Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции кислотно-основные в воде

    Реакциями нейтрализации в водных растворах являются все реакции между кислотами и основаниями, одним из продуктов которых является вода. Сущность реакции нейтрализации заключается в переносе иона водорода (протона) от кислоты к основанию. Кислотноосновные реакции сопровождаются изменением концентрации ионов Н+. Определение последней играет важную роль в методах кислотно-основного титрования. На практике очень часто вместо концентрации ионов водорода [Н+1 используют водородный показатель pH = = — lg [Н+]. Объясняется это тем, что физико-химические методы позволяют непосредственно определить именно pH раствора. По изменению pH раствора следят за [c.93]


    Гомогенный кислотно-основной катализ является, вероятно, самым старым из открытых каталитических эффектов. Исключительное значение воды как реакционной среды или реагента оправдывает предложенные Бренстедом — Лоури определение кислоты как донора протонов и определение основания как акцептора протонов [17]. Сопряженные пары кислот и оснований определяются реакцией [c.36]

    Будем исходить из предположения, что при растворении солей в воде они полностью диссоциируют в ней, поскольку подавляющее большинство солей принадлежит к сильным электролитам. Следовательно, кислотно-основные свойства растворов солей обусловлены свойствами образующихся при растворении катионов и анионов. Многие ионы способны реагировать с водой, в результате чего образуются ионы Н (водн.) или ОН (водн.). Реакции такого типа называются гидролизом. [c.94]

    Таким образом, теория кислот и оснований Бренстеда значительно расширила круг веществ, которые можно рассматривать как кислоты или основания не только в воде, но и в неводных средах. Протолитическая теория хорошо объясняет реакции кислотно-основного взаимодействия как в водных, так и в неводных системах, а также взаимодействие между кислотами различной силы, чего невозможно было объяснить, опираясь на теорию Аррениуса. [c.13]

    В этой главе мы применяли представления о химическом равновесии к водным растворам, особенно к кислотно-основным реакциям и реакциям осаждения. Мы воспользовались выражением для константы равновесия, введенным в гл. 4, подставляя в него концентрации в молярных единицах (моль-л ). Поскольку концентрация воды в растворах, особенно в разбавленных, остается практически постоянной, можно включить эту концентрацию, [Н2О], в константу равновесия. [c.256]

    В соответствии с классическим определением Аррениуса (1887 г.) кислотами называют вещества, которые в водном растворе диссоциируют с образованием ионов водорода, а основаниями — вещества, диссоциирующие с образованием ионов гидроксила. Это определение было большим шагом вперед по сравнению с эмпирическими критериями, которые, правда, и до настояш,его времени используются на практике для оценки кислотно-основных свойств веществ. В соответствии с классической теорией для кислот и оснований характерна реакция нейтрализации, в результате которой образуется вода, а типичные свойства прореагировавших компонентов исчезают. При выпаривании раствора получается соль, катионы которой остались от основания, а анионы — от кислоты. Теория объясняет также электропроводность образовавшегося раствора соли, понижение температуры замерзания и осмотические явления. [c.375]


    Рассмотрим далее другой случай кислотного катализа, когда первая стадия (протонизация) лимитирующая, а вторая стадия близка к равновесному состоянию, на основе так называемой дуалистической теории кислотно-основного катализа (Даусон). Согласно этой теории при расчете скорости каталитического процесса необходимо учитывать, что каталитически активными являются не только ионы гидроксония и гидроксила, но и молекулы недиссоциированных кислот и оснований, а также недиссоциированные молекулы воды. Поэтому скорость реакции равна сумме скоростей, обусловленных всеми катализирующими частицами  [c.424]

    Происходящая окислительно-восстановительная реакция между протонами воды и Н -лигандами сопровождается реакцией кислотно-основного типа. [c.465]

    Теперь рассмотрим водные растворы солей. Реакция воды с солями, называемая гидролизом солей, также является, как видно ниже, реакцией кислотно-основного типа. [c.244]

    Молекулы апротонных растворителей не диссоциируют и неспособны быть донорами или акцепторами протонов. К ним относят ароматические и алифатические углеводороды (беи-зол, гексан и др.), галогеналканы (хлороформ, тетрахлорид углерода) и др. Эти растворители практически не участвуют в реакциях кислотно-основного взаимодействия с растворенным веществом, в них нельзя титровать соединения с низкой кислотностью или основностью. Диэлектрическая проницаемость (е) их значительно ниже, чем у воды. [c.31]

