Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Карбоксильная полипептидной цепи

    Ферменты — это очень сложные соединения, и до сих пор детально изучены механизмы действия лишь некоторых из них. Именно поэтому возникает необходимость в модельных системах. К функциональным группам полипептидных цепей, участвующим обычно в каталитических процессах, относятся имидазольный остаток, алифатические и ароматические гидроксильные группы, карбоксильные группы, сульфгидрильные группы и аминогруппы. [c.264]


    Отметим общие черты синтеза полипептидов на различных полимерах. Полимер, играющий в этом синтезе роль матрицы, имеет функциональные группы, способные реагировать с аминокислотами, присоединяя к себе их остатки ковалентной связью, а также функциональные группы, влияющие на прочность этой связи. Он представляет собой пористое твердое тело, набухающее в водных растворах, что увеличивает вместимость его пор, в которых должны помещаться синтезируемые цепи полипептидов. Чтобы избежать ограничений, зависящих от объема пор, синтез полипептидов проводят на линейных полимерах в растворе. В результате реакции молекул аминокислоты с функциональными группами полимера на его поверхности происходит ориентированная укладка присоединяющихся пептидов таким образом, что наружу обращены все карбоксильные или все аминогруппы. Входя в состав твердого вещества, полипептидные цепи приобретают [c.192]

    По своей природе каждое звено — остаток одной нз аминокислот. Они образуют полипептидные цепи, из которых каждая содержит десятки и даже сотни остатков различных амииокислот. Все другие аминокислоты, входящие в состав белка, относятся к а-аминокислотам, у которых аминогруппа ЫНг связана с тем же атомом углерода, с которым связана и карбоксильная группа СООН. Все -аминокислоты (за исключением гетероциклических) могут быть выражены общей формулой [c.337]

    В пространстве закрученная в спираль полипептидная цепь образует третичную структуру белка (рис. 3). Она поддерживается взаимодействием разных функциональных групп полипептидной цепи. Так, например, между атомами серы часто образуется дисульфидный мостик (—5—8—), между карбоксильной группой и гидроксильной группой имеется сложноэфирный мостик, а между карбоксильной группой и аминогруппой может возникнуть солевой мостик. Для этой структуры характерны и водородные связи. Третичная структура белка во многом обусловливает специфическую биологическую активность белковой молекулы. [c.19]

    Для синтеза природных полипептидных цепей со строго заданной последовательностью аминокислотных остатков необходим многоступенчатый синтез, в котором число стадий конденсации равно степени полимеризации получаемого полипептида Р. Так как для направленного синтеза необходимо, чтобы вводимая аминокислота прореагировала только с другой заданной аминокислотой или пептидом, то она должна быть монофункциональна и соответственно одна из групп — амино- ли карбоксильная группа — должна быть защищена определенной группировкой, которая перед проведением следующей ступени синтеза может быть достаточно легко снята без разрыва пептидной связи. В упрощенном виде пептидный синтез может быть представлен следующей схемой  [c.380]


    После удаления Ы-защитной группы наращивание полипептидной цепи проводят стандартными методами пептидного синтеза в р-ре (см. Пептиды). В качестве конденсирующих агентов наиб, часто используют карбодиимиды или предварительно превращают аминокислоты в активир, эфиры. При синтезе олигонуклеотидов в качестве Н, используют макропористые стекла или силикагель. Якорной группой служит карбоксильная группа, отделенная от пов-стн Н. спец, ножкой , напр,  [c.504]

    Тот факт, что белки являются многовалентными кислотами и основаниями, определяет важное свойство их структуры. Значения рК кислотных групп в белках приведены в табл. 20,1. Значение р/С данной группы в белке меняется в широком диапазоне из-за влияния соседних частей белка, а также из-за электростатического действия зарядов на остаток молекулы белка. Если суммарный заряд молекулы белка положителен, как это имеет место в ряде кислотных растворов, то протону легче выйти из кислотной группы, и значения р/С понижаются. Если же суммарный заряд отрицателен, как в случае некоторых щелочных растворов, то протону труднее выйти из кислотной группы, и значения рК повышаются. Вследствие этого кривая титрования белка может быть более крутой, чем кривые титрования аминокислотных цепей. На каждом конце полипептидной цепи будет находиться а-карбоксильная или а-ами-ногруппа. Добавочные электрические заряды — это результат связывания ионов белком. В изоэлектрической точке число положительных зарядов равно числу отрицательных зарядов, так что в приложенном электрическом поле белок не движется. [c.602]

