Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бензол как растворитель в хроматографии

    Для полного разделения неуглеводородных и углеводородных компонентов и эффективного разделения двух основных составляющих неуглеводородной части нефтей, природных асфальтов и тяжелых нефтяных остатков (асфальтенов и смол), предложено большое число модификаций селективного растворения и осаждения с использованием разнообразных органических растворителей в комбинации с адсорбционной хроматографией. Одним из примеров такой модификации может служить предложенная М. Бестужевым [5] методика выделения асфальтенов из асфальта с последующим разделением их на фракции. В качестве растворителей были последовательно использованы н-гептан (горячий), циклогексан, смесь н-гептана с бензолом, диэтиловый эфир. Фракционирование завершалось хроматографическим разделением. [c.43]


    Для оценки растворителей в последние годы широко используется газожидкостная хроматография [95, 96]. Ее достоинства — простота, оперирование с малыми объемами веществ, экспрессность и вместе с тем надежность получаемых результатов (особенно для предварительной оценки растворителей). Методом хроматографии определены относительные летучести Ор бинарных смесей бензола с насыщенными углеводородами в присутствии различных соединений (табл. 42) [89]. В реальных условиях экстрактивной ректификации при конечных концентрациях растворителей аг, 1 будет составлять лишь 0,6—0,8 ар, определенной методом хроматографии в условиях, приближающихся к бесконечному разбавлению . Однако и в этом случае относительная летучесть для большинства компонентов будет не менее 1,5—2,0, что достаточно для удовлетворительного разделения смеси. Наиболее трудно выделить экстрактивной ректификацией метилциклогексан, который обладает наивысшей температурой кипения. [c.238]

    В работе [89] формулируются следующие требования к растворителям экстрактивной ректификации, обеспечивающие получение бензола с низким содержанием примесей, в том числе н-гептана и метилциклогексана (по данным хроматографии)  [c.239]

    Сорбционные свойства нефтяных пеков изучали методом обращенной газовой хроматографии на хроматографе марки ЛХМ-8МД с детектором по теплопроводности при температурах 30-50"С. В качестве органических растворителей использовали гексан, бензол, метанол, этанол, ацетон, которые моделируют определенные типы межмолекулярных взаимодействий. На пеках лучше адсорбируются спирты за счет образования водородных связей, бензол, так как проявляет специфическое сродство, обусловленное п-взаимодействием. [c.196]

    Применяемые в хроматографии органические растворители (петролейный эфир, четыреххлористый углерод, циклогексан, сероуглерод, эфир, ацетон, бензол, толуол, хлороформ, спирты, пиридин и органические кислоты) можно расположить в ряд по их способности адсорбироваться в колонке. Жидкости, находящиеся в начале этого ряда, вытесняются жидкостями, находящимися ниже. Чтобы хорошо разделить смесь веществ (т. е. получить хорошую хроматограмму) для этих веществ и для данного адсорбента, следует подобрать подходящий растворитель. Он не должен адсорбироваться слишком сильно, так как в этом случае растворенные вещества беспрепятственно пройдут, через колонку, но он не должен также адсорбироваться слишком слабо, так как в этом случае все растворенные вещества скопятся на самом верху колонки и, несмотря на последующее приливание большого количества чистого растворителя, будут лишь незначительно продвигаться вниз. Наиболее подходящий растворитель с промежуточными свойствами должен обеспечивать такое [c.53]


    Хроматография на полосках слоя кремниевой кислоты с 5% крахмала, растворитель — -гексан, не содержащий бензола, Rf= =0,62. [c.158]

    Хроматография пластинки Силуфол , система метанол — бензол — ледяная уксусная кислота (8 45 4), растворитель — ацетон / / = 0,91. [c.181]

    Хроматография пластинки Силуфол , система бензол — этил-ацетат— петролейный эфир (1 1 5), растворитель — ацетон. /=0,95. [c.251]

    Следует помнить, что при использовании апротонных растворителей трудно создать совершенно безводную среду. Остаточные количества воды, которые почти всегда находятся в сухом растворителе, могут влиять на результаты исследований. Воду из апротонных растворителей удаляют азеотропной перегонкой с бензолом или этанолом, с помощью молекулярных сит, сушкой над СаО, М 0, СаНг или КаН, пропусканием через колонку с оксидом алюминия. Для определения воды в органических растворителях обычно применяют метод Фишера. Однако он непригоден, если концентрация воды ниже 1 ммоль/л. Эффективность осушки растворителей определяют также с помощью газовой хроматографии и ИК-спектроскопии. [c.100]

