Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прямой регенерация

    В качестве усовершенствования для прямой регенерации катализаторов или других очищаемых веществ газом или паром, или их смесью рекомендуется [90] эти газообразные продукты пропускать через серию распределительных труб, погруженных в катализатор или в очищаемое вещество. Такие трубы можно соединять вместе с помощью выходного коллектора. [c.314]


    Однако процесс прямой регенерации тепла катализатора приводит к сокращению продолжительности циклов до 15—20 мин вместо 2 ч, как это имеет место при дегидрогенизации в трубчатых реакторах. [c.77]

    Прямая регенерация трансформированных растений трансформация листовых дисков табака [c.119]

    Как уже упоминалось, классический метод получения изопропилового спирта в жидкой фазе имеет ряд недостатков. Так, потери кислоты довольно значительны, а расходы на ее регенерацию существенны. Кроме того, большие затруднения вызывает коррозия оборудования. Поэтому были проведены многочисленные опыты по прямо.му ирисоединению воды к олефинам на неподвижном слое [c.60]

    За счет регенерации тепла горячих нефтепродуктов нефть предварительно нагревается до 200 °С. Из всех установок, работающих по двухколонной схеме, на ней было впервые применено циркуляционное лигроиновое орошение в главной колонне, что позволило использовать около 4 млн. ккал/ч избыточного тепла для предварительного нагрева нефти и одновременно сократить количество подаваемого в колонну острого орошения. На установке АТ осуществлено непрерывное горячее выщелачивание дистиллятов светлых нефтепродуктов. Тепло отходящих из печи дымовых газов используется для подогрева воздуха, подаваемого в печь, что приводит к снижению расхода прямого топлива. Применение воздухоподогревателя позволило повысить к. п. д. печи до 0,73, тогда как большинство трубчатых печей на атмосферных установках старой конструкции имели к. п. д. не более 0,62. Схема первой типовой атмосферной установки (АТ) приведена на рис. 35. [c.74]

    Процесс десорбции (регенерации) абсорбента прямо противоположен процессу абсорбции. При десорбции из насыщенного абсорбента отпариваются целевые компоненты, т. е. из жидкой фазы переводятся в газовую. Газовая фаза в десорбере создается подачей в нижнюю часть аппарата инертного газа (газа отпарки). Если счет тарелок в десорбере вести снизу вверх, а фактор абсорбции заменить фактором десорбции (отпарки) 8 = то можно получить формулу десорбции, аналогичную [c.82]

    Поскольку в природных газах из всех сернистых соединений наиболее распространен НгЗ, то основные процессы очистки связаны с извлечением именно этого компонента. Для очистки небольших потоков газа и (или) потоков с очень малым содержанием сероводорода применяются так называемые процессы прямой конверсии, в которых НгЗ непосредственно в процессе извлечения из газа вступает в соединения, легко превращаемые в серу при регенерации поглотителя. Процессы прямой конверсии считаются экономически целесообразными при выходе серы не более 10—15 т/сут. [c.169]


    Регенерацию теплоты можно проводить непрерывным способом, когда в качестве теплового агента применяется, например, твердый материал небольшого зернения, жидкость или даже газ, движущиеся в системе и поглощающие периодически теплоту горячего носителя, а затем отдающие ее материалу, который нужно нагреть. Такая установка, использующая твердые гранулы (или мелкие камни, гальку), показана на рис. 1Х-39. Она может применяться для нагревания воздуха, водорода, метана, водяных паров или других газообразных веществ в различных промышленных процессах. Гранулы диаметром 8—15 мм нагреваются в верхней камере 2 при непосредственном соприкосновении (прямой теплообмен) с отдающим теплоту носителем, которым может быть любой газ с высокой температурой (например, продукты сгорания). После перемещения в нижнюю камеру 3 гранулы отдают теплоту газам, которые нужно нагреть. Подъемником 1 гранулы транспортируются снова на верх камеры 2. В среднем цикл перемещения гранул составляет 30—50 мин. Нижняя камера может также использоваться как реактор для проведения высокотемпературных реакций в газовой фазе (например, для каталитического крекинга нефтепродуктов) тепловой агент, в этом случае одновременно является катализатором. [c.387]