    Последовательность, в которой соединяются мономерные звенья при полимеризации 100 и более аминокислот, представляет собой первичную структуру белков. Мономерные звенья цепи называются аминокислотными остатками — в ходе полимеризации каждая аминокислота теряет молекулу НгО. Полипептидная цепь обычно имеет одну свободную аминогруппу на одном конце цепи и свободную карбоксильную группу — на другом. Однако иногда эти группы связываются одна с другой, что приводит к образованию циклического пептида. Пептиды называются в соответствии с составляющими их аминокислотными остатками, начиная от остатка, несущего концевую аминогруппу. Так, Е-аланил-Е-ва-лил-Е-метионин представляет собой пептид со следующей структурой  [c.84]

    Удивительно простая идея этого нового метода синтеза состоит в том, что аминокислота закрепляется через свою карбоксильную группу на нерастворимом легко фильтруемом полимере, и затем пептидная цепь постепенно наращивается с С-конца. Для этой цели К-замещенные аминокислоты вводят в реакцию с реакционноспособными группами полимерной смолы. С аминокислоты, ковалентно соединенной с полимерной частицей, удаляется Ы-защитная группа, и полученный аминоацильный полимер реагирует со следующей Ы-защищенной аминокислотой. Пептидная цепь ступенчато наращивается на полимерной матрице. На последней стадии синтеза Меррифилда расщепляется ковалентная связь между С-концевой аминокислотой построенной полипептидной цепи и якорной группировкой полимерного носителя. Нерастворимый носитель может быть отделен от находящегося в растворе полипептида простым фильтрованием. Решающее преимущество метода Меррифилда состоит в том, что избегают трудоемких и требующих много времени операций по очистке промежуточных продуктов. Ценный продукт реакции все время остается прикрепленным к полимерному носителю, в то время как избытки реагентов и побочные продукты удаляются фильтрованием. Простота эксперимента и возможность автоматизации привели сначала даже к мнению, что благодаря этой новой синтетической концепции будет, наконец, решена проблема химического синтеза ферментов и других белков. Однако после подробного изучения и интенсивной разработки этой новой техники синтеза были выявлены серьезные лимитирующие факторы, которые впоследствии привели к реалистической Оценке этого метода. Конечно, сведение трудных стадий высаживания и очистки при обычных методах в растворе к простому процессу фильтрования в твердофазном синтезе уже означает неоспоримое преимущество. [c.179]

    Полипептидные цепи состоят из аминокислот, соединенных между собой пептидными связями, т. е. связями между а-ами-ногруппами и а-карбоксильными группами. Существуют открытые, циклические й разветвленные полипептидные цепи. Как правило, открытые полипептидные цепи имеют на од ном. конце свободную а-аминогруппу, а на другом свободную а-карбоксильную группу, которые могут быть обнаружены различными методами определения концевых групп [114, 277, 320]. В разветвленной полипептидной цепи одна из групп в зависимости от характера разветвления может отсутствовать. Большая часть белков представляет собой соединения с открытой цепью [265, 277]. [c.167]


    Рассмотрим механизм действия фермента и основные стадии ферментативного катализа на примере очень хорошо изученного фермента, химо-трипсина. Это - гидролаза, а точнее - эндопептидаза, расщепляющая такие пептидные связи внутри полипептидной цепи белка, в образовании которых участвует карбоксильная группа ароматических аминокислот. [c.30]

    Общая стратегия определения первичной структуры белка включает несколько этапов. Необходимо (а) провести количественный анализ гидролизата для того, чтобы определить мольное соотнощение имеющихся аминокислот (см. разд. 23.3.2) (б) определить молекулярную массу с помощью подходящего физического метода для того, чтобы вычислить количество всех присутствующих аминокислотных остатков [I—3] (в) определить количество входящих в молекулу полипептидных цепей либо с помощью хроматографического или электрофоретического разделения, либо посредством количественного анализа остатков, содержащих аминогруппу (JV-конец) и карбоксильную группу (С-конец) (см. разд. 23.3.4)  [c.256]

