Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кобальт от металлов на катионитах

    Аналогичная методика описана и для отделения кобальта н катионов других двухвалентных металлов от галлия и индия [248], от титана, циркония и тория [247]. Во всех этих случаях практически не наблюдается соосаждение двухвалентных металлов с гидроокисями высоковалентных. металлов. [c.72]

    Разработан метод [582] титрования кобальта раствором едкого натра в присутствии тимолфталеина. Метод применим после отделения кобальта от катионов других металлов. [c.132]


    Изотермы адсорбции веществ различной природы в случае переходных металлов (железо, никель, кобальт) часто линейны в координатах 6 — lg , что соответствует изотерме Темкина. Она выводится из представления о линейном снижении энергии адсорбции с ростом степени заполнения. Это снижение для специфической адсорбции или хемосорбции легко объясняется с позиций модели поверхностного электронного газа [22] и роли вакансий в -зоне при адсорбционном взаимодействии [46]. При физическом характере адсорбции на переходных металлах (катионы органических аммониевых соединений) также выполняется изотерма Темкина. Однако линейность изотермы в координатах 0 — lg может соответствовать и выполнению изотермы Фрумкина, так что графическим анализом, без дополнительных критериев [42], выбор между неоднородностью поверхности (изотерма Темкина) и отталкиванием в адсорбционном слое (изотерма Фрумкина) не может быть сделан достаточно достоверно. [c.36]

    Нормальные окислительно-восстановительные потенциалы всех металлов катионов третьей группы имеют отрицательные значения. Поэтому все металлы, ионы которых относятся к третьей аналитической группе, растворяются в разбавленных кислотах. Легче растворяются алюминий, титан, марганец и цинк, труднее — никель и кобальт. Алюминий и цинк, кроме того, легко растворяются в щелочах. [c.105]

    Один и тот же центр может выполнять несколько функций, в частности таким свойством обладают анионные центры, участвующие не только в анионном обмене, но в адсорбции и электронном обмене. Работа некоторых катионных центров связана с изменением валентности катиона (например, Си+ч= Си +), и это позволяет им активно участвовать в процессах адсорбции и электронного обмена по окислительно-восстановительному механизму [5]. Наибольшей каталитической активностью обладают соли металлов переменной валентности (кобальта, марганца, железа, никеля, хрома, серебра, меди), действующие по описанному механизму (см. гл. 2). [c.196]

    Многие соединения платины, кобальта и других переходных металлов имеют необычные эмпирические формулы и часто ярко окрашены. Они называются координационными соединениями. Их главным отличительным признаком является наличие двух, четырех, пяти, шести, а иногда большего числа химических групп, расположенных геометрически правильно вокруг иона металла. Такими группами могут быть нейтральные молекулы, катионы или анионы. Каждая группа может представлять собой независимую структурную единицу, но нередки и такие случаи, когда все группы связаны в одну длинную, гибкую молекулу, свернувшуюся вокруг атома металла. Координированные группы сушественно изменяют химические свойства металла. Окраска таких соединений позволяет судить об их электронных энергетических уровнях. [c.205]


    Было выяснено, что гидролизованные катионы металлов лучше всего извлекаются из нитратных сред, плохо из сульфатных. Из нитратных сред хорошо извлекаются висмут (П1), железо (Н1), медь, кобальт, цинк, никель, хуже цирконий и гафний. Состав экстрагируемых комплексов был установлен, как непосредственным химическим анализом, так и методом сдвига равновесия. [c.41]

    Двойные фосфорнокислые соли аммония и двухвалентных металлов образуются при осаждении в аналогичных условиях цинка, марганца, кадмия, кобальта и некоторых других катионов. Все они при прокаливании также образуют пирофосфорнокислые соли. Поэтому метод осаждения фосфорнокислых солей может быть применен для определения перечисленных элементов. Различие заключается в том, что фосфорнокислые соли кадмия, цинка и кобальта растворимы в избытке гидроокиси аммония с образованием комплексных аммиакатов. Поэтому при осаждении их необходимо строго соблюдать определенную концентрацию водородных ионов и не приливать большого избытка гидроокиси аммония. [c.167]

    Ферроцен — родоначальник сэндвичевых соединений — многочисленных денов , в которых роль центрального атома играют катионы кобальта, рутения, осмия и других металлов. [c.142]