    Сопоставление удельных капиталовложений при производстве синтетического этилового спирта прямой и сернокислотной гидратацией показывает, что на заводах прямой гидратации выше капитальные затраты на установки газоразделения, в то время как на заводах сернокислотной гидратации относительно велики затраты на оборудование, связанные с необходимостью регенерации серной кислоты. В целом же по капиталоемкости оба метода примерно равноценны. [c.40]

    Водород получают прямым расположением углеводородов при контакте их в конверторе с расплавом железа. При этом водород удаляется в качестве продукта, а образующийся углерод поглощается расплавом. В зоне регенерации расплав продувают кислородом или воздухом, обогащенным кислородом. Содержащийся в сплаве углерод связывают в виде окислов углерода и удаляют, а очищенный таким образом расплав возвращают в конвертор. Выделяющееся в зоне регенерации тепло полностью компенсирует расход тепла, необходимого для разложения исходного углеводорода в конверторе [c.113]

    Окончательное уточнение оптимального состава и условий процесса целесообразно осуществлять, применяя ортогональные планы первого или второго порядка дробные реплики, ортогональные, ротатабельные планы. Эти планы позволяют сочетать изучение разнородных факторов, но слишком трудоемки для применения на первых этапах исследования. Исследования по этим планам нужно сочетать с кинетическими для изучения закономерностей деактивации и регенерации с целью расчетного определения оптимальных траекторий этих нестационарных процессов прямыми вариационными методами. [c.293]

    Высокая экономическая эффективность технологических установок получения серы прямым окислением сероводорода по сравнению с традиционной технологией, используемой в нефте- и газопереработке, обеспечивается за счет исключения стадии предварительного концентрирования сероводорода на блоках МЭА-очистки и, следовательно, соответствующих капитальных и эксплуатационных затрат блока МЭА-очистки и регенерации раствора МЭА (табл. 4.6). При существующей схеме очистки нефтезаводских газов от сероводорода на стадию предварительного концентрирования сероводорода приходится не менее 55% капитальных и 60% эксплуатационных затрат. В табл. 4.7. приведена структура затрат в производстве серы на примере Уфимского НПЗ. [c.113]

    Если поливиниловый спирт сразу используется для получения поливинилацеталей, суспензию ПВС в метаноле нагревают до 70 °С, обратный холодильник 13 переводят на прямой для конденсации паров метанола и передачи его в отделение регенерации. После удаления метанола в омылитель [c.40]

    Отмеченные выше недостатки сернокислотного способа привели к разработке методов прямой гидратации олефинов, состояш,ей в непосредственном присоединении воды по двойной связи в присутствии кислотных катализаторов. Их преимущества состоят в одно-стадийности процесса, отсутствии расхода серной кислоты или установок по ее регенерации, более высоком выходе спирта ( 95%), меньшей коррозии аппаратуры. [c.191]

    Расчетным путем было определено изменение величины тепло-напряженности по мере продвижения зоны горения кокса в глубь частицы и показано, что наиболее теплонапряженным участком является периферия частиц и зона остаточного кокса. Это было подтверждено прямыми экспериментами. Закоксованные частички катализатора регенерировали при 600 X для удаления кокса с поверхности частицы толщиной 0,5—1,0 мм. Следующий слой кокса толщиной 0,2—0,5 мм выжигали при 700, 750 и 800 °С, а оставшийся кокс — снова при 600°С. Было установлено, что увеличение концентрации кокса и повышение температуры регенерации промежуточной зоны шарика способствуют ее селективному спеканию. Зона спекания всегда совпадала с границами кокса, выгоревшего при повышенной температуре. [c.81]


    При регенерации непосредственно в реакторах прямые расходы (оплата труда, стоимость энергии и т.д.) могут быть низкими. Однако при учете длительности простоя установки или плохой рабочей характеристике катализатора регенерация на месте может оказаться невыгодной. [c.108]

    В лабораторных опытах и на экспериментальных промышленных установках была установлена дезактивация катализатора со временем (после 23 ч работы степень превращения уменьшается примерно на 15%). После восстановления (регенерации) степень превращения становится нормальной. Следовательно, расчетные значения т нужно умножить на 1,15 — фактор, учитывающий изменение активности катализатора при прямом контакте. [c.283]