    Три основные подхода к созданию полипептидной цепи показаны на схеме (55), части (а) — (в). Первый подход, состоящий в постепенном наращивании со стороны концевой аминогруппы участок (а) на схеме , применяется редко, хотя он и имеет прямую аналогию с биосинтезом белка. Он включает удаление защиты карбоксигруппы и активирование концевой карбоксигруппы пептида. Этот подход, следовательно, делает максимальной возможность рацемизации и других возможных побочных реакций, затрагивающих активированный пептид. Противоположный процесс, т. е. ступенчатое наращивание со стороны концевой карбоксильной груп- [c.408]

    Иммуноглобулины, или антитела, синтезируются В-лимфоцитами или образующимися из них плазматическими клетками. Известно 5 классов иммуноглобулинов IgG, IgA, IgM, IgD и IgE, при этом IgG, IgA и IgM — основные классы IgD и IgE —минорные классы иммуноглобулинов плазмы человека. Молекула иммуноглобулина состоит из двух идентичных пар полипептидных цепей. Каждая пара в свою очередь состоит из двух разных цепей легкой (L) и тяжелой (Н). Иными словами, молекула иммуноглобулинов состоит из двух легких (L) цепей (мол. масса 23000) и двух тяжелых (Н) цепей (мол. масса 53000—75000), образующих тетрамер (L,H,) при помощи дисульфидных связей (рис. 17.2). Каждая цепь разделена (может быть, несколько условно) на специфические домены, или участки, имеющие определенное структурное и функциональное значение. Половину легкой цепи, включающую карбоксильный конец, называют константной областью ( J, а N-концевую половину легкой цепи —вариабельной областью (VJ. [c.571]

    Группа Летсингера и Клотца разработала недавно метод синтеза иеитидов с использованием матриц этот метод напоминает природный механизм синтеза на рибосомах (рис. 2.1). В методе используются полимерный носитель и полинуклеотидная матрица, но отсутствует необходимость, как и в природных системах, временно защищать аминокислоты для образования правильных связей. Такой подход назван методом комплементарного носителя (рис. 2.5). Растущая полипептидная цепь связана концевой карбоксильной группой с 5 -ОН-группой олигонуклеотида эфирной связью. Новая поступающая аминокислота также присоединена эфирной связью, но с З -ОН-групной второго олигонуклеотида. [c.65]

    Число возможных вариантов еще более возрастет, если учесть, что полипептидные цепи способны замыкаться в циклы. Го моде т-циклические полипептиды получаются в результате образования пептидной связи между концевыми амино- и карбоксильной группами (отщепление воды), Гетеродет - циклические полипептиды образуются в тех случаях, когда замыкание цикла происходит, например, в результате этерификации карбоксильной группы гидроксилом, рлсположениым в боковой цепи, или в результате образования дисуль-фидной связи между боковыми цепями  [c.381]

    Белок вируса табачной мозаики, ио-внднмому, однороден. Последовательность соединения аминокислот у карбоксильного конца полипептидной цепи этого белка такова , ..тре—сер—глиа—прол—ал—тре—ОН (Френкель-Конрат], [c.399]

    Рассмотрим характер конформационных изменений, возникающих при комплексообразовании карбоксипептидазы А с субстратоподобным ингибитором [15]. В активном центре свободного фермента (см. рис. 5) имеется система водородных связей (пунктир), которая простирается от Aгg-145 через амидные связи полипептидной цепи (01и-155, А1а-154, 01п-249) и молекулу воды (она не указана на рис. 5) до фенольного гидроксила Туг-248. При контакте этого же фермента с квазисубстратом глицил- -тирозином (см. рис. 7) электростатическое взаимодействие свободной карбоксильной группы квазисубстрата с гуанидиновой группой Aгg-145 (пунктир) вызывает смещение последней на 2 А (по сравнению с ее положением в свободном ферменте). Более того, это смещение одного остатка влечет за собой нарушение всей системы водородных связей, что приводит к повороту боковой цепи Туг-248 с перемещением ее фенольного гидроксила на 12 А. В результате между ней и амидным атомом азота в молекуле квазисубстрата образуется водородная связь (пунктир на рис. 7). [c.24]