    Условия предварительной обработки влияют не только на активность, но и на селективность и стабильность цеолитсодержащих катализаторов [305]. В реакциях кислотно-основного типа активность цеолитсодержащих катализаторов можно регулировать термопаровой обработкой. В случае би- или полифункциональных катализаторов, в которых цеолит играет роль инертного носителя, обработку проводят в условиях, обеспечивающих оптимальную активацию всех компонентов 1[200], т. е. получение активной металлической фазы в высокодисперсном состоянии. Металлцеолитные катализаторы процессов нефтепереработки гидрирования, получаемые ионными обменами, вначале дегидратируют в токе воздуха, азота или водородом до содержания остаточной воды менее 0,2%, а затем восстанавливают водородом при атмосферном или повышенном давлении. [c.156]

    ПЭГ пригодна в отличие от гипотезы Аррениуса для объяснения реакций кислотно-основного взаимодействия, протекающих в неводных растворах, в которых не существует равновесия, устанавливающегося в воде между ионами водорода и гидроксила. [c.160]

    К реакциям кислотно-основного типа относятся реакции, идущие с присоединением или отщеплением полярных молекул (воды, аммиака, НС1 и т. п.), реакции конденсации, изомеризации и крекинга. Катализаторами процессов этого типа являются минеральные кислоты, основания, соли и окислы. Более конкретные сведения о катализаторах для различных реакций приведены в табл. 2 и 3. [c.100]

    БО °С в количестве 40—50% от массы эфира. Отмывка производится несколько раз до нейтральной реакции. Отгонка остатков воды из бутилового спирта осуществляется при 30—75 °С и остаточном давлении 5,3—6,0 кПа (40—45 мм рт. ст.). После отгонки остатков бутилового спирта отбирается промежуточная фракция при температуре 150 °С и остаточном давлении 800 Па (6 мм рт. ст.), а затем при температуре 155—170 °С, и остаточном давлении 1330 Па (10 мм рт. ст.) — основная фракция. Готовый продукт — дибутиладипинат имеет кислотное число 0,1—0,2, число омыления 425—437 и содержит до 0,17% (масс.) азота. Гидрирование осуществляется в соответствии с уравнением реакции  [c.38]

    В методах, основанных на реакциях кислотно-основного титрования, в кулонометрии водных растворов применяют электрогенерированные в процессе электролиза воды ионы водорода, образующиеся в прианодном пространстве, и ионы гидроксила, накапливающиеся в прикатодном пространстве в результате следующих реакций электрохимического восстановления— окисления воды  [c.39]

    По понятным историческим причинам химики в первую очередь изучили и взяли на вооружение реакции, происходящие в водных растворах. Однако далеко не во всех случаях вода является самым подходящим растворителем огромное количество веществ вообще не может существовать в водной среде. В последние десятилетия процессы, протекающие в неводных растворах, получили широчайшее применение в промышленности и научных исследованиях. Многие из этих процессов являются кислотно-основными. [c.253]

    Метод кислотно-основного кулонометрического титрования обладает тем преимуществом, что не требует введения специального вспомогательного реагента. Последним является сам растворитель — вода. Определение соляной кислоты основано на непосредственном электрохимическом восстановлении на катоде ионов водорода до Нг и параллельно на их нейтрализации электрогенерированными ионами 0Н , полученными при электролизе воды. В зависимости от величины тока электролиза 1а и концентрации кислоты в растворе на рабочем (генераторном) электроде может проходить реакция [c.145]


    Константы скорости прямых стадий можно найти из рКа соответствующей функциональной группы и константы скорости обратной (диффузионно-контролируемой) реакции в виде 10 Ка-с и (10 - lu)/ < a M соответственно, где Ка — константа кислотной диссоциации ВН /С( — константа ионизации воды. Константа скорости всего процесса имеет максимальное значение, равное с , при условии Ка 10 М. Действительно, при Ка < Ю М меньше, чем 10 с , становится константа скорости диссоциации кислоты ВН (реакция а) с другой стороны, если Ка > 10 М, меньше, чем предельное значение 10 , становится константа скорости гидролиза основания (реакция б). Таким образом, максимальная константа скорости кислотно-основного катализа с участием воды равна 10 с  [c.273]

    Вследствие сочетания различного рода взаимодействий между растворителем и участниками реакции положение равновесия зависит от многих факторов. Так, протолитическое равновесие между кислотой и основанием при изменении растворителя зависит не только от кислотности (основности) растворителя, но и от его способности к образованию координационных соединений. Поэтому, например, константы диссоциации карбоновых кислот в воде в 10 —10 раз больше, чем в безводном этаноле. [c.452]