    Обычно в хроматографии используют далеко не все растворители, перечисленные в табл. 28, а значительно меньшее число, образующее сокращенный элюотропный ряд, например петролейный эфир — бензол — диэтиловый эфир — этанол. [c.352]

    Дополнительную очистку концентрата осуществляли также на хроматографической колонке с последующей оценкой наличия в нем нафтеновых кислот методом тонкослойной хроматографии по методике, примененной для этих целей в работах [79, 68]. Концентрат пропускали через колонку с силикагелем марки Ь 100/160, активизированным в течение 6 ч при 180°С. Отбирали 40-50 фракций по 10 мл, элюируемые смесью селективных растворителей (бензол  [c.68]

    Обычно полярный растворитель (вода, спирт) фиксирован на твердом носителе — силикагеле, диатомите, целлюлозе, оксиде алюминия. Подвижной фазой в этом случае служат неполярные растворители — изооктан, бензол и др. Такие системы используют в нормально-фазовой распределительной хроматографии. [c.312]

    Ф эакцию 50—150° С подвергают адсорбционной хроматографии 1а силикагеле для разделения на ароматическую и парафино-нафт новую часть. (Берется силикагель, поглощающий на 100 г не менее 11 г бензола. Размер частиц адсорбента проходят через сито. № 40 и не проходят через сито № 80.) Фракцию ароматических углеводородов перегоняют на колонке № 3 — сначала для удаления пентана (или изопентана), добавленного при адсорбции в качестве смещающего растворителя. Для депентанизированной фракции определяют физические характеристики п , й , ани-линоьую точку). После этого фракцию перегоняют, причем снимают кривую перегонки и выделяют следующие фракции  [c.99]

    Сведений о термодинамике и кинетике процесса комплексообразования твердых парафиновых углеводородов с карбамидом мало. Влияние ряда факторов, в том числе расхода карбамида на скорость и глубину процесса комплексообразования, исследовано на смесях н-парафинов С18—С20 с чистотой 987о (по данным газожидкостной хроматографии). В качестве растворителя применяли бензол, в качестве активаторов—метанол и этанол. Степень извлечения н-парафина определяли по составу компонентов жидкой фазы, для чего использован показатель преломления бинарных смесей с различным содержанием н-парафина. На кинетических кривых зависимости содержания углеводорода в комплексе (на примере н-октадекана) от расхода карбамида (рис. 94, 95) можно выделить два участка, первый из которых характеризуется быстрым ростом С18 в комплексе, что соответствует начальному периоду процесса, а второй указывает на установление равновесного состояния и выражается прямой, параллельной оси абсцисс. [c.226]

    Авторами была исследована возможность применения метода ОГХ для изучения фазовых переходов в нефтяных пеках и особенностей их взаимодействия с органическими растворителями. Объектами исследования были нефтяной асфальтит, изотропный и анизотропный пиролизные пеки с температурой размягчения 140,185 и ЗОСГС, соответственно, и органические растворители - предельные углеводороды, бензол, спирты, альдегиды, кетоны, эфиры и карбоновые кислоты. Исследования проводились на хроматографе ЛХМ - 8 мД (катарометр при токе 100 мкА) при предварительно выбранных оптимальных условиях загрузка колонки - 12 г, зернистость пека - 0,2-0,5 мм, газ-носитель - гелий, продолжительность стабилизационной продувки - 8,64 10 с, скорость потока гелия - 50 mVmhh. [c.268]

    Колонка предварительно смачивалась пентаном. Сырье десятикратно разбавлялось пентаном. Проводился вариант элю-ентной хроматографии. В качестве элюентов применялись пен-тан, смеси пентана с бензолом (с постепенным повышением доли бензола), смесь этанола, диэтилового эфира и бензола, этанол. Подача растворителей осуществлялась автоматически с помощью лабораторного микронасоса МА-62 со скоростью 200 мл/ч. В связи с малым содержанием продуктов в элюатах, отгонка растворителей проводилась с дефлегматором 20—30 см. [c.26]