    Электростатическое взаимодействие фермент-субстрат играет положительную роль также и в катализе карбоксипептидазой А, которая специфически отщепляет аминокислоты от С-конца пептидов и полипептидных цепей белков. Заряженная карбоксильная группа концевого аминокислотного остатка при образовании комплекса Михаэлиса электростатически взаимодействует с положительно заряженной гуанидиновой группой Arg-145 (см. схему на стр. 19 и рис. 7). Метилирование концевой карбоксильной группы, которое элиминирует электростатическое взаимодействие фермент—субстрат, практически полностью тормозит катализ карбоксипептидазой А [17]. [c.46]

    Белки разрушаются при действии на них некоторых ферментов, причем различные группы ферментов расщепляют полипептидную цепь по разным участкам. Э к) о пептидам являются гидролазами, расщепля-Ю1ЦИМИ пептидную связь внутри полипептидной цепи, жзопептидаш расщепляют ее на конце белковой молекулы, аминопептидазы атакуют аминоконец полипептидной цепи белка, а карбоксипептидазы - карбоксильный конец. [c.273]

    Подобные копформациоиные переходы лизоцима обнаружены также в ряде работ другими методами. Так, в работе [157] показано, что обратимый конформационный переход лизоцима в щелочной области pH контролируется ионогенной группой с рК 9,9. В работе [158] было найдено, что прп низких значениях pH лизоцим претерпевает обратимую денатурацию, скорость которой зависит от иопизации карбоксильных групп свободного фермента с рК в области 1,4—1,8. По данным работ ([159, 160]) карбоксильная группа с аномально низким значением рК<С2 принадлежит остатку Asp 66 лизоцима, экранированному от внещней среды полипептидной цепью фермента и также проявляющему наимень-щую реакционную способность по отношению к мoдV фикaтopaм. [c.200]

    Белки, подобно аминокислотам, амфотерны и образуют соли как с кислотами, так и с основаниями. В их полипептидных цепях имеются свободные карбоксильные группы и аминогруппы двухосновных кислот и диаминокислот, не участвующие в образовании цепей и находящиеся в боковых ответвлениях. В отрезке полипептидной цепи, представленном на стр. 292, такая свободная карбоксильная группа имеется в остатке глутаминовой кислоты, а аминогруппа — в остатке лизина. [c.295]

    Для синтеза полипептидной цепи необходимо реплить простую, казалось бы, задачу — образовать амидную (пептидную) связь между молекулами аминокислот. Среди синтетических методов органической химии имеется много удобных путей для образования подобной связи, однако задача синтеза полипептидных структур серьезно осложняется тремя факторами. Во-первых, аминогруппу и карбоксил (илн по крайней мере один из них) необходимо активировать для того, чтобы при реакции между ними возникла связь. Во-вторых, в каждой молекуле аминокислоты содержатся обе функциональные группы (аминная н карбоксильная), при взаимодействии которых образуется пептидная связь. Это значит, что образование такой связи может происходить не только межмолекулярно, но и внутримолекулярно второе направление необходимо исключить. Наконец, для синтеза конкретного полипептида надо обеспечить необходимую последовательность аминокислот в полипептидной цепи. Все эти задачи решают, используя принцип активации одних групп и защиты других. Рассмотрим этот принцип на простейшем примере (в реальных синтезах полипептидов дело обстоит гораздо сложнее). [c.345]

    Высокая прочность клеточных стенок грамположительных н грамотрицательных бактерий обеспечивается наличием структурной сетки, состоящей из аминокислот и сахаров (пептидо-гликан). Полисахаридная цепь образуется из чередующихся фрагментов N-ацетилглюкозамина (NAG) и N-ацетилмурамо-вой кислоты (NAM) (разд. 17.7), связанных 1р—4-связью. Между собой полисахаридные цепи соединяются с помощью разветвленной полипептидной цепи, прикрепляющейся к карбоксильной группе остатка NAM. Похожая на плетеную сумку структура укрепляет изнутри липидную мембрану. Если клетка начинает расти и делиться, то пептидогликан тоже должен растягиваться или видоизменяться. Контроль за синтезом пептидов, образующих стенки новой клетки, осуществляют ферменты, которые и становятся мишенью для р-лактамных антибиотиков. Эти препараты, вероятно, благодаря своей пептидоподобной структуре адсорбируются ферментом и затем ацилируют его активные центры за счет раскрытия р-лактамного цикла, сами превращаясь при этом в неактивные пенициллоиновые кислоты. Повреждения клеточной стенки, возникающие при подавлении активности ферментов, в конце концов приводят к тому, что клетка под действием осмотического давления разрушается. [c.370]

