Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакционная способность влияние анионов

    Аналогичное качественное различие наблюдалось и для других пар, причем особо наглядный случай представляет собой система стирол—метилметакрилат, где сополимеризация смеси 1 1 первоначально дает под влиянием свободно-радикальных инициаторов сополимер с составом 1 1, но в процессах, протекающих под воздействием иона карбония и кар-баниона, соответственно [153] получаются практически чистые полистирол и полиметилметакрилат. Имеющиеся довольно ограниченные данные позволяют высказать предположение, что реакционные способности при полимеризации под действием карбаниона идут практически параллельно способности заместителей стабилизировать карбанионы, возрастая в следующем порядке акрилонитрил, метакрилонитрил > метилметакрилат > > стирол > бутадиен. Активными центрами в наиболее реакционных из них является в основном стойкий анион энольного типа. [c.161]


    В зависимости от знака заряда на конце растущей цепи ионную полимеризацию подразделяют на анионную, протекающую под влиянием возбудителей основного характера, и катионную, вызываемую кислотными агентами. Активные центры при ионной полимеризации обычно имеют структуру ионных пар, компоненты которых называются растущим ионом (R+ или R ) и противоионом (А или В+). Реакционная способность активных центров при ионной полимеризации, в отличие от радикальной полимеризации в большой степени зависит от свойств реакционной среды. [c.28]

    Из приведенного выше механизма конденсации следует, что электроноакцепторные группы оказывают негативное влияние на третьей стадии реакции, так как они снижают нуклеофильную реакционную способность образующегося аниона. Сильные электронодонорные группы, снижая частичный положительный заряд на атоме углерода карбонильной группы, затрудняют как [c.212]

    Активные в процессе анионной полимеризации мономеры содержат электроотрицательные (электроноакцепторные замести-гели. На реакционную способность мономеров в этом процессе оказывает влияние их строение и главным образом степень поляризации двойной связи. По убыванию реакционной способности чономеры располагаются в следующем порядке  [c.139]

    ВЛИЯНИЕ РАСТВОРИТЕЛЯ НА РЕАКЦИОННУЮ СПОСОБНОСТЬ АМБИДЕНТНЫХ АНИОНОВ [c.313]

    Общая теория влияния среды на реакционную способность донорных анионов [c.626]

    Влияние среды и структуры на реакционную способность донорных анионов интерпретируется на основании следующего постулата способность Y выступать в роли донора электрона зависит от того, насколько его электронное облако уже поляризовано за счет его взаимодействия с ближайшими частицами. В протонных растворителях это происходит за счет образования водородных связей [c.626]

    Однако в начале 70-х годов связь между строением и двойственной реакционной способностью амбидентных анионов является одной из наименее изученных проблем [274, стр. 1776]. Это объясняется в значительной мере сложностью экспериментального изучения сильных изменений реакционной способности амбидентных систем под влиянием различных факторов (ассоциация с катионом, избирательная сольватация и т. д.). [c.117]

    Влияние растворителя на реакционную способность амбидентных анионов [c.82]

    Помимо этого влияние pH на скорость реакции часто выражается в том, что реакционная способность реагентов обычно изменяется при отщеплении или присоединении протона. Рассмотрим, например, реакцию, в которой нейтральная молекула А взаимодействует с анионом В  [c.35]


    Механизм мицеллярного катализа сложен, зависит от специфики реагентов и ПАВ и выяснен далеко не в полной мере. Влияние мицелл на химические реакции определяется двумя основными факторами — изменением реакционной способности веществ при переходе их из воды в мицеллярную фазу и эффектом концентрирования реагентов в мицеллах, причем второй фактор во многих случаях является единственным источником мицеллярного катализа. Изменение реакционной способности вещества в мицеллах обусловлено совокупностью электростатических и гидрофобных взаимодействий между молекулами реагента и мицеллами, что приводит к изменению энергий основного и переходного состояний реагентов На роль электростатических взаимодействий указывает, в частности, тот факт, что обычно реакции нуклеофильных анионов с нейтральными молекулами ускоряются катионными мицеллами, замедляются анионными, а мицеллы НПАВ практически не оказывают на них влияния. Во многих случаях мицеллы влияют не только на кинетику, но и на равновесие реакций, что не свойственно истинным катализаторам. [c.86]