    Для правильного понимания и оценки глубины и направления химических превращений, происходящих в процессе перехода смол в асфальтены, необходимо было смолы разделить на фракции близкого химического состава. Методика такого разделения смол должна была гарантировать химическую неизменность содержащихся в сырых нефтях смол и давать надежные, хорошо воспроизводимые результаты. Наиболее удовлетворительные данные были получены с помощью метода вытеснительной хроматографии на силикагеле с применением набора растворителей для последовательного вытеснения различных фракций смол. Этот метод предложен Черножуковым и Тилюпо [И, 12]. Детально были исследованы природные смолы, выделенные из индивидуальных сырых нефтей различной химической природы. В качестве адсорбента применялся крупнопористый активированный силикагель определенной степени дробления. Адсорбированные на силикагеле смолы вытеснялись последовательным применением четыреххлористого углерода, бензола, спирто-бензольной смеси (1 1 об.) [c.50]

    Для более глубокой дифференциации высокомолекулярных углеводородов исследователи применили комплексную методику, позволяющую разделять сложные углеводородные смеси по типам структур молекул и получать более простые смеси, содержащие группы углеводородов, более близкие по строению и молекулярным весам. Сначала дистиллятные масляные фракции подвергали депарафинизации с применением трехкомпонентного избирательно действующего растворителя (бензол толуол ацетон = 40 20 40), обычно исследуемого при депарафинизации масел в заводском процессе их получения. Остаточные продукты сначала деасфальтизировали, а затем депарафинизировали. Освобожденная таким образом от парафиновых углеводородов фракция подвергалась дальнейшей дифференциации при помощи двух методов адсорбционной хроматографии и комплексообразования с карбамидом. Хроматография на силикагеле позволяет разделить углеводороды на три основные структурные группы (парафиново-циклопарафиновая и две фракции ароматических углеводородов). Комплексообразование с карбамидом позволяет выделить из смеси предельных структур углеводороды с достаточно длинными парафиновыми цепочками, способные образовать с карбамидом кристаллические комплексы. Твердые парафины, выделившиеся из петролатума в первой стадии, т. е. при его депарафинизации избирательно действующим растворителем, и составляющие около 2/з всего петролатума, далее не исследовались. [c.198]

    Тилюпо и Черножуков [47, 48] исследовали смолы грозненской беспарафиновой нефти, применив для разделения смолы на фракции метод хроматографии на силикагеле. Асфальтены осаждались петролейным эфиром, а смола извлекалась из адсорбента после предварительной отмывки углеводородной части в виде трех фракций при помощи последовательно применяемых избирательно действующих растворителей четыреххлористого углерода, бензола и ацетоно-бензольной смеси (1 3). [c.451]

    Колоночная адсорбционная хроматография на силикагеле или оксиде алюминия позволяет выделить концентрат гетероатомных соединений. Лишь небольшая часть 2—10 % общего их количества может остаться в углеводородной фракции. Для адсорбционного выделения гетероатомных соединений можно воспользоваться стеклянными хроматографическими колонками, объемное отношение адсорбента к разделяемому сырью от 1 10 до 5 1. При максимальном отношении адсорбента к сырью получают фракции алкано-циклоалкановых, моноцикло- и бициклоаренов, а также адсорбционные смолы (концентрат гетероатомных соединений). Во фракции адсорбционных смол сосредотачивается подавляющая часть серу-, азот- и кислородсодержащих соединений нефтяной фракции. Элюентом углеводородных фракций служит изопентан, петролейный эфир или бензол, десорбентом смол — спирто-бен- зольная смесь (1 1) и некоторые другие полярные растворители. Например, выделение концентрата гетероатомных соединений из прямогонной высокосернистой, высокосмолистой фракции 150— 325 °С арланской нефти осуществлялось с помощью стеклянных хроматографических колонок с восходящим током сырья при объемном соотношении адсорбента силикагеля ШСМ к разделяемой фракции 5 1 [183]. С уменьшением размера частиц силикагеля четкость разделения возрастает, однако скорость перемещения компонентов сырья и растворителей уменьшается, удлиняется время разделения. Оперативный контроль хроматографического процесса и определение группового состава фракции осуществляется по адсорбтограмме, построенной в координатах показатель преломления — массовый выход узких фракций . Показатель преломления отдельных хроматографических фракций и гетероатомных [c.82]

