Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропан определение

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]


    В атмосферной колонне обычно принимают следующие числа тарелок (табл. 1.8). Расход водяного пара, подаваемого в низ колонны и в отпарные секции, принимается равным 0,2—0,3% (масс.) на нефть или 2—5% (масс.) на остаток либо продукт. Давление перегонки нефти определяется условиями конденсации пропан — бутановой смеси при 40 °С. При минимальной температуре охлаждающей воды л 30°С топливные фракции в верху колонны могут быть сконденсированы при атмосферном давлении. Поэтому в верху колонны давление принимается как можно меньшим с тем, чтобы обеспечить максимальный отбор светлых продуктов при заданной температуре сырья или обеспечить минимальную температуру сырья при заданном отборе светлых. В емкости орошения рекомендуется поддерживать давление порядка 35—70 гПа [70]. При определении давления в колонне следует учитывать изменение его по высоте колонны и принимать следующие перепады давления между верхней тарелкой и емкостью орошения 350 гПа, на одной тарелке 10—20 гПа, в трансферном трубопроводе 350 гПа. Таблица 1.8. Число тарелок в секциях аТмосферной колонны [c.94]

    Пропан-бутановая фракция. Согласно спецификации, испытание пропан-бутано-вых жидкостей заключается в определении коррозионных свойств, цвета, фракционного состава и докторской пробы. [c.77]

    Лимитирующее действие химической реакции проявляется, в частности, в существовании пределов детонации, ограничивающих возможность детонационного распространения пламепи определенной областью концентраций горючего в его смесях с воздухом или кислородом. Медленностью химической реакции вне этой области и объясняется неспособность к детонации смесей соответствующего состава. В качестве примера на рис. 68 показаны пределы детонации смесей пропана с кислородом [206]. Как видно из этого рисунка, способной к детонации является смесь, содержащая пропан в количестве не менее 3% (3,1%) и не более 37%. [c.243]

    Методика определения оптимальных параметров ректификации смесей пропилен — пропан и этилен — этан в одноколонных системах с тепловым насосом рассматривается в работе [34]. [c.129]

    Правильный отбор экспериментальных данных может значительно упростить процесс нахождения подходящего уравнения. Могут оказаться полезными вспомогательные опыты по определению адсорбционных свойств. Так, например, на палладиевом катализаторе водород вовсе не адсорбируется, пропан адсорбируется слабо, а пропилен—сильно знание этих данных позволяет значительно сузить выбор возможного механизма каталитического дегидрирования пропана. [c.226]


    Проверка адекватности данной модели производилась путем сравнения экспериментальной и рассчитанной по модели зависимости локальной эффективности тюу от состава для смесей пропан-и-бутан, толуол-ксилол, циклогексан-толуол, метанол-вода. Для расчета коэффициентов массоотдачи рд,, р использовались уравнения для определения чисел единиц переноса в паровой и жидкой фазах  [c.140]

    Значительный интерес представляют данные о растворимости бензола в сжатом пропане, являющемся значительно более сильным растворителем, чем метан и этан (табл. 17). Определение растворимости бензола в пропане проводилось при температурах выше 100°С, так как критическая температура пропана равна 96,8°С. Опыты показали, что для получения высокого содержания бензола в сжатом пропане нужны очень небольшие давления, но повышенные температуры. [c.32]

    Растворимость различных жиров и эфиров в пропане [130, 132, 136, 137] различна, следовательно появляется возможность разделения этих веществ. Большинство соединений показывает ограниченную растворимость в пропане и имеет минимум температуры растворимости (рис. 1-2). Растворимость падает с увеличением температуры (рис. 6-18), это связано с сильным падением плотности пропана вблизи его критической температуры (96,8 °С). Установлена вполне определенная обратная зависимость между молекулярной массой и критической температурой растворимости. У эфиров с молекулярной массой —460 г и кислот с молекулярной массой 230 з критическая температура растворимости совпадает с критической температурой пропана. Эти соединения, как и все другие с меньшей молекулярной массой, полностью растворяются в пропане. Поэтому разделение соединений с помощью пропана можно провести только при молекулярной массе больше 460 з для эфиров и 230 г для кислот. Как это следует из имеющихся данных, разделение отдельных жиров и [c.406]

