , размеры и т. д. [c.326]

    Закономерности разрушения и долговечности полимеров при циклических нагрузках рассмотрены в [9 11.32]. Закономерности динамической и статической усталости сшитого эластомера, например, одинаковы (соотношение между числом циклов до разрушения М и максимальным за цикл напряжением о при растяжении Ыа = = сопз1), но статический режим является более мягким по сравнению с динамическим. Несмотря на то что в статическом режиме материал находится все время в напряженном состоянии, его разрушение происходит значительно позже, чем при динамических напряжениях, когда образец находится в напряженном состоянии лишь часть времени. Это объясняется тем, что при периодических нагрузках перенапрял<ения не успевают отрелаксировать за время каждого цикла нагружения, тогда как при статической нагрузке они с течением времени выравниваются. Для пластмасс релаксация перенапряжений связана с микропластической локальной деформацией в вершинах микротрещин. При увеличении частоты и нагружения возмол ен переход от квазихрупкого к хрупкому разрушению. [c.329]

    В структуре гидроизоляционного материала определенный объем занимают замкнутые или сообщающиеся поры. Они нежелательны, поскольку понижают водонепроницаемость материала. В то же время они являются источниками концентрации разного рода напряжений и при определенных условиях способны образовывать микротрещины, которые в дальнейшем могут пере11ти в макротрещины. Так, при производстве рубероида может образоваться около 8-10% пустот, не заполненных битумом (в покровном слое), а в картоне — основе этого кровельного материала, их может содержаться до 25%. Наличие пористости связано в основном с дефектами в технологии производства. Чем больше пористость, тем ниже долговечность. Оптимальной структурой считается така. , в которой поры распределены равномерно по всему объему, отсутствуют дефекты, имеется непрерывная пропитка вяжущим веществом. Оптимальный состав и оптимальную структуру материала при данных технологических параметрах и принятом сырье определяют расчетно-экспериментальным методом в лабораторных условиях и в производственном процессе на заводе. [c.373]

    НИИ, всегда имеются начальные микротрещины и наиболее опасная из них определяет прочность и долговечность. В полимерах, находящихся в квазихрупком состоянии, например в полимерных стеклах, также имеются начальные микротрещииы. В других случаях (полимерные волокна) микротрещииы отсутствуют, но имеются слабые места (аморфные участки микрофибрилл). Уже при малых нагрузках в слабых местах образуются субмикротрещины, которые вследствие наличия прочных кристаллических участков микрофибрилл являются стабильными и непосредственно не приводят к разрушению. Разрыв полимерного волокна происходит от одной из микротрещин, возникшей из ряда субмикротрещин или на стыке микрофибрилл. При больших нагрузках к разрушению приводит одна из наиболее опасных микротрещин. Поэтому термофлуктуационная теория в первую очередь должна рассмотреть механизм и условия роста микротрещин в полимерах. [c.146]

    Критика механизма разрушения Куна, исключающего развитие трещин, высказывалась различными исследователями неднократ-но. Сама гипотеза Куна до сих пор на опыте никем не была подтверждена. Это, конечно, не значит, что в напряженном полимере вовсе не происходят разрывы отдельных цепей во всем объеме образца. Процесс термической деструкции цепей полимера часто наблюдается в напряженных полимерах, но он не является главным. Поскольку среднее напряжение в образце всегда значительно ниже концентраций напряжений вблизи микротрещин и других дефектов структуры, там и наблюдается основной процесс разрыва цепей полимера, который также является процессом термомеханической деструкции, но локализован в местах перена-пряжений . На термомеханическую деструкцию в массе полимера можно вводить поправку, учитывая, что скорость роста трещин Б полимере зависит от числа рвущихся химических связей, приходящихся на единицу длины трещины, а число неразорванных цепей в результате термомеханической деструкции уменьшается. Однако коэффициент концентрации напряжения р в вершине трещины для твердых полимеров примерно равен 10, н поэтому можно считать, что вероятность разрыва цепей в массе материала незначительна. Поэтому термомеханическая деструкция цепей, происходящая в массе полимера, приводит лишь к незначительному увеличению скорости роста трещин и мало влияет на долговечность полимеров. [c.101]