    Смесь прямого и возвратного стирола разбавляется водяным паром и поступает на испарение и перегрев в систему теплообменников 1. Нагретая до 520—530 °С смесь направляется в нижнюю часть вертикального туннельного реактора шахтного типа (см. т. I, гл. 3). На входе в реактор к смеси добавляется перегретый водяной пар, расход которого вычисляется из его теплосодержания с учетом количества теплоты, необходимого для компенсации эндотермического теплового эффекта. Пары реакционной смеси при температуре около 600 °С проходят снизу вверх через слой окисного железного катализатора и выходят из верхней части реактора. Периодически катализатор подвергается окислительной регенерации. Теплота контактного газа частично рекуперируется в котле-утилизаторе 3, после чего пары конденсируются в системе конденсаторов 4, охлаждаемых последовательно водой и рассолом. Жидкие продукты расслаиваются в отстойнике 5. Нижний водный слой из отстойника может использоваться для получения пара или сливается в канализацию. Верхняя органическая фаза — так называемое печное масло—направляется на систему ректификационного разделения. [c.385]

    Если предположить, что катионы РЗЭ + являются активными центрами алкилирования или источником протонов, можно объяснить разницу в активности указанных образцов неодинаковой локализацией катионов a + и РЗЭ +. Последние размещаются в основном в центрах 5ц цеолитного каркаса, доступных для реагирующих молекул, но под действием высоких температур (при регенерации) мигрируют в недоступную для углеводородов область ( 1) [4]. Этим объясняется падение активности образцов с высоким содержанием катионов РЗЭ + после регенерации. Катионы Са +, локализуясь в центрах 5ь мешают миграции туда катионов РЗЭ +, тем самым увеличивая стабильность катализаторов. Указанные представления подтверждаются прямой корреляцией между теплотой адсорбции бензола и кислотностью цеолитов и их активностью в алкилировании изопарафинов этиленом [5]. [c.83]

    Продолжительность адсорбционного анализа по онисанному методу для фракций прямой перегопки нефти 6—7 час., время регенерации 5—6 час. [c.531]

    На стадии окисления получается 99%-ная терефталевая кислота. Дополнительной очисткой ее получают кислоту, пригодную для прямой этерификации в полиэтилентерефталат (99,99%). Принципиальная схема представлена па рис. 14. Катализатор регенерируется на отдельной установке, куда непрерывно отводится часть реакционной массы. Горячая уксусная кислота с солями брома вызывает интенсивную коррозию реактора, что заставляет использовать аппараты из титана или особого сплава [73]. Можно отказаться от использования брома или других промоторов, но при этом увеличить содержание катализатора до 20—100% от массы -ксилола. Температура процесса и давление понизятся до 100—130 °С и 0,98 МПа, а выход кислоты достигнет 97—98%. В результате регенерации катализатора расход его на 1 т кислоты снижается до 0,9 кг. Смягчив условия окисления и отказавшись от бромсодержащих промоторов, можно использовать обычные нержавеющие стали и в несколько раз уменьшить стоимость блока окисления. [c.78]

    Прямая регенерация катализатора имеет большое значение экономической точки зрения, хотя большая часть гомогенных катализаторов не является дорогостоящей. Стойкость смолы иг-эает важную роль в экономичности такого рода процессов. В не- оторых процессах наблюдалось разрушение смолы или необра- [c.277]

    Экспланты инокулируют жидкой средой, содержащей агробактерию с векторной конструкцией. Время инокуляции подбирается для каждого вида растений индивидуально. При этом происходит заражение клеток раневой поверхности экспланта, и после 24—48 ч кокультивирования в некоторых клетках происходит встраивание в растительный геном фрагмента Т-ДНК с чужеродным (выбранным) геном. Далее экспланты переносят на среду с антибиотиком (карбенициллин или цефотаксим), что приводит к избирательной гибели клеток агробактерий. Кроме того, в среду добавляют соответствующие фитогормоны (для прямой регенерации или каллусообразования) и антибиотик/гербицид для проведения селективного отбора трансформированных клеток. Такие трансгенные растения, экспрессирующие ген устойчивости к антибиотику или к гербициду, будут расти на среде с добавлением селективного агента, в то время как нетрансгенные растения погибнут. Через 2—5 недель на трансформированном экспланте развиваются побеги, которые в дальнейшем отсаживают или переносят в почву для проведения дополнительного молекулярного анализа (рис. 2.4, а). [c.60]