    При вытеснительной хроматографии десорбция осуществляется промывкой адсорбционной колонки каким-либо органическим растворителем, адсорбционная способность которого значительно выше, чем у любого компонента исследуемой смеси. В качестве таких вытеснителей применяют спирты, кетоны, эфиры, хлорорга-нические растворители, бензол, толуол и др. Возможно и последовательное применение различных десорбентов, особенно при хроматографировании высокомолекулярных продуктов. Так как проявитель (вытеснитель) обладает большой адсорбционной способностью, то он вытесняет с поверхности адсорбента последовательно все компоненты исследуемой смеси в порядке, обратном их энергии адсорбции. [c.58]

    Для разделения некоторых смесей нерастворимых в воде органических соединений целесообразно гидрофильную бумагу превратить в гидрофобную, Для этого бy aгy ацетилируют, обрабатывая 10 г бумаги смесью 9 мл уксусного ангидрида, 100 мл петролейного эфира и 8—10 капель концентрированной серной кислоты. После ацетили-рования бумагу пропитывают различными гидрофобными веществами (1%-ный раствор парафина в петролейном эфире, 0,5%-ный раствор каучука в бензоле и т. п.). Первостепенное значение для разделения смеси хроматографическим путем на бумаге имеет правильный выбор растворителей. В табл. 7 приведены подвижные фазы, наиболее часто применяемые в бумажной хроматографии для разделения смесей (неподвижная фаза—вода). [c.76]

    Наиболее удачным оказалось предложение применить в качестве носителя другой фторированный полимер — политетрафторэтилен (фторопласт-4, тефлон) [99]. Фторо-пласт-4 позволяет использовать практически любые органические растворители и любые водные растворы вследствие его исключительной химической стойкости. В этом его преимущество перед фторопластом-3, слипающимся в некоторых растворителях (хлороформ), и силиконированным силикагелем, который неустойчив в среде, содержащей фтористоводородную кислоту. Фторопласт-4 является одним из наиболее перспективных носителей для распределительной хроматографии с обращенной фазой. На нем был выполнен ряд разделений с использованием самых разнообразных растворителей ТБФ, диэтилового эфира, изоамилацетата, раствора теноилтрифторацетона (ТТА) в бензоле, алкилфосфорных кислот, TOA, циклогексанс-ла и др. [c.155]

    Советскими учеными проделан ряд работ по распределительно-хроматографическому выделению урана на сили-кагельных колонках. В. К. Марков [127] отмечает, что при правильном снаряжении колонки силикагелем, смоченным не водой, а подкисленным раствором высаливателя, и применении соответствующего подвижного растворителя, можно получить полное количественное отделение урана от сопутствующих элементов. При этом расход экстрагента значительно снижается по сравнению с разделением на целлюлозных колонках. Он предложил методику отделения урана от сопутствующих элементов при анализе руд на силикагеле с помощью диэтилового эфира. В работах других исследователей [128, 129] показана возможность отделения урана от плутония и ряда продуктов деления также на колонках с силикагелем. Известно также успешное применение распределительной хроматографии на силикагеле для разделения редкоземельных элементов с растворами теноилтрифторацетона (ТТА) в бензоле в качестве элюента [102]. [c.175]

    Применяют также смешанные растворители, например, 1 в. ч. метанола, 1 в. ч. бензола или гликоля, 1 в. ч. изонропанола, что облегчает условия титрования. Один растворитель берут с большой диэлектрической постоянной, другой — с малой. Это имеет значение и для распределительной хроматографии ( 173). [c.51]

    В фильтрате, полученном после отделения бисульфитного производного, должны остаться другие вещества нейтрального характера. Этот фильтрат исследуют методом тонкослойной хроматографии в незакрепленном слое окиси алюминия (см. стр. 31). Подбор растворителей для хроматографии производится эмпирпческп последовательным применением все более полярных растворителем (петролейный эфир, бензол, диэтиловый эфир, хлороформ, ацетон, этилацетат, этанол, вода). Если величина при применении одного из растворителей очень мала, а при использовании другого, напротив, очень велика, то берут смесь растворителей в этом случае желательно смешивать растворители, находящиеся по соседству в приведенном выше ряду (например, смесь петролейного Эфира и метанола). Следует, однако, отметить, что в некоторых Случаях хорошее разделение наблюдается при добавлении к хлороформу Метанола в количестве 1,2—5%, хотя эти соединения нахо- [c.243]

    УФ-Спектр — рис. 66. Хроматография пластинки Сн-луфол , система бензол — метанол (19 1), растворитель — ацетон. / /==0,52. [c.244]