    Взаимодействие между неполярными молекулами (дисперсионный эффект). Дисперсионные силы возникают в результате смеш,ения электронных оболочек в момент сближения молекул, что приводит к кратковременной и многократной их поляризации. При определенной ориентации и наличии кратковременной поляризации молекулы способны притягиваться друг к другу. Это наиболее распространенный и универсальный вид сил межмолекулярного взаимодействия, К неполярным растворителям относятся пропан, бензол и все другие углеводородные растворители. Толуол также следует отнести к группе неполярных растворителей, так как имеющийся у него небольшой дипольный момент решающей роли не играет. В масляном сырье все углеводороды являются неполярными, за исключением некоторой части ароматических, обладающих слабо выраженной полярностью. [c.70]

    На основании рис. 77 и приведенных выше зависимостей находят критическую температуру стенки резервуара, при которой наступает разрушение в результате воздействия пожара. Из кривой температура (стенки)—время получают критическую продолжительность пожара ткр, необходимую для определения допустимой инерционности установок пожарной защиты. Кривая температура — время аварийного резервуара с пропаном, полученная в результате экспериментальных и теоретических исследований, приведена на рис. 78. [c.145]

    Метод, известный под названием замерзание клапана , разработан для проверки на влажность пропана по замерзанию клапана определенного размера. Проба жидкой фазы пропана пропускается через клапан и охлаждает его, после чего клапан прикрывается на время, за которое может образоваться лед. Если время замерзания больше 3 мин, пропан классифицируется как сухой (содержание воды менее 0,002 %). Данный метод чисто эмпирический, однако некоторые поставщики считают, что его можно применять для контроля производства СНГ. [c.94]

    При ультрафиолетовом облучении смесей парафина с двуокисью серы образуются сульфиновые кислоты (см. стр. 505). Дэйтон и Айвин [94а], открывшие эту реакцию, показали, что если парафином является пропан или н-бутан, то получается смесь изомеров, причем в случае н-бутана в ней преобладает вторичный продукт замещенйя. Это согласуется с результатами, полученными при хлорировании и сульфохлорировании. Точный состав смеси не был определен. [c.574]

    Экспериментальное исследование было выполнено на примере реакции окисления бутана на катализаторе хромит меди на оксиде алюминия. Некоторые эксперименты, связанные с определением рабочего диапазона адиабатических разогревов, были проведены на пропан-бутановой смеси. Принципиальная схема установки аналогична приведенной на рис. 6.23. Установка состояла из двух реакторов, каждый из которых представлял собой вертикальную трубу диаметром 0,175 м и высотой 2,8 м. Высота слоя катализатора в каждом из реакторов равнялась 2-2,4 м. Зерна катализатора были изготовлены в виде цилиндров диаметром 2-6 мм, высотой 4-5 мм. Циклические режимы работы реализовывались поочередным переключением соответствующих вентилей, [c.325]


    Экспериментальная проверка, выполненная для систем пропан — водный раствор хлористого кальция, нормальный пентан — вода, сточные воды ЭЛОУ Херсонского НПЗ — газойль, подтвердила хорошее совпадение величин значений высоты барботажного слоя, определенных экспериментально и по уравнению (28). [c.64]

    К геохимическим методам поиска нефти и газа относятся газовая съемка и газовый каротаж. При газовой съемке отбирают пробы газа (подпочвенного воздуха) или породы с глубин от 2—3 м до 10—50 м и извлекают из этих проб метан, этан, пропан и другие углеводороды. По результатам анализа выявляют газовые аномалии , являющиеся признаком возможного наличия в толще пород нефтяного или газового месторождения. Газовый каротаж — метод, основанный на систематическом определении газообразных и легких жидких углеводородов в буровом растворе или керне. [c.9]