    Для растений хмеля было показано, что изолированные апексы различных сортов по-разному реагируют на присутствие в питательной среде регуляторов роста для сорта Смолистый оптимальной была концентрация БАП 1 мг/л, для сорта Истринский-15 — 0,5— 1,5 мг/л БАП и 0,05 мг/л ИУК. Апексы сорта Смолистый не реагировали на добавление в питательную среду ИУК и 2,4-Д, а у сорта Истринский-15 увеличивался рост побегов на среде с 0,05 мг/л ИУК и 0,05 мг/л 2,4-Д. Для изолированных апексов крыжовника также были отмечены сортовые различия в морфогенетических реакциях на условия культивирования. Так, апексы, культивируемые на питательной среде, содержащей минеральные соли по Т. Мурасига и Ф. Скуга, БАП 0,5 мг/л сорта Финик пролиферировали каллус, из которого затем формировались побеги, а апексы сортов Русский, Колобок, Розовый обладали способностью к прямой регенерации побегов. [c.124]

    Среда для прямой регенерации побегов из листовых дисков (например, MSD4X2 для табака) и та же среда, содержащая бактериостатические антибиотики и/или агент для селекции трансформантов (агаризованная, по 25 мл в чашках Петри диаметром 9 см и по 6 мл в чашках диаметром 5 см). [c.121]

    Процесс проводится следующим вбразем. Раетвор с барабанных фильтров, остающийся после кристаллизации бикарбоната натрия и содержащий ЫагСОз и (ЫН4)2СОз, нужно нагреть и направить в аппарат для выделения аммиака. Предварительное нагревание можно проводить в теплообменнике, к которому подводятся горячие газы из колонны отгонки аммиака от конденсата и из колонны отгонки аммиака от маточного раствора (фильтрационного щелока),— регенерация теплоты, косвенный теплообмен, противоток. Дальнейшее нагревание раствора осуществляется в скруббере, где выделяется аммиак. Раствор орошает насадку скруббера и контактирует с горячими газами и паром из дистиллера — прямой нагрев, развитие поверхности соприкосновения фаз, противоток, регенерация теплоты. [c.427]

    В будущем практический интерес может представить процесс совместного производства синтетических жирных кислот и натрийалкилсульфатов. По отношению к процессу прямого гидрирования кислот себестоимость 1 т натрийалкилсульфатов в данном случае составляет 106,4%. Однако следует учитывать, что разница в затратах обусловлена исключительно тем, что на стадии экстракции непросульфировавшихся соединений используется дорогостоящий этилацетат. В настоящее время во ВНИИНефтехиме ведутся работы, направленные на более полную регенерацию этилацетата, что позволит резко сократить его потери и улучшить технико-экономические показатели по процессу в целом. [c.189]

    Интересным решением проблемы снижения затрат на катализатор прямого ГК является разработка процессов, основанных на применении дешевых, не подлежащих регенерации катализаторов. Это процессы феба-эль-ку-крекинг и фебакомбн-крекииг (ФРГ), а также кэнмет (Канада), осуществляемые в реакторах с суспендированным катализатором. Фирма Феба оль по аналогии с процессами гидрогенизационного ожижения угля предлагает процессы гидрооблагораживания нефтяных остатков, основанные на жидкофазном гидрировании и крекировании в присутствии дешевого катализатора одноразового использования или вообще без катализатора. [c.121]

    Об окончании процесса судят по помутнению реакционной смеси. Сушка олигомера осуществляется под вакуумом в том же реакционном аппарате 6. Холодильник при этом работает как прямой. Остаточное давление примерно 90 КПа (700 мм рт. ст.), температура к концу процесса 90 °С. Сушка считается законченной, если при охлаждении пробы до 5°С происходит отслоение воды и скорость отверждения составляет 100—300 с. По окончании сушки из емкости 8 в аппарат 6 через мерник 9 вводят спирт до тех пЬр, пока не получится раствор смолы вязкостью I—7,5Па-с (1000—7500спз) и концентрацией около 55%. Раствор смолы охлаждается и сливается в сборник 10. Надсмольная вода собирается в сборнике 11 и далее направляется на регенерацию. [c.57]