    Кислотно-основные реакции Р--иона. Растворяют немного NaF в воде и определяют pH раствора. Раствор сохраняют для других опытов. [c.489]

    В пробирку с газоотводной трубкой возьмите 2—3 микрошпателя древесного угля, прибавьте 2—3 мл концентрированной серной кислоты и слегка подогрейте. К концу газоотводной трубки поднесите синюю лакмусовую бумажку, смоченную водой. Соберите выделяющийся газ в пробирку (для этого опустите газоотводную трубку до дна пробирки) и внесите в него горящую лучинку. Пропустите ток газа через раствор баритовой воды и подкисленный раствор перманганата калия. Что наблюдается Какой кислотно-основной характер имеют образующиеся оксиды и каковы их свойства Напишите уравнения реакций. [c.58]

    Подобная льюисова кислотно-основная реакция осуществляется при растворении ка-кого-либо оксида неметаллического элемента в воде с образованием кислого раствора. [c.100]

    Кислотно-основные свойства солей можно связать со свойствами образующих их катионов и анионов. Реакция ионов с водой, в результате которой происходит [c.102]

    В кислотно-основных реакциях растворитель, например вода, может проявлять кислотные и основные свойства, т. ё. отщеплять или присоединять протон точно так же вода в окислительно-восстановительных реакциях может терять электрон (быть восстановителем) или присоединять его (быть окислителем). Подобным же свойством обладают и такие ионы, которые могут существовать в нескольких степенях, окисления. Так, известны соединения ванадия в степенях окисления два — три—четыре — пять—В Э1ИХ соединениях V и находящиеся в промежуточных степенях окисления, способны как терять электроны (быть восстановителями), превращаясь в ионы с более высокой [c.343]

    Вода играет на нашей планете роль важнейшего растворителя. Трудно даже представить себе, как могла бы существовать во всей своей сложности живая материя, если бы эту роль вместо воды играла какая-нибудь иная жидкость И дело не только в изобилии воды, но и в ее исключительной способности растворять самые разнообразные вещества. Водные растворы, встречающиеся в природе, будь то биологические жидкости или морская вода, содержат в себе много растворенных веществ. Следовательно, в этих растворах может осуществляться множество равновесий. В гл. 15 мы обсуждали равновесия с участием слабых кислот и оснований. Однако мы ограничили свое рассмотрение растворами, содержащими только одно растворенное вещество. В данной главе будут рассмотрены кислотно-основные равновесия в водных растворах, содержащих два или несколько растворенных вешеств. Кроме того, мы расширим наше изучение равновесий в водных растворах, включив в обсуждение другие типы реакций, в частности реакции, в которых участвуют слабо растворимые соли. [c.110]

    Заданне 5.3. Напишите схему реакции кислотно-основного взаимодей ствия пропановой кислоты СН СН СООН с водой с образованием про паноат-иона Укажите кислоту, основание, сопряженную кисло гу и со пряженное основание Напиши ге уравнение, по которому можно рассчитать константу кислотности пропановой кислоты [c.156]

    Свободный Н -ион имеет неожиданно большой радиус 0,208 нм. В кристаллической решетке соединений радиус Н -иО на значительно меньше ( 0,153 нм). Энергии решеток гидридов сравнимы -с энергией решеток фторидов (рис. В.18) и хлоридов. Гидрид-ион—сильный восстановитель. Стандартный потенциал пары Нз/Н составляет =—2,24 В. По отношению к воде и многим органическим соединениям гидрид-ион проявляет восстановительные свойства. Протекающую при этом реакцию сннпропорционирования Н +Н+— -Из в то же время можно рассматривать как кислотно-основное взаимодействие. При взаимодействии с водой гидрид связывает ионы Н+ и образуется щелочной раствор Н +Н20— -Нг+ОН . [c.465]

    Вторая группа катализаторов применяется для реакции кислотно-основного типа — присоединение и отщепление молекул воды (гидратация и дегидратация), изомеризация, алкилиро вание, крекинг и др. Пршмеро.м могут служить  [c.23]