    Характерной особенностью сульфидов является их цвет. Сульфиды щелочных и щелочноземельных металлов бесцветны, сульфиды тяжелых металлов окрашены в различные цвета, например, сульфиды железа, кобальта, никеля, серебра, ртути, свинца, висмута окрашены в буро-черный цвет, цинка и германия — в белый, марганца — в телесный, кадмия, олова и мышьяка — в желтый, сурьмы — в оранжевый. Этим пользуются в аналитической химии для распознавания отдельных катионов в растворах солей. [c.566]

    Катионит применяют для очистки антибиотиков и рассолов. Катионит отличается повышенным сродством к поливалентным катионам, поэтому его используют для извлечения из промышленных вод кобальта, никеля и других металлов, а также для очистки рассола от солей кальция, магния и других ионов в содовом и хлорном производствах. [c.294]

    Если перл, полученный как в окислительном, так и в восстановительном пламени газовой горелки, прозрачен и бесцветен в нагретом и охлажденном состоянии, то это указывает на отсутствие в исходном анализируемом образце катионов меди, серебра, сурьмы, висмута, титана, ванадия, хрома, молибдена, вольфрама, урана, марганца, железа, кобальта, никеля. Возможно, однако, присутствие катионов щелочных металлов, кальция, магния, цинка, кадмия, алюминия, свинца, олова. Если охлажденные перлы — белые (имеют вид белой эмали), то возможно присутствие в исходном анализируемом образце небольших количеств стронция или бария. [c.506]

    В 74 описаны катионы металлов, которые образуют сульфиды MeS, выделяемые в аммиачной среде (3-я группа катионов сероводородного метода — подгруппа сульфидов) MnS, FeS, oS, NiS, ZnS. Для них Ig I / = 2,3—2,4. В 83—86 элементы расположены в порядке следования по периодической системе. Медь и кадмий обнаруживают сходство с кобальтом и никелем, образуя устойчивые аммиакаты (6-я группа кислотно-щелочного метода). Хром обнаруживает сходство с алюминием и цинком (4-я группа кислотно-щелочного метода). Этому соответствует и сходство сульфидов цинка и меди, так как сульфид цинка может выпадать и в кислой среде. Однако цинк как осаждаемый в щелочной среде выделяется раньше меди, осаждаемой в виде сульфида меди, и меди, выделяемой в виде аммиаката. [c.155]

    Высокозарядные ионы металлов способны восстанавливаться ступенчато и давать несколько полярографических волн. Это характерно, например, для анионов хромата, молибдата, вольфрамата, ванадата, катионов железа (П1), кобальта и др. На рис. 25.8 показано восстановление хромат-ионов в растворе гидроксида аммония. Первая волна соответствует восстановлению хромат-ионов до хрома (П1), вторая — переходу хрома(И1) в хром (И). Высшая степень окисления образует волну при более положительном потенциале, чем средняя (или низшая) степень окисления. Это явление иногда используют для устранения влияния посторонних ионов. Так, никель (И восстанавливается легче кобальта (И) и мешает определению последнего. В этом случае можно сначала окислить кобальт до трехвалентного, например пероксидом водорода в аммиачном растворе. Полярогра- [c.502]

    Электролиз с растворимым анодом. Иногда электролиз проводят с электродами из металлов, которые в ходе процесса могут окисляться (растворяться). В качестве таких электродов-металлов используются, например, медь, никель, кобальт, кадмий, олово. В этом случае на аноде происходит окисление металла, а процесс на катоде протекает так же, как и при электролизе растворов с инертными анодами. Следует только учитывать возможность появления в растворе новых катионов при окислении анода. [c.214]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]


    Некоторые ионы вызывают появление осадков или мути, мешающих открытию кобальта. Так, ионы элементов Ад, РЬ, В1, У(Уз+), А1, 2г и щелочных земель образуют желтую или буроватую муть ионы иОг и Се + образуют осадки бурого цвета ионы Нд+, Т1 + и N 2 образуют буро-красные осадки и, наконец, ион Нд2+ образует красный осадок, почти идентичный с осадком кобальта. Ионы Си + образуют обильный буро-черный за-темняк>щий все осадок. Так же реагируют ионы железа двухвалентное железо дает зелено-черный, а трехзалентное бурочерный осадок. Катион трехвалентного железа может быть маскирован фторидом щелочного. металла (катион двухвалентного железа следует предварительно окислить перекисью водорода или азотной кислотой). [c.160]