    В двухгорлую колбу емкостью 0,25 л, снабженную мешалкой и хлоркальциевой трубкой, помещают 1,12 г (0,01 моль) 2-гидрокси-метил-1-метилимидазола и 75 мл абсолютного бензола. Смесь перемешивают 15 мин, прибавляют 4,6 г (0,05 моль) свежеприготовленного активного диоксида марганца (прим. 1), после чего продолжают перемешивание при комнатной температуре 5—6 ч. На следующий день диоксид марганца отфильтровывают и промывают бензолом (3X15 мл). Бензольный фильтрат упаривают досуха, остаток (0,9 г), представляющий собой смесь альдегида и небольшого количества исходного спирта, растворяют в 5 мл хлороформа и раст- %ор пропускают через стеклянный фильтр (диаметр 4—5 см), заполненный на 1 —1,5 см оксидом алюминия. Смесь элюируют хлороформом, собирая первую фракцию и следя за полнотой вымывания альдегида и его чистотой с помощью тонкослойной хроматографии. После испарения растворителя из элюата альдегид остается в виде масла, кристаллизующегося при растирании с петролейным эфиром (Т,, 35—40° С). Сушат его в эксикаторе над Р2О5. [c.128]

    Наилучшим органическим растворителем для эксклюзионной хроматографии синтетических полимеров по комплексу свойств является тетрагидрофуран. Он обладает уникальной растворяющей способностью, низкой вязкостью и токсичностью, лучше многих других растворителей совместим со стирол-дивинил-бензольными гелями и, как правило, обеспечивает высокую чувствительность детектирования при использовании рефрактометра или УФ-детекгора в области до 220 нм. Для анализа высокополярных и нерастворимых в тетрагидрофуране полимеров (полиамиды, полиакрилонитрил, полиэтилен-терефталат, полиуретаны и др.) обычно используют диметилформамид или м-крезол, а разделение полимеров низкой полярности, например различных каучуков и полисилок-санов, часто проводят в толуоле или хлороформе. Последний является также одним из лучших растворителей при работе с ИК-детектором. о-Дихлорбензол и 1,2,4-трихлор-бензол применяют для высокотемпературной хроматографии полиолефинов (обычно при 135 С), которые в других условиях не растворяются. Эти растворители имеют очень высокий показатель преломления, поэтому иногда их целесообразно использовать вместо тетрагидрофурана для анализа полимеров с низким коэффициентом преломления, что позволяет повысить чувствительность при детектировании рефрактометром. [c.47]

    Для предотвращения окисления растворителей и полужестких гелей в условиях высокотемпературной эксклюзионной хроматографии к о-дихлорбензолу и 1,2,4-трихлор-бензолу добавляют антиокислители — 1,3 г/л 2,6-ди-трет-бутил-4-метилфенола (алкофен БП, ионол) или 0,4 г/л 4,4 -тио-бис(6-трет-бутил-3-метилфенол) а (тиоалкофен БМ, сантонокс Р). [c.47]

    Витамин Аз (ликопин) имеет максимумы поглощения в видимой области спектра в петролейном эфире Хщах—443 471 503 [28] 446 470 500 нм [29]. при тонкослойной хроматографии (на окиси алюминия и подвижном растворителе — петролейный эфир бензол метанол 60 10 1)—0,21. [c.15]

    Для оценки чистоты р-монобутилитаконата попользован метод тонкослойной восходящей хроматографии на окиси алю- миния. Система растворителей 10 мл хлороформа -1-5 мл бензола. Проявление йодом. Обнаружено одно пятно с R, — = 0,10. [c.122]

    Существенный интерес представляет определение воды в сухом растворителе. Метод К- Фишера непригоден, если концентрация воды ниже 0,002% (1 ммоль/л). Для определения содержания воды в некоторых циклических сложных эфирах использовали метод газовой хроматографии [224], однако введение в хроматограф растворов электролитов приводит к накоплению солей в испарителе, а иногда и к неправильным результатам из-за термического разложения электролитов. Аналитическое определение воды при длине волны 1900 нм в ближней ИК-области спектра [225] можно применять для таких растворителей, как пропиленкарбонат, однако метод непригоден для многих обычно используемых растворителей. Описан [226] метод, осповаииый на реакции воды с тетраацетатом свинца в бензоле образующийся при этом диоксид свинца определяют спск-трофотометрически при длине волны 499 им в кювете (2 мл) можно обнаружить 2,5-10 % вещества. Метод применим для ряда растворителей, а также для некоторых растворов, обычно используемых в электрохимии. [c.200]