    Взрываемость определяется при помощи прибора, применяемого для определения взрываемости газо-воздушной смеси в нефтяных резервуарах. Мазут выдерживает испытание, если взрываемость паров, выделившихся при его нагреве до 51,6° С и взбалтывании в течение 5 мин, ниже взрываемости газовой смеси (метан, этан, пропан), установленной нри калибровании прибора. [c.218]

    Пример II-2. При термическом крекинге пропана в определенных условиях могут быть получены или пропилен п водород, или этилен и метан. Предположим, что пропан подвергается крекингу при пропускании через трубку, которая обогревается снаружи большим количеством горячих газов, имеющих температуру 780° С. Для проектирования промышленной установки требуется определить  [c.63]

    Влияние температуры экстракции на растворимость химических компонентов сырья различного молекулярного строения в неполярных растворителях обсуждалось в 6.2.3. Как видно из рис. 6.4, при пониженных температурах (50 — 70 °С) пропан проявляет высокую растворяющую способность и низкую избирательность и является преимущественно осадителем асфальтенов. При повышенных температурах экстракции (85 °С и выше) у пропана, наобо — рот, низкая растворяющая способность и повышенная избирательность, что позволяет фракционировать гудроны с выделением групп углеводородов, различающихся по структуре и молекулярной массе. Следовательно, в этой температурной области пропан является фракционирующим растворителем. Высокомолекулярные смолы и полициклические ароматические углеводороды, выделяющиеся при предкритических температурах, благодаря действию дисперсионных сил извлекают из дисперсионной среды низкомолекулярные смолы и низкоиндексные углеводороды, повышая тем самым качество деасфальтизата, но снижая его выход. Антибатный характер зависимости растворяющей способЕюсти и избирательности пропана от температуры можно использовать для целей регулирования выхода и качества деасфальтизата созданием определенного тем — перагурного профиля по высоте экстракционной колонны повышенной температуры вверху и пониженной — внизу. Более высокая температура в верхней части колонны будет способствовать повы — шению качества деасфальтизата, а пониженная температура низа колонны будет обеспечивать требуемый отбор целевого продукта. [c.230]

    Применяемый пропан не должен содержать более 5% фракций Са и С, и 2% пропилена сероводород и меркаптаны должны отсутствовать. Время, необходимое для определения суммарного содержания смолисто-асфальтовых веществ по описанному методу, 10—12 час. Содержание пропановых смол во всех случаях меньше на 15—35% силикагелевых вследствие растворения пропаном низкомолекулярных смол, с одной стороны, и способности силикагеля наряду со смолами адсорбировать и другие полярные соединения, а также некоторые углеводороды, с другой. УБ азанный метод вряд ли может быть рекомендован для широкого пользования вследствие сложности аппаратурного оформления. [c.466]

    В парке сжиженных газов одного газоперерабатывающего завода произошел разрыв дренажной емкости с выбросом сжиженного газа и его воспламенением. Дренажная емкость предназначалась для сбора подтоварной воды из емкости со сжиженными газами и отпарки углеводородов она была рассчитана на работу под атмосферным давлением. Слив воды из емкостей со сжиженными газами в дренажную емкость предусматривался по проекту с разрывом струи через открытые воронки. Для уменьшения загазованности проектная схема была изменена. Сливные воронки ликвидировали, дренажный коллектор подсоединили к дренажной емкости. Схема дренирования стала закрытой. Рассчитанная на работу под атмосферным давлением дренажная емкость оказалась соединенной с системой высокого давления, а диаметр воздушника на емкости был определен без расчета, т. е. не исключалось возникновение избыточного давления в дренажной емкости. Вследствие неисправности спускного вентиля на одной из емкостей с пропан-пропнленовой фракцией в дренажную емкость поступило большое количество сжиженного газа под давлением 0,9 МПа, что и привело к ее разрыву. [c.133]

    Метод хроматографического определения микросодержаний углеводородов разработан Е. В. Вагиным [12]. Пламенно-ионизационный детектор в сочетании с предварительным накоплением анализируемых компонентов позволил обеспечить чувствительность метода по ацетилену 10 ° мол. долей, а по пропану — 3-10 мол. долей. Эта методика может быть реализована на выпускаемом промышленностью хроматографе Цвет при некоторой его доработке. [c.142]