    Сильные кислоты и щелочи разрушают окисную пленку алюминия, и металл растворяется. Однако в некоторых случаях, например в концентрированной азотной кислоте, алюминий пассивируется. Реакционная способность кислот по отношению к алюминию зависит как от концентрации, так и от типа анионов. Кислоты, содержащие галогены, интенсивно разрушают алюминий, причем агрессивность их увеличивается с ростом атомной массы галогена. Самая низкая устойчивость наблюдается в кислотах средней и несколько более высокой концентрации она растет с повышением чистоты металла. Благоприятное влияние на коррозионную устойчивость оказывает термообработка при 360°С с последующей гомогенизацией при 575°С и медленным охлаждением в печи. [c.124]

    Изучение других 5м2-реакций типа Х +К ->ХК+ с различными нуклеофилами X , уходящими группами У и алкильными группировками К позволило определить собственную реакционную способность большого числа сочетаний X и КУ в отсутствие влияния растворителей. Полученные данные обсуждены в свете нуклеофильности X , легкости элиминирования V и пространственных препятствий [474—477]. Показано, например, что в газовой фазе нуклеофильность различных анионов [c.196]

    Существуют и аналогичные амбидентным анионам амбидентные катионы, однако влияние растворителей на двойственную реакционную способность последних в реакциях с нуклеофильными агентами в достаточной мере не изучено (см. соответствующий обзор [368]). [c.346]

    Некоторые иные аспекты влияния структуры карбанионов на реакционную способность были отмечены при обсуждении способов образования карбанионов. Однако общий конечный результат реакции обусловлен последующим участием образующегося аниона в тех или иных реакциях протонирования, атаки других ненасыщенных молекул (как в случае анионной полимеризации), [c.559]

    По признаку относительной кислотности нли щелочности реакционной среды можно разделить процессы восстановления на три основные группы 1) такие процессы, которые проводятся в присутствии кислотных агентов, 2) такие, которые используют практически нейтральную среду, и 3) проводимые в щелочной среде. Надо сказать, что, поскольку известно автору, вопрос о концентрации водородных ионов в водных растворах, применяемых при восстановительных процессах, вопрос о влиянии анионов различных кислот не освещались сколько-нибудь систематично научным исследованием, так же как и относительная способность к восстановлению отдельных восстановителей (окислительно-восстановительный потенциал процесса). Об этом приходится пожалеть исследования в этом направлении могли бы быть очень плодотворными и разрешить много недоуменных вопросов практики. [c.127]

    Главная особенность химических свойств алкилпиридинов состоит в способности алкильных групп, непосредственно связанных с пиридиновым циклом, депротонироваться [167]. Скорости протонного обмена в системе метанол — метилат натрия для 4-, 2- и 3-алкилпиридинов равны соответственно 1800, 130, 1 [168]. Сравнение значений рА а, измеренных в тетрагидрофуране [169], демонстрирует, что у-изомеры обладают в большей степени кислотными свойствами, чем а-алкилпиридины, а а- и у-изомеры более сильные кислоты, чем р-изоме-ры, однако образование того или иного аниона при возможности нескольких конкурирующих процессов депротонирования существенно зависит от ряда условий. Депротонирование при действии алкиллитиевых соединений приводит к образованию а-анионов, более стабильные а-анионы образуются при использовании амидных оснований [170]. Гораздо большая склонность [171] а-иу-алкил-пиридинов к депротонированию связана с мезомерной стабилизацией соответствующих анионов с участием кольцевого атома азота, что невозможно в случае р-изомера. В последнем случае депротонированию способствует лишь индуктивное влияние кольцевого атома азота, однако при подходящих условиях депротонирование р-метильной группы все же возможно [172]. Различие в реакционной способности метильных групп в положениях 2 и 3 позволяет селективно провести превращения по первой метильной группе [173]. [c.131]