    Результаты расчетов представлены в виде кривых на рис. 4.1. Границы кинетической области, которая расположена выше кривых, приведены в координатах входная температура-начальная концентрация кислорода Как видно из рисунка, выжиг кокса в кинетической области может быть реализован не для любых условий. Например, при начальной закоксованности 3% (масс.) и температурах ни ке 500 °С (при = = 10% (масс.) и Тг< 510 °С) регенерация катализатора будет проходить в области внутренней диффузии даже в атмосфере чистого кислорода. Аналогичная ситуация возникает при низких концентрациях кислорода. Так, при q = 3% (масс.) и концентрации кислорода ниже 6,5% (об.) (при 10% масс, и X <9% об.) даже при температурах 750 °С кинетические условия выжига кокса реализовать невозможно. Этот результат согласуется с выводом Ч. Саттерфилда [75] скорость горения прямо пропорциональна концентрации кислорода в окислительном газе, но так как реакция лимитируется диффузией, то влияние температуры на скорость реакции незначительно . Иногда в литературе медленную скорость удаления кокса, например, для условий qt = 6% (масс.), х = 2% (об.) и 7 = 487 °С [153] объясняют протеканием процесса исключительно в кинетической области. Однако из того факта, что скорость выжига мала, вовсе не следует, что процесс лимитируется кинетикой. Как видно из рис. 4.1, единственно возможная область протекания процесса при таких условиях-внутридиффузионная или переходная. [c.77]

    Применение мелких зерен катализатора в кипящем слое дает возможность снизить внутрйдиффузионное торможение процесса [21, 23—25]. Вследствие текучести взвешенного (псевдоожиженного) слоя мелкозернистый катализатор можно легко выводить из контактного аппарата для регенерации и очистки от смол, не прекращая основной процесс, а потом возвращать в реакционную зону. Ката.ли-затор не только выполняет при этом свои прямые функции, но и служит теплоносителем. [c.220]

    Мерой срока службы кислоты на установках алкилирования является количество разбав1ителей (углеводородов, растворенных в кислоте, и воды), образующихся на единицу объема чистого олефинового сырья. Этот фактор наряду с потерями кислоты (например, на окисление) и концентрацией свежей и отработанной кислоты определяет скорость замены свежей кислоты, что является прямой мерой стоимости регенерации катализатора на любой отдельно взятой установке алкилирования. Для расчета скорости замены кислоты было необходимо сформулировать модель ее истощения для системы реактор- -отстойник на пилотной установке. Эта модель исходит пз допущения, что система реактор+отстойник представляет собой единое целое,, и учитывает образование растворимых углеводородов и окисление Н2304. Модель была использована для расчета параметров разбавления и окисления на основе данных по составу кислоты, по ее потерям (на отбор проб) и по количеству катализатора, оставшегося после опытов в системе. [c.186]

    Для гидрогенизационной очистки сырья, как правило, используют водородсодержащий газ, получающийся в процессе каталитического риформинга. Концентрация водорода в этом газе может изменяться от 60 до 95 объемн. % и зависит от качества исходного сырья и жесткости условий риформинга [24]. Степень обессеривания сырья при гидроочистке увеличивается с повышением парциального давления водорода, которое зависит от общего давления и концентрации водорода в циркулирующем газе. Общее давление при гидрообессерива-нии сырья, предназначенного для каталитического риформинга, поддерживается равным 25—50 ат. Величина удельной объемной скорости при гидрообессеривании находится в пределах 1,0—5,0 ч удельная циркуляция газа равна 100—600м 1м сырья. Длительность безре-генерационной работы катализатора зависит от качества исходного сырья и параметров процесса. В обычных условиях катализатор мол<ет работать без регенерации более одного года. Расход водорода при очистке прямо-гонных бензиновых фракций, как правило, не превышает 0,1 вес. % на сырье. [c.188]

    Неблагоприятно отражается на экономике промышленного процесса пиролиза отсутствие регенерации тепла на установках. Поток паров из реакционного змеевика, имеющих температуру 800° С и выше, мгновенно охлаждается в закалочном аппарате прямым контактом с водой, отдавая при этом значительное количество тепла. Подсчитано, что на типовом агрегате из пяти работающих печей, количество тепла, уносимого водой после закалочного аппарата и скруббера, составило бы 46,8 млн. кшл1ч .  [c.132]


Смотреть страницы где упоминается термин Прямой регенерация: [c.136]    [c.181]    [c.181]    [c.181]    [c.182]    [c.159]    [c.151]    [c.125]    [c.84]    [c.65]    [c.156]    [c.282]    [c.14]    [c.99]   
Силивоны (1950) -- [ c.72 ]




ПОИСК







© 2024 chem21.info Реклама на сайте