    Трипсин 21 расщепляет пептидные связи, в образовании которых участвуют карбоксильные группы лизина и аргинина. К гидролизу трипсином устойчивы связи лизина и аргинина с пролином (лиз—про и арг—про). Замедление гидролиза этим ферментом наблюдается тогда, когда остатки лизина и аргинина находятся рядом со свободными а-амино- и а-карбоксильными группами, а также в участках полипептидной цепи с повышенным содержанием основных аминокислот (связи ЛИЗ—лиз, арг—арг, лиз—арг и арг—лиз расщепляются только частично). Селективность расщепления трипсином можно повысить путем блокирования e-NH2-rpynn лизина (например, ангидридами янтарной, малеиновой или цитраконовой кислот) или же гуанидиновых группировок аргинина (дикетоновыми реагентами, такими как диацетил, циклогександион, фенилглиоксаль и др.). Гидролизу трипсином могут подвергаться связи, образованные и остатками цистеина, после превращения его в аминоэтилцистеин обработкой белка этиленимином. [c.140]

    Гистон НЗ из тимуса теленка содержит 135 аминокислотных остатков [288], причем суммарный заряд первых 53 из них составляет -М8. Возможно, именно эта часть белка связывается с ДНК. В то же время карбоксильный конец этого гистона обладает гидрофобными свойствами и лишь в незначительной степени — основными. Интересные кластеры основных аминокислот были обнаружены в отдельных участках полипептидной цепи гистона Н2а [289]. Одна из любопытных особенностей строения гистонов — это наличие большого числа микромодификаций, сводящихся к фосфорилированию остатков серина, ацетилированию и метилированию остатков лизина, а также метилированию боковых цепей аргинина. Так, например, остатки Ьуз-14 и Ьуз-23 в гистоне НЗ К-ацетилированы, тогда как остатки Ьуз-9 и Ьуз-27 частично 8-Ы-метилированы — каждый участок содержит частично моно-, частично ди- и частично триметильные производные. [c.302]

    Вторую группу природных биологически важных соединений двойственной принадлежности по классам, после гликолипидов образуют липопепти-ды, молекулы которых представлены ковалентно связанными липидным и полипептидным фрагментами. Со стороны липидной части, эта связь может быть рассмотрена как М-замещенная амидная, где амидный фрагмент образуется взаимодействием концевой аминогруппы полипептида с карбоксильной группой жирной кислоты. Типичное содержание аминокислотных остатков в полипептидной цепи — от 4 до 16, в тех же случаях, когда содержание этих остатков велико — соединения классифицируются как липо-протеины (схема 5.3.10). [c.128]

    В большинстве регуляторных систем растений и животных катализ осуществляется глобулярными белками, которые носят название ферментов. Высокая химическая специфичность ферментов связана отчасти с уникальной макроструктурой этих полимеров. Сложность общей структуры белков можно оценить на примере фермента рибоиуклеазы (рис. 25-12). В то время как вторичная структура белков определяется только водородными связями, многочисленные изгибы полипептидной цепи, придающие глобулярным белкам третичную структуру, зависят не только от пептидных связей и водородных связей между амидными группами, но и от других типов связей, а именно а) дисульфидных связей в цистине б) ионных связей, в которых участвуют дополнительные аминогруппы или карбоксильные группы в) водородных связей и г) гидрофобных взаимодействий (рис. 25-13). [c.410]

    N-Koнцeвaя аминокислота. Аминокислота на конце полипептидной цепи, несухцая свободную аминогруппу и связанная с белковым остатком посредством своей карбоксильной группы. [c.412]