    Окраска является отличительным свойством координационных соединений переходных металлов. Октаэдрические комплексы кобальта могут иметь самую различную окраску в зависимости от того, какие группы координированы вокруг атома этого металла (табл. 20-2). Такие координирующиеся группы называются /шгандами. В растворах окраска обусловлена ассоциацией молекул растворителя, выступающих в роли лигандов, с металлом, а не свойствами самого катиона металла. В концентрированной серной кислоте (сильный обезвоживающий агент) ионы Си" бесцветны в воде они имеют аквамариновую окраску, а в жидком аммиаке — темную ультрамариновую. Комплексы металлов с высокими степенями окисления обладают яркой окраской, если они поглощают энергию в видимой части спектра СгО -ярко-желтой, а МПО4-ярко-пурпурной. [c.206]

    Возвращаясь к координационным соединениям, заметим, что соединение Си(ЫНз)4804 растворяется в воде, а uiNHj) реагирует с разбавленной кислотой с образованием NH4+ и Си(Н20) +, как только будут смещаны эти растворы. В отличие от этого Со(ЫНз)бС1з можно нагревать в концентрированной серной кислоте, в. результате чего вьщеляется газообразный НО и образуется комплекс [ o(NH3)g "]2(SOr)3 и при этом связи между Со и NH3 не разрываются. Комплекс меди является лабильным, а комплекс кобальта-инертным. Трехзарядные катионы металлов с щестью -элекфонами образуют особенно инертные комплексы эти комплексы также чрезвычайно устойчивы в термодинамическом смысле. [c.214]

    Известно, что кобальт относится к переходным металлам с переменной валентностью в некоторы.ч соединениях он двухвалентен (например, 0 I2, oS), а чаще — трехвалентен. Для соединений кобальта (III) характерно образование комплексных катионов и анионов с координационным числом 6, в которые входят нейтральные молекулы или анионы, имеющие атомы с неподеленными парами электронов. К таким соединениям относятся [Со(МНз)б]С1з, Ыаз[Со(Ы02)б], [Со (NHs)4 (Н2О) 2ЬХ X (504)3, Кз[Со(СЫ)б] и другие. [c.303]

    Нитрат-ионы можно определять прямым спектрофотометрическим методом, измеряя оптическую плотность раствора при длине волны 302 нм. Определению мешают ионы поливалентных металлов [медь(И), свинец(Л), кобальт(П), барий(П), кальций(П) и др.]. Катионы металлов отделяют пропусканием анализируемого раствора через колонку с Н-катионитом. В результате ионного обмена 2RH + Ме + НгМе + 2Н - в раствор переходит эквивалентное количество ионов водорода, причем образовавшиеся кислоты (H I, H2SO1, H IO4) не мешают определению нитрат-ионов указанным методом. Если в растворе находились только нитраты, то после катионирования их можно определить рН-метрическим титрованием азотной кислоты. [c.323]

    Циклопентадиенильный анион образует с катионами таких металлов, как железо, кобальт и др., интересные соединения. Одним из таких веществ, обладающих ароматическими свойствами, является ферроцен (бициклопентадиенилжелезо). Он относится к органическим производным переходных элементов. Ферроцен имеет сандвичевую ( бутербродную ) структуру два цнклопентадие-нильных кольца заключают между собой атом двухвалентного железа. Вся эта система связывается единой молекулярной орбиталью обобществленных электронов  [c.336]

    Из таблицы видно, что аналитические группы ионов занимают определенные участки в периодической системе элементов. Наибольшее совпадение между группами периодической системы и аналитическими группами отмечается у I и II аналитических групп первая аналитическая группа (без Mg +) соответствует группе IA щелочных металлов, а вторая — подгруппе щелочно-земельных металлов, входящих в группу ИА. Наиболее многочисленная III аналитическая группа включает в себя катионы элементов групп IIIА и IIIB, а также лантаноидов, актиноидов и ряда других переходных металлов, например хрома, марганца, железа, кобальта, никеля, цинка. При этом часть ионов III аналитической группы — Zn +, [c.230]