    В качестве растворителя для удаления из остаточного сырья смолисто-асфальтеновых веществ на большинстве заводов используют сжиженный пропан. Процесс деасфальтизации основан на различной растворимости углеводородов и смолисто-асфальтено-вых веществ в сжиженном пропаие при определенных условиях процесса пропан растворяет углеводороды и не растворяет эти вещества. Глубина извлечения смолисто-асфальтеновых веществ, т. е. эффективность процесса деасфальтизации, оцениваемая по коксуемости деасфальтизата, зависит от ряда факторов качества сырья, температуры и давления процесса, кратности пропана к сырью и чистоты пропана. [c.70]

    Пропан не только осаждает асфальтены и в определенных условиях не растворяет смолистые вещества, но и обладает избирательностью при растворении углеводородов, серо- и азотсодержа- [c.71]

    Как известно, процессы депарафинизации и обезмасливаиия можно проводить в чисто углеводородных растворителях, таких как пропан и гептан. Эти растворители характеризуются высокой растворяющей способностью по отношению к твердым углеводородам, что требует глубокого охлаждения при производстве низкозастывающих масел, а отсюда — высокий ТЭД. В литературе [68, с. 183] имеются сведения о переводе промышленной установки депарафинизации в пропановом растворе на смесь пропилен — ацетон. Такой процесс позволяет депарафинировать сырье любой вязкости и получать масла с температурой застывания от —20 до —25 °С. Добавление ацетона к углеводородному растворителю снижает его растворяющую способность, что обеспечивает более полное выделение твердых углеводородов из раствора при снижении ТЭД до 10—15 °С. Растворитель одновременно служит и хладоагентом, причем его испарение происходит с определенной скоростью, для чего на установке предусмотрен автоматический контроль охлаждения суспензии твердых углеводородов. Во избежание обводнения ацетона, энергично поглощающего воду, существует секция для отделения воды. [c.158]

    Продукты верха депропанизатора и дебутанпзатора являются коммерческими продуктами, которые должны соответствовать определенным спецификациям. Содержание неконденсирующихся компонентов в них ограничивается. В обычных случаях пропан, бутан или смесь компонентов сжиженного газа менее ценны (на единицу объема получаемой продукции), чем более тяжелые продукты, такие, как газовый бензин, углеводородный конденсат и др. В свою очередь, эти продукты должны содержать пропан и бутан в количествах, которые допускаются спецификациями. Кроме того, требуется чувствительный контроль, обеспечивающий достаточно низкое содержание метана в сырье, поступающем в депропанизатор и дебутанизатор после предыдущей ректификационной колонны. [c.313]

    Ацетилен является иримесью, загрязняющей пропан, этан и бутан, которые подвергают крекингу с целью получения этилена для производства полиэтилена или этиленгликоля. Ацетилен мешает протеканию двух последних процессов, п его удаляют каталитически или промывкой. Каталитическое удаление ацетилена гидрированием в этилен представляет собой одни из лучших примеров селективного катализа. Эту реакцию осуществляют в промышленности нри температуре 200—250°С на никелевом катализаторе, сульфидироваппом в строго определенной степени. В силу того что в ходе процесса происходит частичное гидрирование серы и она удаляется с катализатора, в реактор следует постоянно вводить некоторое количество серы для компенсации ее потерь и поддержания определенного уровня селективности катализатора. Гидрирование можно вести при давлениях 200—1000 фупт/дюпм . В качестве катализатора обычно используют никель на оксиде алюминия, содержащий иногда небольшие добавки кобальта и в некоторых случаях хром. Ценность добавок хрома проблематична, так как он повышает устойчивость катализатора к сульфидированию, увеличивает подвижность серы, что ведет к быстрой потере селективности. [c.126]