    Когда такие факторы, как природа субстрата, нуклеофила и уходящей группы, постоянны, активация аниона зависит от растворителя, а также от природы и концентрации лиганда. Бициклические криптанды, такие, как 5, оказывают более сильное влияние, так как они в большей степени охватывают катион, образуя тем самым более стабильные комплексы. В полярных апротонных растворителях крауны обусловливают усиление диссоциации. В других системах (например, грег-бутоксид натрия в ДМСО) ионные агрегаты разрушаются в результате комплексообразования с краунами, что приводит к увеличению основности алкоксида, измеряемой скоростью отщепления протона [101]. В менее полярной среде, такой, как ТГФ или диоксан, доминирующими частицами являются ионные пары. В этом случае краун-эфиры могут благоприятствовать образованию разделенных растворителем более свободных (рыхлых) ионных пар [38, 81] с более высокой реакционной способностью [102]. Даже в гидроксилсодержащих растворителях при добавлении краунов наблюдаются удивительные эффекты, так как изменяются структура и состав сольватной оболочки вокруг ионной пары и ионные агрегаты частично разрушаются. Например, сильно изменяется соотношение син1 анти-изомеров при элиминировании, катализируемом основаниями [103]. [c.40]

    Низкомолекулярные АО выделяли смесью серной кислоты с уксусной. Эта система за счет ионизации АО и большей их реакционной способности с анионом серной кислоты позволяет повысить степень извлечения этих оснований из нефти. С целью оптимизации условий выделения АО в уксусно-кислотных средах изучено влияние времени экстракции, температуры, соотношения 113804 СН3СООН НдО, кратности обработки. Установлено, что максимальный выход АК однократной обработкой достигается через 1—1,5 ч при температуре не более 40 . Изменение этих параметров не оказывает существенного влияния на степень извлечения АО. При постоянной концентрации уксусной кислоты 50% степень выделения АО существенно зависит от содержания серной кислоты и достигает максимума (10,7%) при 25%-ной концентрации серной кислоты (рис. 23). При дальнейшем увеличении концентрации серной кислоты наблюдаются повышение степени извлечения слабоосновных соединений и уменьшение — АО. [c.77]

    Поиятпо, что paзлiiчнoe окружение в таких разных средах ока веет сильное влияние на реакционную способность енолят-аниона. I протекания алкилирования сольватация енолят-аниона, по крайней м частично, должна быть нарушена, ч [c.20]

    Краун-эфиры повышают также нуклеофильную реакционную способность других анионов X в реакциях с участием К Х (Х = = Вг , I , НО , СНзО ) [357, 358]. Монтанари и др. [653] изучали сравнительное влияние фосфониевых солей, коронандов и криптандов на 8 2-реакции н-октилметансульфоната с различными нуклеофилами в хлорбензоле. [c.340]

    Первоначально образуется я-комплекс с электрофильным реагентом. Далее происходит превращение комплекса с образованием карбокатиоиа (стадия, определяющая скорость реакции), который затем реагирует с анионом. Значительное влияние на реакционную способность реагента оказывают его природа и строение мономерного звена полимера. [c.68]

    Основные научные исследования относятся к физической органической химии. Совместно с О. А. Реутовым установила (1960—1966) закономерности, управляющие реакциями электрофильного и радикального замещения у насыщенного атома углерода изучила кинетику и механизм реакций симметризации ртутьорганических соединений. Открыла и изучила механнзм, сформулировала представления о нуклеофильном катализе в электрофильном замещении (1953—1960). Предложила и обосновала 5 2 как парный механизм электрофильного замещения. Осуществила исследования в области химии карбанионов и амбидепт-иых ионов. Изучила влияние раз-.пичных факторов, определяющих двойственную реакционную способность амбидентных анионов. Открыла ряд новых реакций ртуть-и оловоорганических соединений, [c.46]

    Теперь о влиянии ионной ассоциации на скорость элиминирования. Как и в процессах нуклеофильного замещения и присоединения (во всяком случае в большинстве), она дезактивирует основание. Так, переход от наиболее диссоциированного трег-бутилата калия к трег-бутилату лития приводит к снижению константы скорости элиминирования HOTs от 3-гексилтозилата почти в двадцать раз [56]. В реакции этилата натрия с 2-(5-К-тиеиил-2)этил-тозилатами [59] реакционная сиособность ионных нар в два-три раза ниже реакционной способности свободного аниона [c.268]