    Обычно при образовании сэндвичевых соединений как акцептором л-электронов лиганда, так и источником дативных электронов, акцептируемых л -орбиталями лиганда, является -под-уровень металла. Поэтому желательно, чтобы в нем отсутствовало не менее двух электронов и присутствовал хотя бы один. Неизвестны сэндвичевые л-комплексы для элементов подгрупп цинка и меди, а в подгруппах никеля и кобальта — со степенью окисления металлов О и + 1 (правда, сообщалось о синтезе бистолуол-кобальта, устойчивого до —90 °С, обнаруженного по ИК-спект-рам). При том способе подсчета валентных электронов, который был применен выше, в ферроцене и дибензолхроме их 18. Это число довольно типично для комплексов с сэндвичевой структурой. Однако известны сэндвичи и с меньшим, и с большим числом валентных электронов у феррициний-катиона их 17, у ко-балтоцена и никелоцена 19 и 20 соответственно. [c.116]

    Наиболее простыми из металлических катионных комплексов являются такие, которые содержат только нейтральные и притом одинаковые лиганды. Особенно хорошо известны из таких комплексных катионов аквакомплексы и амминкомплексы, содержащ,ие в качестве лигандов соответственно молекулы воды и аммиака. Аквакомплексы называют иногда кристаллогидратами, а амминкомплексы — аммиакатами. Число молекул воды или аммиака в комплексе определяется координационным числом металлического комплексообразователя. Аква- и амминкомплексы образуют преимущественно двух- и трехзарядные ионы металлов В-групп. Они получаются при взаимодействии простых солей соответствующих металлов с водой или аммиаком. Так, например, при растворении безводного хлорида кобальта (И) в воде происходит реакция [c.23]

    На первой стадии при обжиге арсеиид-сульфидного сырья кобальт переходит в окисел (с примесью окислов других металлов), а мышьяк и серу отгоняют в форме АззОз и ЗОг. Затем следует обработка смеси окислов соляной кислотой, чтобы перевести кобальт и сопутствующие металлы в раствор в виде хлоридов. Для отделения железа через раствор пропускают С1з (переход Ре (П)->Ре (1П)), а затем нейтрализуют его карбонатом Са. В результате выпадает осадок гидроокиси железа (П1), а также его основных хлоридов. На следующей стадии процесса происходит повышение pH и селективное (избирательное) окисление белильной известью Со (И) (но не N1 (П)) до трехвалентного состояния. При этом iNi + и другие двухзарядные катионы остаются в растворе, а кобальт образует осадок малорастворимой гидроокиси Со(ОН)з  [c.137]

    Хроматографические методы занимают особое место среди физико-химических методов анализа, являясь прежде всего универсальным способом разделения элементов. Они выгодно отличаются от всех других известных методов разделения высокой специфичностью (избирательностью действия), позволяют осуществить разделение весьма близких по свойствам неорганических или органических веществ. Так, например, хроматографическим путем разделяют смеси катионов металлов щелочной группы, щелочноземельных металлов, редкоземельных элементов, элементов-двойников, таких как цирконий и гафний разделяют смеси геометрически изомерных комплексных соединений (например, цис-транс-язомерных комплексов платины или кобальта) отделяют микроколичества трансплутониевых элементов от основной массы урана или плутония, а также от продуктов деления разделяют смеси анионов галидов, кислородных кислот галогенов, фосфорных кислот, аминокислот, смеси органических соединений, являющихся пред- [c.9]

    Энергетическая ширина 45-зоны составляет около 10 эВ, причем в ней на атом металла приходится всего два электрона. Ширина З -зопы меньше (для никеля 2,8 эВ), но число электронов в ней, конечно, больше, — именно максимум десять на атом. Электропроводность металлов в основном обусловлена электронами 4s-зоны. Перекрывание этих двух зон в оксидах меньше, чем в металлах, и даже может и вовсе не иметь места. В этом случае электропроводность обусловлена только электронами З -зоны. Наконец, могут быть случаи, когда эта зона становится настолько узкой, что можно говорить о фиксации всех электронов на соответствующих катионах решетки. Оксид в этом случае становится диэлектриком. Замечательно, что совершенно чистые и бездефектные кристаллы оксидов хрома (III), марганца (III), железа (111), кобальта (И), никеля (II) и меди (II) тока не проводят — их удельное сопротивление достигает 10 ° Ом-см. Проводимость появляется, если в кристаллах содержатся примеси. [c.288]

    Так, с помощью арсеназо I можно определять уранши.ную группу иО ", катионы кальщм Са ", бериллия Ве ", меди Си ", кобальта Со ", никеля КР", алюминия А1 ", редкоземельных металлов, титан(Ш), щфконий(1У), [c.227]