    Типичные характеристики различных марок СНГ, применяемых, например, в качестве промышленного и автомобильного топлива, бытового газа в баллонах, растворителей и т. п., даны в табл. 18. В большинстве экономически развитых стран разработаны технические требования к качеству промышленных марок СНГ. Недавно был опубликован их критический анализ [1]. Можно отметить один общий для всех технических условий недостаток, важный при производстве ЗПГ, — в них часто не приводится различие между насыщенным пропаном и ненасыщенным пропиленом. Во многих сферах применения СНГ, в частности, для приготовления пищи, отопления и т. п. это различие несущественно. Но оно играет важную роль при определении характеристик СНГ как сырья для производства ЗПГ. В связи с тем, что в прошлом СНГ применялся для производства бедных газов, содержание ненасыщенных составляющих в нем было ограничено (5—20 об. %). Это ограничение особенно касалось СНГ с нефтеперерабатывающих заводов, где в него могли попасть газообразные олефины, побочные продукты крекинга дистиллятов. В СНГ из природного газа содержание ненасыщенных углеводородов минимально. Другой проблемой, которая может возникнуть при использовании товарных сортов СНГ в производстве ЗПГ, является наличие в нем одорантов, часто добавляемых в баллонный газ в целях безопасности. Поэ1тому с самого начала следует избегать добавок в газ одорантов. При невозможности соблюдения [c.74]

    Взрыв парового облака, случившийся 9 декабря 1970 г. в Порт-Хадсоне (шт. Миссури, (ЖА), последовал в результате разрыва трубопровода с жидким пропаном. Происшествие могло стать самым крупным за всю историю случаем взрыва парового облака, однако оно произошло в малонаселенном районе города и взрыву предшествовал определенный период времени, позволивший эвакуировать некоторое количество жителей. В результате аварии жертв не было, за исключением получивших легкие травмы. Хотя данное событие ранее охарактеризовывалось как детонация, однако в настоящее время оно расценивается как дефлаграционное превращение, вызванное взрывом внутри здания. [c.322]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    При заданной температуре процесса увеличение подачи пропа на сначала приводит к улучшению осаждения из сырья смолисто-асфальтеновых соедплений, однако при избытке пропана сверх некоторой определенной величины смолы начинают растворяться п пропане, переходят в деасфальтизат, повышая его вязкость и коксуемость. Объемное соотношение пропан сырье составляет от 4 1 до 10 1, причем для малосмолгстых нефтей необходимо поддерживать более высокое соотношение. [c.326]

    Несколько хуже обстоит дело с предельной частью первой фракции. Как указывалось выше, она содержит метан и этан. Кроме того, если анализируемые газы богаты пропаном, то вместе с пропиленом в первую фракцию попадает некоторая часть пропана (пропорционально его упругости и концентрации). Таким образом, в первой фракции могут содер каться три пре-,дельных углеводорода, раздельное определение которых посредством сжигания уже невозможно. В этом случае применяется следующий метод, основанный на законе Генри-Дальтона и дающий сравнительно точные результаты. Содержание пропана в первой фракции вычисляется из соотношения между упругостями паров пропилена и пропана при температуре перехода (—65°) и концентрации этих углеводородов во второй фракции по формуле [c.864]

    В табл. 2 приводятся результаты определения состава фаз, полученные при разделении деасфальтизатного раствора в сверхкритических условиях на лабораторной установке. Во всех опытах условия разделения были следующие температура Г17°С, давление 4,7 МПа, объемная кратность растворителя 10 1. Технический пропан, отобранный на установке 36/1 ОАО Уфанефтехим и используемый как растворитель, содержал 95% пропана. [c.51]

    Деасфальтизатный. раствор отбирался из потока деасфальтизатного раствора, выходящего с верха экстракционной колонны К-1, Дозировочным насосом этот раствор под давлением 4,5-6,0 МПа прокачивался через паровой подофеватель, нафевался до 110-150°С и далее подавался в аппарат фазового разделения, где пропан отделяется от деасфальтизата. Пропан с верха АРФ поступал в линию выхода паров пропана из испарителя Э-1 а. Деасфальтизатный раствор с низа АРФ выводили в линию деасфальтизатного раствора из Э-1 а. Для определения состава выходящих потоков использовали пробоотборники на выходе пропана и деасфальтизатного раствора, соответственно, с верха и низа АРФ. [c.53]