    В ряде опытов прочность волокон разного молекулярного веса измерялась на образцах из 80 параллельно уложенных моноволокон. Разрыв таких волокон сложнее, чем хрупкий разрыв однородных материалов с развитием на первой стадии преимущественно одной (первичной) трещины. Возможно, в волокнах в одном и том же разрывном сечении одновременно возникает и растет значительное число микротрещин. В уравнении долговечности, выведенном из флуктуационной теории прочности, учет одновременного роста нескольких микротрещин скажется только на значении предэкспоненциаль-ного члена, который в формуле [c.151]

    Одной из причин увеличения скорости разрушения полимеров. уожет быть разогрев материала в местах перенапряжений и в вершинах микротрещин. При этом повышение температуры у вершин трещии может значительно превышать разогрев образца в целом. С повышением температуры в местах концентрации напря жений скорость образования и роста микротрещин возрастает, долговечность уменьшается. При однократном растяжении механические потери малы и существенного эффекта не вызывают. При малом числе циклов локальное повышение температуры также незначительно и долговечность практически совпадает с расчетной. С увеличением числа циклов температура в местах концентраций напряжений заметно возрастает, стремясь к некоторому предельному значению, при котором устанавливается тепловой баланс кол чество выделяющегося за цикл тепла равно количеству тепла, рассеивающегося за счет теплопроводности материа-,ла. Поэтому при большом числе циклов тепловые эффекты максимальны и долговечность снижается до значений, соответствующих долговечности при повышенных температурах. Чтобы объяснить наблюдаемое расхождение долговечности полиметилметакрилата с результатами расчета, достаточно предположить, что в местах концентрации напряжений происходит повышение температуры на 30—50 °С. Локальный разогрев происходит и в резинах прн многократных деформациях. [c.210]

    Физически обоснованной характеристикой прочности полимеров служит долговечность, определяемая временем, проходящим с момента приложения нагрузки к образцу до его разрушения. Эта характеристика основана на кинетической концепции прочности [16—18], согласно которой процесс разрушения заключается в постепенном разрыве химических связей вследствие тепловых флуктуаций, причем диссоциация связей активируется приложенным механическим напряжением. Эта концепция развивается С. Н. Журковым с сотрудниками. Большое внимание уделяется также процессу распада межмолекулярных связей. Этот подход предложен и изучен В. Е. Гулем [19]. Существенное внимание уделяется процессу зарождения и развития микротрещин и трещин разрушения под действием нагрузки, что и определяет долговечность материала. Этот подход развивается Г. М. Бартеневым [20]. [c.82]

    Характерную роль вязкости можно объяснить, по-видимому, различным механизмом разрушения полимерных материалов в поверхностно-активных средах и растворителях, а также относительной ролью поверхностной диффузии среды в микротрещины образца при достаточно высоких а и ее влиянием на кинетику процесса разрушения. Действительно, влияние вязкости должно сказываться в первую очередь в том случае, если скорость разрушения определяется скоростью поверхностных или объемных процессов диффузии среды к локальным местам разрушения. Проникание сильных растворителей в перенапряженные пред-разрывные участки, как отмечалось выше, приводит к резкому ослаблению химических связей и к мгновенному разрушению. С возрастанием вязкости скорость проникания среды уменьшается, долговечность полимерного образца увеличивается. Прн действии поверхностно-активных сред, не обладающих рас1во-ряющим действием для ПММА, сохраняется термофлуктуационный механизм разрушения, ускоряемый поверхностно-активным действием среды. При этом скорость поверхностной диффузии среды является определяющей, очевидно, только в области достаточно высоких а и малых т. В области малых а и больших т среда успевает проникнуть к вершинам микротрещин. Подробно этот вопрос, с количественнбй интерпретацией кинетики процессов разрушения в средах, рассматривается в разделе IV.6. [c.139]