    Примером использования избирательной адсорбции может служить концентрирование микроколичеств катионов металлов, содержащихся в воде (водопроводная вода, вода природных водоемов и т. д.), на активированном угле с последующим определением их содержания. Для этого к достаточно большому объему анализируемой воды (-1 л) прибавляют аммиачный буфер до pH 8—9 и 8-оксихинолин (раствор в ацетоне), который образует относительно прочные оксихинолинатные комплексы с катионами металлов, присутствующих в микроколичествах в анализируемой воде (ионы меди, цинка, кадмия, ртути, алюминия, свинца, хрома, марганца, железа, кобальта, никеля и др.). Затем воду пропускают через активированный уголь, находящийся на фильтре. При фильтровании оксихинолинатные комплексы металлов практически количественно адсорбируются на активированном угле (коэффициент концентрирования равен -Ю ), из которого они могут быть десорбированы обработкой небольшим объемом раствора азотной кислоты НМОз (около 10 мл). В полученном азотнокислом концентрате можно определить содержание указанных металлов различными методами (например, оптическими). [c.236]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Для катионов с недостроенной -о(5олочкой характерно образование комплексов двух типов. Одни из них, а именно двухзарядные катионы элементов четвертого периода, образуют обычные так называе.мые лабильные комплексы, у которых равновесие между частицами в растворе устанавливается очень быстро, как и у рассмотренных выше комплексов катионов с оболочкой типа инертного газа. Трехзарядные катионы платиновых металлов, хрома и кобальта часто образуют стабильные комплексы. Стабильность в данном случае — это не термодинамическая устойчивость, а кинетическая инертность, вследствие чего находящиеся в растворе комплексы сущестиуют в неравновесном состоянии. Истинное равновесие устанавливается нередко очень медленно, в течение нескольких суток или месяцев. Поэтому констангы устойчивости комплексов этой группы металлов определены только для небольшого числа соединений, что затрудняет выяснение закономерностей устойчивости. В дальнейшем будут рассмотрены только комплексы элементов четвертого периода, а именно комплексы катионов марганца, железа, кобальта, никеля, меди и цинка. [c.249]

    Сведения о возможности селективного разделения катионов металлов из таких растворов в технической литературе немногочисленны. Однакав гидрометаллургии цветных металлов используют различные приемы разделения элементов отделяют медь от других цветных металлов, медь и кадмий — от цинка, кадмий — от цинка, кобальт — от никеля и т. п. [c.108]

    Цеолиты являются хорошими катионообменниками, что дает возможность вводить в их состав катионы самых различных металлов, в том числе и переходных, обладающих, как известно, высокой каталитической активностью в реакциях окислительно-восстановительного типа. Это направление катализа на цеолитах, а именно применение цеолитов, содержащих ионы и атомы переходных металлов, в качестве катализаторов окислительно-восстановительных реакций, начало развиваться в конце б0-х - начале 70-х годов. Рогинский и соавт. [22] первыми показали, чго цеолиты, содержащие ионы меди, хрома, железа, кобальта, марганца или никеля, проявляют высокую активность в окислении водорода,оксида углерода, этилена и аммиака. В последующие годы зто направление катализа на цеолитах интенсивно развивалось как у нас в стране, так и за рубежом, в результате чего были достигнуты определенные успехи. Однако следует отметить, что окислите-льно-восстановительные реакции, в отличие от реакций кислотночкновного типа, на цеолитных катализаторах исследованы в меньшей степени. Следствием этого, по-видимому, является отсутствие внедренных в промьпилен-ность цеолитных катализаторов для данного типа процессов. Поэтому не все возможности здесь еще исчерпаны и исследования в данной области являются актуальными и перспективными. [c.6]


Смотреть страницы где упоминается термин Кобальт от металлов на катионитах: [c.105]    [c.223]    [c.97]    [c.196]    [c.77]    [c.96]    [c.193]    [c.438]    [c.454]    [c.551]    [c.551]    [c.576]    [c.9]    [c.149]    [c.519]    [c.56]    [c.111]   
Ионообменные разделения в аналитической химии (1966) -- [ c.35 , c.365 ]




ПОИСК





Смотрите так же термины и статьи:

Катионы металлов



© 2025 chem21.info Реклама на сайте