    Это дает основание полагать, что с помощью кондуктометрического титрования в НР можно определять индивидуальные кремнийорганические соединения и анализировать их смеси по аналогии с титрованием кремнийорганических соединений [230] и фторидов [232] в других неводных растворителях. Этот метод будет иметь большое значение в связи с тем, что многие кремнийорганические соединения не растворяются в воде или гидролизуются в ней с образованием стойких иерасслаивающихся эмульсий. В среде же жидкого фторида водорода они диссоциируют с образованием ионных пар и сольватированных ионов, способных вступать в реакции кислотно-основного взаимодействия. [c.75]

    Легко себе представить, что НС1 отдает протон молекуле воды, образуя ион гидроксония, но значительно труднее допустить, что гидроксид калия переносит ОН -ионы на молекулу воды, т. е. представить себе гидратацию ОН -ионов или допустить возможность гидратации ионов калия. Однако если считать, что КОН отдает К+-ИОНЫ молекулам растворителя, легко прийти к выводу, что КОН является кислотой, т. е. можно сделать заведомо неверные выводы. Возможность таких выводов являет собой существенный недостаток ионотропной концепции. По Гутману — Линдквисту кислотно-основное взаимодействие протекает в присутствии растворителя, но хорошо известно, что многие реакции кислотно-основного взаимодействия протекают и в отсутствие рас- [c.144]

    Благодаря амфотерности молекулы воды она вступает в реакцию со всеми протолитами, приводимыми в контакт с нею. Характерной реакцией воды как амфоли-та (и других амфолитов) является реакция кислотно-основного диспропорционирования или автопротолиза (са-моионизации)  [c.62]

    Гидроксо-комплексы — важный класс комплексных соединений. Можно полагать, что они образуются из акво-комплексов путем простой реакции кислотно-основного равновесия с удалением протона из внутренней сферы комплексного иона. Аналогично амидные комплексы образуются из аминных, отщеп.11яя протон. Таким образом, комплексные ионы, содержащие молекулы воды или амина, часто являются относительно сильными кислотами, сила которых может быть измерена. В табл. 1.9 приведены константы кислотной ионизации ряда акво-комплексов в водных растворах. Эти константы обычно называют константами гидролиза. Они относятся к реакции [c.34]

    Из" теории Брёнстеда вытекает линейная зависимость р/Сдип кислоты (основания) от 1/е (гл. IX). Логарифмируя уравнения V. 2), легко показать, что для группы объектов с постоянными G и а такая же зависимость должна наблюдаться и для каталитических коэффициентов. Естественно, что и отклонения от этой зависимости обнаружатся при сопоставлении растворителей различной химической природы. По-видимому, можно считать, что соотношение (XV. 2) будет удовлетворительно выполняться в водно-неводных растворителях при не очень низкой концентрации воды. Данные по каталитическим коэффициентам кислотноосновных реакций в чистых неводных растворителях пока крайне малочисленны. Однако для характеристики реакционной способности веществ в реакциях кислотно-основного катализа можно использовать значения констант скоростей изотопного обмена водорода в неводных растворах, изученные довольно широко за последние десятилетия (прежде всего, в работах А. И. Шатенштейна и сотрудников, см. ниже). [c.344]

    Второй обширный класс образуют реакции кислотно-основного типа, включающие многообразные реакции с ирисоедипением и отщеплением полярных молекул (и в первую очередь воды),многочисленные реакции конденсации, изомеризации, крекинга. Типичными катализаторами для процессов этого класса являются минеральные кис.7[оты, основания, соли. В механизме процесса существенную роль играют протонные переходы и ионизация . [c.110]

    Гетерогенная кислотно-основная реакция (растворение соли). Кусочек мрамора в пробирке обливают разбавленной соляной кислотой. У отверстия пробирки держат стеклянную палочку с висящей на ней каплей баритовой воды. В капле образуется муть от выпадающего ВаСОз. Если у отверстия пробирки будет находиться капля раствора ВаСЬ, помутнения не произойдет (почему ). [c.566]

    Однако если в механизм реакции входит равновесие с участием слабых кислот или оснований, то можно наблюдать более высорсую скорость реакции в 020. Причина этого состоит в том, что константы диссоциации слабых кислот и оснований в О2О меньше, чем в Н2О (в 2—4 раза). Ионное произведение тяжелой воды 7(о2о = 0,145-10 также более чем в пять раз меньше, чем ионное произведение Н2О (разд. 35.4.1.4). Этот фактор становится особенно существен при кислотно-основном катализе. Вернемся к уравнению (135) можно легко понять, что в случае специфического кислотного катализа, т. е. при наличии предшествующего протолитического равновесия ([реакция (131)], скорость катализируемой реакции в О2О оказывается больше, чем в Н2О. Константа скорости в уравнении (135) равна [c.200]