    Точное знание равновесия диссоциации ионофоров необходимо для исследования влияния образования ионных пар на реакционную способность нуклеофилов-анионов. Хотя Экри и его сотрудники провели обширные исследования по этому вопросу 50 лет назад [47], в последние годы ему уделяется мало внимания, несмотря на большое потенциальное значение этого влияния как для теоретической, так и для синтетической органической химии. Это могло произойти потому, что различие в реакционных способностях свободных и спаренных ионов в большинстве систем мало заметно и для его выявления требуется постановка тщательных экспериментов. Одно такое исследование по влиянию образования ионных пар на нуклеофильную реакционную способность бром-иона в растворах жидкого SO2 с применением кинетики обмена радиоактивного брома между несколькими ионофорными бромидами и я-нитробензилбромидом уже упоминалось [46]. Эту проблему трудно решить однозначно по двум причинам. Одна из них та, что в принципе очень трудно, хотя и не невозможно [46], различить влияние образования ионных пар на реакционную способность аниона, представляемую уравнением (7), и на реакционную способность в том случае, когда свободный анион является активным нуклеофилом, а свободный катион служит катализатором [уравнение (8)]. [c.77]

    Во-вторых, существование корреляции структура — реакционная способность является свидетельством в пользу механизма общеосновного катализа [85]. В некатализируемой (или катализируемой водой) реакции аминов с эфирами скорость реакции обычно очень чувствительна к основности амина, так что зависимость log к от рК имеет наклон - 0,8. Это справедливо как для третичных аминов, так и для первичных и вторичных и означает, что удаление протона от нуклеофильного реагента в переходном состоянии не имеет существенного значения и что действие электронооттягивающих заместителей проявляется в уменьшении нуклеофильной способности за счет уменьшения электронной плотности на реакционном центре. С другой стороны, реакция спиртов с эфирами при нейтральных значениях pH обнаруживает обратную чувствительность к заместителям, а именно увеличение реакционной способности при повышении кислотности спирта. Последнее является следствием того, что активная частица — это анион спирта, и влияние электропооттягивающего заместителя сводится к увеличению равновесной концентрации аниона [уравнение (77)], что важнее, чем понижение им реакционной способности этого аниона [уравнение (78)] [c.178]

    Окончила Московский ун-т (1955). Работает там же (с 1971 проф.). Осн. исследования относятся к физ. орг. химии. Совм. с О. А. Реутовым установила (1960—1966) закономерности, управляющие р-циями электрофильного и радикального замещения у насыщенного атома углерода изучила кинетику и механизм р-ций симметризации ртутьорганических соед. Открыла и изучила S,.,l-механизм, сформулировала представления о нуклеофильном катализе в элект-рофильном замещении (1953— 1960). Предложила и обосновала как парный механизм электрофильного замещения. Осуществило исследования в области химии карбапионов и амбидептатных ионов. Изучила влияние различных факторов, определякпцих двойственную реакционную способность амбидентных анионов. Открыла ряд новых р-ций ртуть- и оловоорганических соед. [c.39]

    Протонные полярные растворители (H-iO, ROH, НСООН, R OOH, NHa) хорошо сольватируют как катионы, так и анионы. Влияние таких растворителей особенно велико в реакциях 5лг1, так как они способствуют диссоциации субстрата. Растворители этой группы обычно замедляют реакции 5 .2 сольватируя нуклеофил Y, они уменьшают его реакционную способность. [c.95]

    По физическим свойствам и строению кадмийорганические соединения аналогичны соответствующим производным циика. Ди-алкильиые соединения несколько менее летучи (диметилкадмий имеет т. кип. 105,7°С) и являются несколько менее сильными акцепторами электронов. Известно небольшое число способных к выделению комплексов этих соединений с эфирами, аминами и другими соединениями, а соответствующие ат-комплексы обычно нестабильны. Несимметричные кадмийорганические соединения R dX исследованы гораздо менее подробно, чем их цинковые аналоги, но их структуры, по-видимому, аналогичны [1, 2]. Как и в случае цинкорганических соединений, присутствие солей металлов может оказывать значительное влияние на реакционную способность кадмийорганических соединений. Доказано существование комплексных анионов типа R dX2 [142]. [c.70]