    К раствору 0.67 г (0.0023 моль) соединения 2 (полученного из изатина и 3,4-мети-лендиоксиацетофенона [1]) и 1 г (0.0023 моль) изохинолинового производного 1 (синтезирован в соответствии [2]) в 100 мл изопропанола и 20 мл ацетонитрила прибавляют по каплям в течение 45 мин 17.5 мл 1%-го раствора триметиламина в изопропаноле и перемешивают 2 ч. Растворитель упаривают при пониженном давлении. Продукт 3 очищают колоночной хроматографией (Florisil, 60-100 mesh, бензол-этилацетат 2 0.78). Выход 67%. 196-198°С. Структура 3 доказана [c.585]

    Большое значение имеют гели полиэлектролитов в ионообменной хроматографии (стр. 126). В этом случае обратимое набухание и сжатие ионита при обмене ионов регулируют количеством межцепных химических связей например, вводя 6, 10, 17 или 23% дивинил бензол а в поли-сульфостирол (см. рис. 44), можно регулировать набухание смолы и уменьшить объем геля, приходящийся на1 моль сульфогрупп, соответственно от 300 до 100, 70 или 50 мл одновременно изменяются среднее расстояние между ионогенными группами, их электростатическое взаимодействие и активность растворителя. Степень набухания определяет для ряда органических ионов интенсивность ионного взаимодействия и возможность проникновения в сетку геля и, тем самым, избирательность поглощения, что имеет большое значение для хроматографии. Избирательность поглощения обычно характеризуют коэффициентом избирательности [c.211]

    Смесь растворителей отгоняют в вакууме, оставшееся темное масло обрабатывают 250 мл эфира и 50 мл воды. Органическую фазу промывают 50 мл 2 М НС1, затем водой (3 х 100 мл), сушат над MgSO и после отгонки растворителя в вакууме получают 30,0 г (80%) пирролидина в виде бесцветного масла, достаточно чистого для дальнейшего использования (ГХ-контроль). Выделившийся неочишенный продукт кристаллизуется очень медленно (свыше 3-4 недель). Очистить его можно следующим образом раствор 8,00 г неочищенного пирролидина (М-26) в 60 мл сухого бензола (осторожно ) нагревают с 2,0 г P40io с обратным холодильником 30 мин. После декантации, отгонки растворителя и перекристаллизации (уже твердого) продукта из небольшого количества смеси бензол-н-гексан 1 1 получают 5,20 г хроматографи- [c.352]

    При изучении поведения иодидов натрия и других щелочных металлов методом распределительной тонкослойной хроматографии на силикагеле [843] найдены корреляции между величиной и ионным радиусом, свободной энергией гидратации или диэлектрической проницаемостью растворителя (нитробензол—бензол, нитробензол—СС14, нитрометан—бензол, нитрометан—СС14). Эти закономерности использованы для выбора условий разделения щелочных металлов методом тонкослойной хроматографии. [c.49]

    Предварительное разделение изомеров может быть осуще-ствлено фракционной перегонкой, так как изомеры, содержащий внутримолекулярные водородные связи (эпи- и алло-), кипят при значительно более низкой температуре (30—50° прн 0,001 — 0,002 мм рт. ст.), чем остальные два изомера (60—80° при 0,001—0,02 мм рт. ст.). Для дальнейшего разделения и очистки можно использовать метод хроматографии. Мы применяли окнсь алюминия в качестве адсорбента и бензол с возрастающими количествами метилового спирта или эфира в качестве растворителя для вымывания контроль за разделением изомеров осуше ствляли по инфракрасным спектрам. Таким образом, для разделения изомерных мускаринов можно использовать их тонкие стереохимические особенности и присутствие или отсутствие внутримолекулярных водородных связей.  [c.453]


Смотреть страницы где упоминается термин Бензол как растворитель в хроматографии: [c.113]    [c.101]    [c.214]    [c.337]    [c.206]    [c.163]    [c.155]    [c.28]    [c.81]    [c.253]    [c.42]    [c.86]   
Хроматография полимеров (1978) -- [ c.77 ]




ПОИСК





Смотрите так же термины и статьи:

Хроматографы растворитель



© 2025 chem21.info Реклама на сайте