    Такое же несоответствие наблюдается между долговечностью и другими физико-химическими параметрами воды ио сравнению с остальными средами. По нашему мнению, значительно меньшее влияние воды на долговечность исследованных полимеров по сравнению с другими органическими жидкостями может быть связано с очень высоким значением ее поверхностного натяжения (72,8 мН/м), а также большой склонностью воды к образованию достаточно крупных молекулярных ассоциатов. В результате наличия ассоциации вычисленные обычным методом значения V, Е и Р, по-видимому, не отражают действительной картины влияния молекулярных параметров на кинетику процесса разрушения. Большая величина как будет рассмотрено далее, обусловливает плохую смачиваемость поверхности образца и препятствует прониканию воды в субмикро- и микротрещины образца. [c.141]

    Известно (см. раздел IV. 1), что суммарное время разрушения напряженного образца твердого полимера в общем случае определяется суммой времен трех периодов образования (индукционный период) и медленного развития первичных субмикродефектов в достаточно большие разрушающие трещины и мгновенного разрушения со скоростью, близкой к скорости звука в данном материале. Очевидно, определяющим в долговечности образца являются первые два периода. Именно в периодах образования, развития и роста микротрещин влияние жидкой среды оказывается решающим. [c.151]

    Жидкая среда, контактируя с образцом в процессе усталостных испытаний при циклическом нагружении, может изменять и ослаблять саморазогрев материала, изменять характер и кинетику релаксационных процессов в субмикро- и микротрещинах, препятствовать частичному смыканию и залечиванию микротрещин и т. п. Сложность явления обусловливает определенную противоречивость имеющихся в литературе немногочисленных экспериментальных данных и их теоретическую трактовку по исследованию усталостного разрушения жестких полимерных материалов в контакте с жидкими агрессивными средами. В некоторых случаях усталостная прочность полимеров в контакте с жидкостью выше, чем на воздухе в других — контакт с жидкостью значительно снижает долговечность при циклическом нагружении. [c.177]

    В физике разрушения главное внимание обращается на атомно-молекулярный механизм процесса разрушения, и разрыв рассматривается как конечный результат постепенного развития и накопления микроразрушений или как процесс развития микротрещин на молекулярном уровне. Основным фактором, определяющим процесс, при этом подходе считается тепловое движение, приводящее к флуктуациям кинетической энергии атомов. Выяснение природы термофлуктуационных процессов и установление зависимости скорости процесса разрушения и долговечности твердых тел от температуры, напряжения и других факторов составляют современную задачу физики разрушения. [c.105]

    Наиболее последовательную теорию без учета микротрещин предложил Бинки [6.1, 6.8] для долговечности полимерных [c.146]

    Рассмотрим теперь долговечность капронового волокна, в котором имеются короткие трещины. В монографии [5.4] приводятся данные для полиамида, ориентированного при пгести-кратной вытяжке. Практически все полимерные цепи ориентированы вдоль оси волокна, поэтому л = 1,7 10 ° мм (см. табл. 2.4). Эксперимент дает у==20,6-10"2 мм . Отсюда коэффициент перенапряжения >i = yluA = l2. Как было сказано в гл. 3, > = Яо(3, где яо = 3 для капроновых волокон (коэффициент перегрузки цепей в аморфных областях микрофибрилл в отсутствие микротрещин в материале). Имеющиеся в волокне микротрещины разрушения дают р = 4. Поэтому для ориентирован- [c.162]


Смотреть страницы где упоминается термин Долговечность микротрещинами: [c.210]    [c.326]    [c.227]    [c.227]    [c.227]    [c.53]    [c.111]    [c.126]   
Прочность и механика разрушения полимеров (1984) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Микротрещины



© 2025 chem21.info Реклама на сайте