    Кислотно-основной характер системы определяется типом заместителей и электроноакцепторные группы усиливают кислотность соли или основность соответствующего илида. В этих случаях для отрыва а-протона пригодны слабые основания, например карбонат калия. В более общем случае, когда заместителей, сильно повышающих кислотность, мало или они отсутствуют, используют, как правило, сильные щелочи литий-органические соединения, амид натрия в жидком аммиаке, ал-ко сиды щелочных металлов в гидроксильных растворителях или в диметилсульфоксиде либо димсильный анион в ДМСО. Стабилизованные (наличием групп Р = СООР, СМ и др.) илиды можно выделить. В то же время хорошо известно, что обычные фосфониевые илиды чувствительны и к воде, и к кислороду, поэтому стандартная методика требует применения тщательно высушенных растворителей и инертной атмосферы. Под действием воды происходит необратимый распад с образованием ал-килдифенилфосфина и бензола. На воздухе протекают следующие реакции  [c.251]

    Поскольку сильные кислоты и сильные основания полностью диссо-циирутот в водном растворе, понять поведение таких растворов очень просто. Когда в воду добавляют сильную кислоту, повышение концентрации ионов водорода равно концентрации добавляемой кислоты. При соединении протонов Н ", образуемых кислотой, с гидроксидными ионами ОН , образуемыми основанием, получаются молекулы воды эта реакция называется нейтрализацией. Количество кислоты, содержащееся в образце раствора, можно определить по тому количеству основного раствора известной концентрации, которое требуется для нейтрализации кислоты нейтрализация устанавливается при помощи кислотно-основного индикатора. Эта процедура называется титрованием и представляет собой распространенный аналитический метод. [c.257]

    В случае гидролиза водой побочным продуктом последовательных превращений является простой эфир. Его образование объяс- 1яется тем, что пер вичный продукт реакции — спирт — в результате быстрого кислотно-основного обмена со щелочью дает алкоголят, пакже способный взаимодействовать с хлорпроизводным  [c.174]

    Сравните AG298 реакций взаимодействия Tl O и TI2O3 с водой в расчете на I моль HjO (ж). Как изменяются кислотно-основные свойства оксидов и гидроксидов с повышением степени окисления таллия  [c.100]

    Перенос протона между одинаковыми частицами называют ав-топротолизом или кислотно-основным диспропорционировани-ем. Существование ионов доказывается наличием небольшой электропроводности воды (при 18 °С х = 4,41 10 ° См/м). В чистой воде концентрация ионов НзО+ и 0Н одинакова. Для этой протолитической реакции принята еще одна характеристика, кроме обычной константы равновесия, — ионное произведение воды (разд. 23.3.10)  [c.378]

    Другая схема классификации оксидов основана на проявляемых ими кислотно-основных свойствах при реакциях с водой. Чтобы и здесь как критерий можно было использовать величину отрицательного заряда на атоме кислорода, будем придерживаться определения кислот и оснований по Усановичу (разд. 33.4.3.5) кислота или кислотный оксид — это акцепторы электронов. [c.473]

    До СИХ пор мы рассматривали в качестве растворителя только воду, а в качестве носителя кислотных свойств только протон. В таких случаях более удобны определения кислоты и основания, предложенные Бренстедом и Лаури. В самом деле, когда говорят, что вещество обладает кислотными или основными свойствами, то обычно имеют в виду водные растворы, а упомянутые термины применяются в рамках представлений Арре1шуса либо Бренстеда-Лаури. Преимущество теории Льюиса заключается в том, что она позволяет рассматривать более разнообразные реакции, включая реакции, не сопровождающиеся переносом протона, такие, как кислотно-основные реакции в водных растворах. Во избежание путаницы вещество, подобное ВРз, редко называют кис ютой, но это можно делать в том случае, если из контекста понятно, что данный термин применяется как определение Льюиса. Чаще вещества, обладаю- [c.99]


Смотреть страницы где упоминается термин Реакции кислотно-основные в воде: [c.24]    [c.228]    [c.459]    [c.24]    [c.249]    [c.459]    [c.24]    [c.254]   
Химическое разделение и измерение теория и практика аналитической химии (1978) -- [ c.99 , c.150 ]




ПОИСК





Смотрите так же термины и статьи:

Кислотно-основное

ЛИЗ кислотно основной

Реакции кислотно-основные

Реакция воды



© 2024 chem21.info Реклама на сайте