    Несомненный интерес представляет исследование М. А. Капе-люшникова [4], показавшего, что нефть при определенном критическом давлении можно перевести в газовое ( надкритическое ) состояние даже при комнатной температуре. Особенно благоприятные условия для перевода нефти в надкритическое состояние создаются в системах нефть—этилен, нефть—смесь низких гомологов метана (этан, пропан, бутан). Не переходят в критическое газовое состояние лишь наиболее высокомолекулярные компоненты — асфальтены и частично высокомолекулярные смолы. Снижение критического давления в системе нефть—газы или введение в эту систему некоторого количества метана сопровождается выпадением наиболее высокомолекулярной части нефти. В этих условиях фракционирование нефти идет в обратном, по сравнению с обычной перегонкой, направлении сначала выпадает наиболее тяжелая часть — асфальтены, затем смолы, высокомолекулярные углеводороды п т. д. Так как легкая часть нефтп вызывает резкое повышение значений критического давления, то лучше подвергать холодной перегонке — ретроградной конденсации — нефть, освобожденную от легколетучих компонентов. Эффективность метода ретроградной конденсации иллюстрируется данными, приведенными в табл. 78 [5]. При разделении отбензиненной ромашкинской нефти, содержащей 14,4% смол и 4,1% асфа.чьтенов, при 100° было получено 75% дистиллята, совсем не содержащего асфальтенов, и лишь 3,5% смол. 75% всех асфальтенов, содержащихся в отбензиненной нефти, было сконцентрировано в первых двух фракциях, составляющих 15% от исходного сырья. В настоящее [c.245]

    В справочнике Нефти СССР (тт. 1—4) приведены данные о содержании парафина в нефтях, полученные по методике ВНИИ НП. Согласно этой методике, определению также предшествует доасфальтизация, осуществляемая посредством обработки пефти (без перегонки) пропаном или петролейным эфиром. Навеску деасфальтированной нефти (2—3 г) растворяют в смеси из 65% (об.) бензола и 35% (< б.) ацетона из расчета 10 мл растворителя на 1 г навески (т. е. в 20—30 мл). При растворении нефть подогревают на водяной бане, после чего постепенно охлаждают раствор в охлаждающей смеси (до —21 °С) с последующим холодным фильтрованием для отделения выпавших парафинов. Затем парафины извлекают из фильтра, обогревая кожух воронки водой остатки ппрафинов смывают горячим бензолом. [c.59]

    Однако уже в 30-х годах текущего столетия в связи с получением бензина из природных газов и пропан-бутановых смесей возникла необходимость определения в составе газа индивидуальных компонентов — метана, этана, пропана и других. Метод общего анализа не мог этого дать. Д. Беррелем, М. Шефердом и Ф. Портером (США) в 1922—1923 гг. был разработан метод низкотемпературной фракционировки газа. [c.222]

    На рис. 5.6, а показано соотношение приведенных затрат на производство бензина при глубокой переработке нефти и сжиженного пропан-бутана, при которых применение этих топлив на автомобильном транспорте равноэффективно. Нижняя граница эффективного применения пропан-бутана начинается при приведенных затратах на добычу нефти от 40 руб/т. Для определения полных приведенных затрат на использование топлива в автомобильном транспорте к затратам на применение (для бензина 730 руб. и пропан-бутана — 752 руб.) добавляются соответствующие приведенные затраты на их производство (по данным рис. 5.6, 106 руб/т бензина и 84 руб/т пропан-бутана), в которые включены также издержки на транспорт, хранение и распределение топлив. [c.234]


Библиография для Пропан определение: [c.374]   
Смотреть страницы где упоминается термин Пропан определение: [c.126]    [c.216]    [c.180]    [c.255]    [c.62]    [c.470]    [c.202]    [c.205]    [c.52]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.1203 ]

Термохимические расчеты (1950) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Пропан

Пропанои



© 2025 chem21.info Реклама на сайте