    В специальных кальций-связывающих белках, или парвальбуми-нах , ион Са + связан как с амидной группой, так и с кластером карбок-силат-ионов. Установлена трехмерная структура такого белка из мышцы карпа (рис. 4-5). В этом белке имеется два центра связывания для кальция. В одном из них (рис. 4-5, Л, слева) ион Са + связан с четырьмя карбоксильными группами боковых цепей остатков аспарагиновой и глутаминовой кислот, с гидроксильной группой остатка серина, а также с карбонильным кислородом 57-го остатка пептидной цепи. Заметим, что эта Же самая пептидная группа связана водородной связью с карбонильной группой другого сегмента полипептидной цепи, расположенного рядом со вторым центром связывания иона Са + (рис. 4-5, Л справа). Этот центр содержит четыре карбоксилат-иона (один из которых осуществляет координационное связывание иона a + обоими ато-мами кислорода) и карбонильную пептидную группу. Значение данной [c.268]

    По рекомендации Лнндерстрема — Ланга были введены термины первичная, вторичная и третичная структура , характеризующие уровни структурной организации белков. Первичная структура белка дает сведения о числе и последовательности связанных друг с другом пептидной связью аминокислотных остатков. Вторичная структура описывает конформацию полипептидной цепи, возникающую при образовании водородных мостиков между карбоксильными кислородными атомами и атомами амидного азота в составе скелета молекулы. Под третичной структурой понимают трехмерную укладку полипептидной цепи, вызванную внутримолекулярным взаимодействием боковых цепей. [c.363]

    Химотрипсин преимущественно расщепляет те пептидные связи, карбоксильная функция которых относится к ароматическим аминокислотам. В длинных полипептидных цепях гидролизуются также связи, образованные лейцииом, валином, аспарагином и метионином. Пепсин обладает слабо выраженной специфичностью. Расщепляются связи, образованные триптофаном, фенилаланином, тирозином, метионином и лейцином. [c.365]

    Природная полипептидная цепь включает специфическую последовательность полярных и неполярных групп. Рассмотрим теперь, пользуясь моделью вода — масло, полипептидную цепь в воде (рис. 3.3). Поверхность контакта полипептидной цепи и воды велика для беспорядочно вытянутой цепи и мала в ее нативной, свернутой конформации. Однако в отличие от совершенно неполярных молекул масла иолипептидная цепь включает как полярные, так и неполярные группы. Например, амидные и карбонильные группы основной цепи, а также гидроксильные (в Ser, Thr, Tyr), карбоксильные (в Asp, Glu), аммониевые (в Lys) группы полярны и стремятся оставаться в воде (гпдрофильность). Углеводородные боковые цепи Ala, Val, Leu, He и Phe неполярны. [c.51]

    Для двух оставшихся классов протеолитических ферментов характерны совершенно другие механизмы действия. Пепсин [73] является основным компонентом группы протеолитических ферментов, активных в желудке при низких значениях pH. Хотя пепсин был вторым по времени ферментом, полученным в кристаллическом состоянии (1926 г.), детали его трехмерной структуры стали известны только в последнее время. Свиной пепсин содержит одну полипептидную цепь из 327 аминокислотных остатков известной последовательности. Для нее характерно наличие большого количества (29) аминокислотных остатков, содержащ,их карбоксильную группу, и, как полагают, две или три из них принимают участие в катализе. Так, фермент инактивируется диаз.о-метаном при pH 5,5, хотя для этого и требуется избыток реагента, а для полной инактивации необходима этерификация пяти карбоксильных групп. Более специфичными ингибиторами являются диазокетоны — аналоги субстрата. Toзил-L-фeнилaлaнилди-азометан (45), например, быстро ингибирует фермент в соотношении 1 1 [74] (схема (38) . [c.500]


Смотреть страницы где упоминается термин Карбоксильная полипептидной цепи: [c.92]    [c.273]    [c.370]    [c.651]    [c.463]    [c.84]    [c.400]    [c.561]    [c.97]    [c.372]    [c.396]    [c.56]    [c.502]    [c.452]    [c.668]    [c.39]   
Молекулярная биология клетки Том5 (1987) -- [ c.11 , c.15 , c.18 , c.19 ]




ПОИСК





Смотрите так же термины и статьи:

Карбоксильный ион

Полипептидные цепи



© 2025 chem21.info Реклама на сайте