    Полосы поглощения замещенных бензольных колец почти всегда сдвинуты в сторону более низких энергий относительно полосы поглощения исходного углеводорода. Чем сильнее выражена способность замещающих групп оттягивать на себя или отдавать электроны, тем больше батохромный сдвиг. Величина сдвига коррелирует с постоянной Гаммета (J. Так, первая полоса поглощения тирозина в воде смещена на 2600 см в красную сторону от полосы бензола, тогда как для диссоциированного тирози-нового аниона сдвиг составляет 4700 см — в очень грубом приближении сдвиг действительно пропорционален Стр (табл. 3-9). Особенно большой сдвиг наблюдается в тех случаях, когда в одном и том же кольце присутствуют противоположные по характеру функциональные группы (например, электронодонорные и электроноакцепторные). Эффект пар заместителей в орто- и Л1ета-положениях примерно одинаков (в отличие от влияния этих заместителей на реакционную способность). Когда замещающие группы находятся в пара-положении, спектральные сдвиги оказываются несколько иными. При наличии более чем двух замещающих групп характер спектра определяется главным образом двумя группами, оказывающими наиболее сильное влияние. Полезные эмпирические правила можно найти в работах [32] и [33]. [c.20]

    Рассмотрим причины, определяющие предпочтительность С-алкили-рования при этом нужно учитывать три взаимосвязанных фактора. Во-первых, степень сольватации еполпт-аниона оказывает сильное влияние на реакционную способность аниона (см. разд. 1.6). Детали строения сольватироваиного аниона могут влиять иа соотношение продуктов О и С-алкилирования. Если атом кислорода более сильно сольватирован, чем атом углерода, можно ожидать большей реакционной способности по углеродному атому. Поскольку в еноляте иа атоме кислорода сосредоточен больший отрицательный заряд, можно ожидать наиболее силь ной сольватации атома кислорода за счет образования водородных связей. [c.21]

    Влияние строения кетона может проявиться на первой стадии процесса в связи с реакционной способностью находящегося в а-положении водородного атома, на второй стадии — в связи с основностью и размерами аниона кетона и на третьей — в связи с кислотностью образующегося Р-дикетона. В общем случае легкость ацилирования кетонов сложным эфиром и основанием падает при переходе к кетонам менее простого строения. Это понижение реакционной способности можно видеть в ряду СНзСО > КСНаСО > НгСНСО. [c.93]

    Следует также иметь в виду, что в большинстве случаев шроцессы с участием продуктов переноса электрона протекают на поверхности электрода или вблизи нее, т. е. там, где проявляются многие факторы, связанные с адсорбцией молекул, (Строением двойного электрического слоя, наличием электриче- ского поля высокой напряженности и т. д. Эти факторы влияют на реакционную способность как исходных молекул, так и частиц, образующихся в результате электрохимического процесса,. а также на свойства молекул растворителя например, константа диссоциации молекул воды, адсорбированных на поверхности электрода, возрастает в зависимости от условий на шесть и более порядков. Я. П. Страдынь и В. П. Кадыш [21] показали, что образующиеся в процессе восстановления 2-фенилиндандио-яа-1,3 енолят-анионы превращаются за счет перераспределения электронной плотности под влиянием электрического поля в гкето-форму индандпена, которая и участвует в собственно электрохимической стадии. [c.32]

    Доступность и высокая реакционная способность солей триалкил(ферро-ценилметил)аммония позволили получить разнообразные соединения, содержащие ферроценилметильную группу, изучить их свойства и выяснить влияние ферроценила на стабильность соседнего катионного, радикального и анионного центров. [c.13]


Смотреть страницы где упоминается термин Реакционная способность влияние анионов: [c.1343]    [c.346]    [c.278]    [c.86]    [c.107]    [c.313]    [c.58]    [c.610]    [c.557]    [c.44]   
Межфазный катализ в органическом синтезе (1980) -- [ c.296 ]




ПОИСК





Смотрите так же термины и статьи:

Анионы, их влияние



© 2024 chem21.info Реклама на сайте